Distributed Systems

CS425/ECE428

Instructor: Radhika Mittal



Logistics Related

* HW | has been released.

* You can solve first 4 questions right away
* You can solve last two questions hopefully by end of today’s class.

* MPO due on Wednesday.



Today’s agenda

* Global State
* Chapter 14.5
* Goal: reason about how to capture the state across all

processes of a distributed system without requiring time
synchronization.



How to capture global state?

* |deally: state of each process (and each channel) in the system at a given
instant of time.
* Difficult to capture -- requires precisely synchronized time.

* Relax the problem: find a consistent global state.
* For a system with n processes <p,, py, P3, - - -+ P>, Capture the state
of the system after the ¢ ™ event at process p.
* State corresponding to the cut defined by frontier events
{eG fori=12,...n}k
* We want the state to be consistent.
* Must correspond to a consistent cut.

How to find a consistent global state that corresponds to a
consistent cut ?



Chandy-Lamport Algorithm

* Goal:
* Record a global snapshot
* Process state (and channel state) for a set of processes.
* [he recorded global state Is consistent.

 |dentifies a consistent cut.

* Records corresponding state locally at each process.



Chandy-Lamport Algorithm

* System model and assumptions:

* System of n processes: <py, Pys P3s « -« P~

e There are two uni-directional communication channels between
each ordered process pair: p;to p; and p; to p;

* Communication channels are FIFO-ordered (first in first out).
* if p; sends m before m’ to p;, then p; receives m before m'.

* All messages arrive intact, and are not duplicated.
* No fallures: nerther channel nor processes fall.



Chandy-Lamport Algorithm

* Requirements:

* Snapshot should not interfere with normal application actions,
and 1t should not require application to stop sending messages.

* Any process may Initiate algorithm.



Chandy-Lamport Algorithm Intuition

* First, initiator p;;
* records Its own state.
* creates a special marker message.
* sends the marker to all other process.

* When a process receives a marker.
e records its own state.



Example

A B marker C D E
Pl . S *
\ Time
- F S G
P3 / Io \ S

Inconsistent cut: {B, F, |}
(J is in cut but G isn’t)



Chandy-Lamport Algorithm Intuition

* First, initiator p;;
* records Its own state.
* creates a special marker message.
* sends the marker to all other process.

* When a process receives a marker.

e |f marker is received for the first time.
* records its own state.
* sends marker on all other channels.

Leads to a consistent cut



Example

A B marker C D E

Pl @ O @

\ Time
P9 E F O G
P3 / I, \ J

What can we say about marker from P2 to P3!?



Example

A B marker C D

@
o

Pl ®

Time

) / \
P3 le O ]

Marker from P2 must reach P3 before |

Consistent cut: {B, F, I}



Chandy-Lamport Algorithm

* First, initiator p;;
* records Its own state.
* creates a special marker message.
* sends the marker to all other process.

* When a process receives a marker.

e |f marker is received for the first time.
* records its own state.
* sends marker on all other channels.

Leads to a consistent cut.
What about the channel state?



Chandy-Lamport Algorithm Intuition

P1
my m2
“o -~ Physical

time

Cut frontier: {c, g}



Chandy-Lamport Algorithm Intuition

” ] W/
e / 2 / Physical

time

e

Cut frontier: {c, g}



Chandy-Lamport Algorithm Intuition

P1 ’
9 A/ -~ Physical

time

e

Cut frontier: {c, g}



Chandy-Lamport Algorithm Intuition

* First, initiator p;;

records Its own state.

creates a special marker message.

sends the marker to all other process.

start recording messages received on other channels.
* until a marker is received on a channel.

* When a process receives a marker.

e [f marker is received for the first time.
* records its own state.
* sends marker on all other channels.
* start recording messages received on other channels.

e until a marker is received on a channel.



Chandy-Lamport Algorithm

* First, initiator p;;
* records Its own state.

* creates a special marker message.
* for j=1 to n except i
* p; sends a marker message on outgoing channel ¢;
* starts recording the incoming messages on each of the
incoming channels at p;: ¢; (for j=1 to n except ).



Chandy-Lamport Algorithm

Whenever a process p; receives a marker message on an incoming
channel ¢,
* If (this is the first marker p; is seeing)

* p, records Its own state first

* marks the state of channel ¢,; as “empty”

* forj=1 to n except |

* p; sends out a marker message on outgoing channel ¢;
* starts recording the incoming messages on each of the incoming
channels at p;: ¢; (for j=1 to n except i and k).

* else // already seen a marker message

* mark the state of channel ¢, as all the messages that have arrived
on it since recording was turned on for ¢



Chandy-Lamport Algorithm

The algorithm terminates when

* All processes have received a marker
* To record their own state
* All processes have received a marker on all the (n-/) incoming
channels
* To record the state of all channels



Example

B D E
Pl A
Time
P2 G >
P3 ® !
®

Instruction or Step
~ Message




Example

B
Pl 0

P3




Example

B
Pl 0

P2 k 3

.



Example

B
Pl 0

P2 k 3

.



Example

B
Pl 0

P2 k 3

.



Example

Cy €3y C31
B D E

Pl o S

Time

F
P9 E G .
P3 I‘ J
Ci3 Cs;
C23



Example

Cy €3y C31
B D E
Pl o S
Time
F
P2 G
P3 I‘ J
Ci3 - ¢,



Example

Cy €3y C31
B D E

p — S

Time

F
P2 G >
P3 Iy J
Ci3 €32 .. Ci2



Example

Ca
€,,;€3, C31
B D E
Pl A .8 Q
Time
F
P9 E G
P3 H - J
C
Cis C32 . 12



Example

C2i
€,,;€3, C31
B D E
Pl s S
Time
F

P2 G >
P3 Iy J

C32 Ciy

Ci3 €5
€23



Example

%)
€,,;€3, C31
B D E
Pl o S
Time
F

P9 E G .
P3 I‘ J

C3)

Ci3 €5 =
€23

Algorithm has terminated!



Example

C2
C3y
A B < C D E
P -
==/ Time
E P G/ ¢
J 12
P2 7
/, C32
> 4
o
/T/, J
7z 1
P3 v, PS
C3
Ci3

Frontier for the resulting cut:
{B, G, H}

Channel state for the cut:
Only c,, has a pending message.




Example

Cyi
C3y
B D E
Pl o S
Time

P2 A G ik :

C32
P3 H - J

C23

Global snapshots pieces can be
collected at a central location.



Chandy-Lamport Algorithm: Properties

* Any run of the Chandy-Lamport Global Snapshot
algorithm creates a consistent cut.

* Let ; and g, be events occurring at p; and p;, respectively
such that

*e > e (ehappensbefore e)

j
* [ he snapshot algorithm ensures that
if e is in the cut then e is also In the cut.

* That is:if e, = < p; records its state>, then
it must be true that e, = <p. records its state>.



Chandy-Lamport Algorithm: Properties

* If & = < p, records its state>, then
it must be true that e, = <p. records its state>.

* By contradiction, suppose e; 2 < p; records its state>, and
<p, records its state> 2> e,

<

Pj

Pk ®
\n,
[ ]




Chandy-Lamport Algorithm: Properties

* If & = < p, records its state>, then
it must be true that e, = <p. records its state>.

* By contradiction, suppose e; 2 < p; records its state>, and
<p, records its state> 2> e,

<

Pj

Pk ®
\n,
[ ]




Chandy-Lamport Algorithm: Properties

* If & = < p, records its state>, then
it must be true that e, = <p. records its state>.

* By contradiction, suppose e; 2 < p; records its state>, and
<p, records its state> 2> e,

<

Pj

Px must reach p, before m *
due to FIFO order. m’
)




Chandy-Lamport Algorithm: Properties

* If & = < p, records its state>, then
it must be true that e, = <p. records its state>.

* By contradiction, suppose e; 2 < p; records its state>, and
<p, records its state> 2> e,

<

e e >
Pi °
m Time
Py o ®
XY
must reach p; before m’ e

P; due to FIFO order S




Chandy-Lamport Algorithm: Properties

* If & = < p, records its state>, then
it must be true that e, = <p. records its state>.

* By contradiction, suppose e; 2 < p; records its state>, and
<p, records its state> 2> e,

* Consider the path of app messages (through other
processes) that go from e; to e;.

* Due to FIFO ordering, markers on each link in above path
will precede regular app messages.

* Thus, since <p; records its state> =2 e, , it must be true that

p; received a marker before e;

e Thus e s not In the cut => contradiction.



Global Snapshot Summary

* The ability to calculate global snapshots in a distributed
system Is very important.

* But don't want to interrupt running distributed application.
* Chandy-Lamport algorithm calculates global snapshot.
* Obeys causality (creates a consistent cut).

* Can be used to detect global properties.
* Safety vs. Liveness.



Revisions: notations and definitions

 Fora process p;, where events €%, e/, ... occur:
history(p) = h, =<ef%e/, ... >
prefix history(p¥) = hk=<e0e!,...,ek>

s p/’s state immediately after k" event.
* For a set of processes <py, Pys P3» - -+ Pn:

global history: H = U, (h))
acutCcH=h9uUh,%U...UhS

the frontier of C = {e%,i = |,2, ... n}

global state S that corresponds to cut C = U, (s:%)



More notations and definitions

* A run is a total ordering of events in H that Is consistent
with each h/'s ordering.

* A linearization Is a run consistent with happens-before
(—) relation in H.



Example

s b g |

Orderatp;:<ab,c¢,d> Orderatp, <e,fg>
Causal order across p, and p;: b > e, g— d

Physical
time

Run:<a,b,c,d,e,f, g>
Linearization: <a, b, c,e,f,g,d>



Example
a |

P ®
my /772 \
“o ) -~ Physical
e

f g \ time

®a
" Yo

<ab,efcg,d>:



Example
a |

P4 ’
my /772 \
e ° . Physical
e

f g \ time

®a
" Yo

<a,b,ef,c,g,d>: Linearization



Example
a |

P ®
my /772 \
“o ) -~ Physical
e

f g \ time

®a
" Yo

<af,e,bcg,d>:



Example
a |

P4 ’
my /772 \
e ° . Physical
e

f g \ time

®a
" Yo

<af,e,b,c,g,d> Notevenarun



More notations and definitions

* A run is a total ordering of events in H that Is consistent
with each h/'s ordering.

* A linearization Is a run consistent with happens-before
(—) relation in H.

* Linearizations pass through consistent global states.



Example

b\c d
o o >

P+
my m,
\. ® -~ Physical

®a

Linearization: < a, b,|c, e,f,g,d >



Example

a b C d
@ @ @ >
P1
my m,
N :
p ® -~ Physical
2 o f g time

Linearization:< a, b, c/|e,f,g,d>



Example

a b c\
o ®
my

PSS

2 | o
e\f

d
®
/" |
-~ Physical
g

time

Linearization: < a, b, c, e,If, g,d>



Example

a b C K d
@ o ® >
P1
“o ) -~ Physical
e f \ g

time

Linearization: < a, b, ¢, e, f,‘g, d>



Example

®a
" Yo

“o ) -~ Physical
a f g \ time

Linearization: < a, b, ¢, e, f, g| d>



Example

a b C ) d
@ o ® >
JoF .\
) -~ Physical
P2 a f g time

Linearization: < a, b, cJ e,f,g,d>
Linearization: < a, b, e, c,f,g,d>



Example

a b \c d
o o o
P1
\\ /772
“o ) -~ Physical
o \ f g

time

Linearization: < a, b, c,e,f,g,d>
Linearization: < a, b, eI c,f,g,d>



Example

®a

" Yo'
( NoR

“o ) -~ Physical

Linearization: < a, b, c,e,f,g|d>
Linearization: < a, b, e, c,f,g|d>




More notations and definitions

* A run is a total ordering of events in H that Is consistent
with each h/'s ordering.

* A linearization is a run consistent with happens-before (—)
relation in H.

* Linearizations pass through consistent global states.

* A global state S, Is reachable from global state S, if there Is
a linearization that passes through S. and then through §,.

* The distributed system evolves as a series of transitions
between global states Sy, S, ...



State Transitions: Example

p0 {1,0}

C,

q0 {0,1}

pl {2,0} p2 {3,0}
Py o

\J \J

'
'
v M
.

q13{2,2} q2 {2.3}
.\

7/ \J

Many linearizations:

<p0,pl,p2,q0,ql,g2>
<p0,q0,pl,ql,p2,q2>
<q0,p0,pl,ql,p2,q2 >
<q0,p0,pl,p2,ql,g2 >

e (Causal order:

pO = pl —p2
q0 - gl - g2

p0 »pl »qgl - g2

e Concurrent:

pO

o]
p2

q0
qo
q0,p2 || gql,p2 || g2



State Transitions: Example

Execution Lattice. Each path represents a linearization.

p0 pl p2
start »

q0 q0 q0 q0
@ p0 @ p1 @ p2 @
ql al
p0 {1,0} pl {2,0} p2 {3,0} q2
G S © g2 -
q0 {0,1} ql“:,{2,2} a2 {2.3}
.\ ya\

O \J \J




State Transitions: Example

Execution Lattice. Each path represents a linearization.

— N S
-

- =~
- p0 pl p2 \™ ~
start » N
N\
q0 q0 q0 q0 N\
\
OxdOxdOxdON
p0 pl p2 N
1 \
1 RN
\
p2 \
(on)— (o) s
p0 {1,0}  pl {20}  p2 {3,0} q2\
€, S © > q2 LR |

q0 {0,1} ql“:,{2,2} q2 {2,3}
Fa\

C \J \J




State Transitions: Example

Execution Lattice. Each path represents a linearization.

p0 pl p2
start »

\ q0 q0 q0 q0
\
\
\ p0 pl p2
~ —_— —— W
~
N p2
N\
0 {1,0} 1{2,0} 2 {3,0}
C—— & ; \ q2 a2
\
\ p2
~
A} - _>
q0 {0,1} ql“:,{2,2} q2 {2,3}
Fa\ Fa\

C \J \J




State Transitions: Example

Execution Lattice. Each path represents a linearization.

(o) (o) (o) (o
start »
- oy,

\ q0 q0

~

q0 q0
-~ — oy
. p0 ' pl @ p2 @
gl
\ 1
~
— P2 -
p0 {1,0}  pl {20}  p2 {3,0} q2\
G S © q2 o
\
q0 {0,1} ql“:,{2,2} q2 {2,3}
FaY ya\

C \J \J




State Transitions: Example

Execution Lattice. Each path represents a linearization.

———-~

\\ Not valid!
\\Why?

PO {10}  pl{20}  p2 {30} \
o o o > q2 a2 Y

q0 {0,1} ql“:,{2.2} q2 {2,3}
Fa\

C \J \J




State Transitions: Example

- . gy,
_—

\
\
start »
\
C ON
\ ‘ @ @ p2
~
p0 {1 0} pl {2 0} p2 {3 0}
q0 {0 1} q1q{2 2} q2 {2,3}
Fa\




State Transitions: Example

p0 {1,0}  pl {2,0} , p2 {3,0}
7\ 7\

C,




State Transitions: Example

(o)== (oo Com}—2 (o)
start »
q0 0 q0
pl

P
C q0
@ PO . @ p2 @
1

p0 {10}  pl {2,0} \pz (3.0}
7\ 7\

€, \w \w >
q0 {0,1} q13{2,2} q2 {2,3}
C FaY ya\ I

\J \J \ -




State Transitions: Example

q0

P
q0
. . pl @ p2 @
1

p0 {1,0}  pl {20}  p2 {3.0} ‘

© & o >
q0 {0,1} al¥{2,2} qzh
€, S | »

.
\J

(o)== (oo Com}—2 (o)
start »
q0 q0
p0




More notations and definitions

* A run is a total ordering of events in H that Is consistent
with each h/'s ordering.

* A linearization is a run consistent with happens-before (—)
relation in H.

* Linearizations pass through consistent global states.

* A global state S, Is reachable from global state S, if there Is
a linearization that passes through S. and then through §,.

* The distributed system evolves as a series of transitions
between global states Sy, S, ...



Global State Predicates

* A global-state-predicate Is a property that is true or false
for a global state.
* |s there a deadlock!?
* Has the distributed algorithm terminated?

* Two ways of reasoning about predicates (or system
properties) as global state gets transformed by events.

e [ iveness
* Safety

e o be continued In next class.....



