

Distributed Systems

CS425/ECE428

Instructor: Radhika Mittal

Logistics Related

- HW1 has been released.
 - You can solve first 4 questions right away
 - You can solve last two questions hopefully by end of today's class.
- MP0 due on Wednesday.

Today's agenda

- **Global State**
 - Chapter 14.5
 - Goal: reason about how to capture the state across all processes of a distributed system without requiring time synchronization.

How to capture global state?

- Ideally: state of each process (and each channel) in the system *at a given instant of time*.
 - Difficult to capture -- requires precisely synchronized time.
- Relax the problem: find a consistent global state.
 - For a system with n processes $\langle p_1, p_2, p_3, \dots, p_n \rangle$, capture the state of the system after the c_i^{th} event at process p_i .
 - State corresponding to the *cut* defined by frontier events $\{e_i^{c_i} \text{ for } i = 1, 2, \dots, n\}$.
 - We want the state to be consistent.
 - Must correspond to a consistent cut.

How to find a consistent global state that corresponds to a consistent cut ?

Chandy-Lamport Algorithm

- Goal:
 - Record a global snapshot
 - Process state (and channel state) for a set of processes.
 - The recorded global state is consistent.
- Identifies a consistent cut.
- Records corresponding state locally at each process.

Chandy-Lamport Algorithm

- *System model and assumptions:*
 - System of n processes: $\langle p_1, p_2, p_3, \dots, p_n \rangle$.
 - There are two uni-directional communication channels between each ordered process pair : p_j to p_i and p_i to p_j .
 - Communication channels are FIFO-ordered (first in first out).
 - if p_i sends m before m' to p_j , then p_j receives m before m' .
 - All messages arrive intact, and are not duplicated.
 - No failures: neither channel nor processes fail.

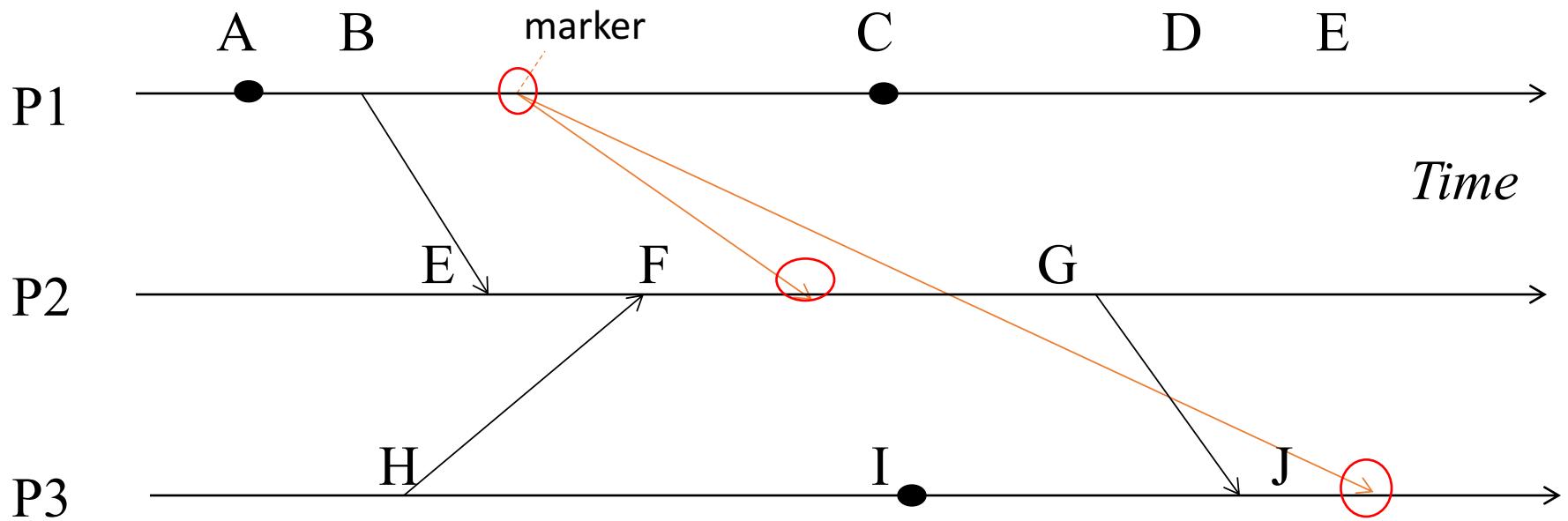
Chandy-Lamport Algorithm

- Requirements:
 - Snapshot should not interfere with normal application actions, and it should not require application to stop sending messages.
 - Any process may initiate algorithm.

Chandy-Lamport Algorithm Intuition

- First, initiator p_i :
 - records its own state.
 - creates a special **marker** message.
 - sends the **marker** to all other process.
- When a process receives a **marker**.
 - records its own state.

Example



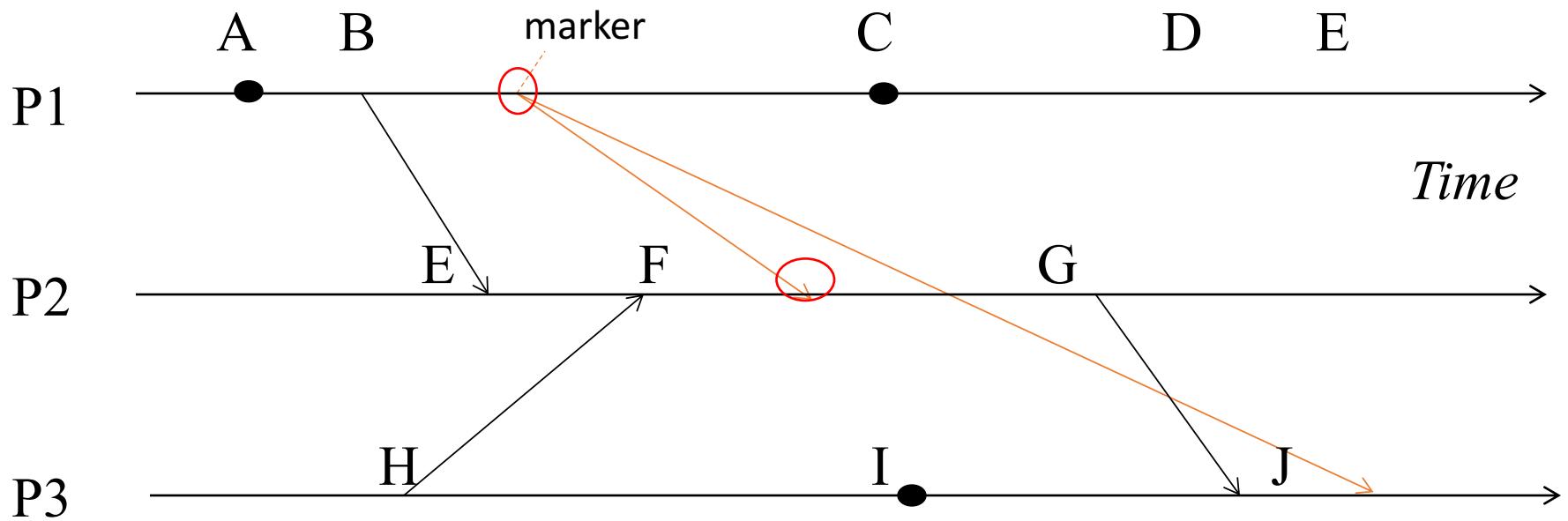
Inconsistent cut: $\{B, F, J\}$
(J is in cut but G isn't)

Chandy-Lamport Algorithm Intuition

- First, initiator p_i :
 - records its own state.
 - creates a special **marker** message.
 - sends the **marker** to all other process.
- When a process receives a **marker**.
 - If marker is received for the first time.
 - records its own state.
 - sends **marker** on all other channels.

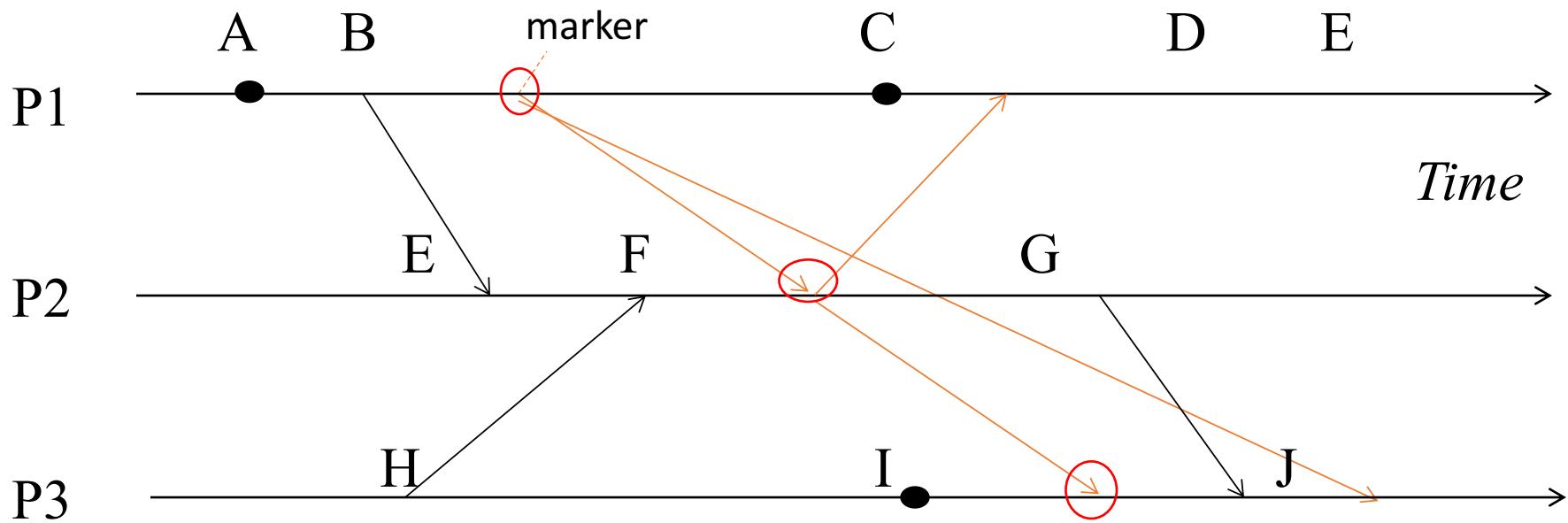
Leads to a consistent cut

Example



What can we say about marker from P2 to P3?

Example



Marker from P2 must reach P3 before J

Consistent cut: {B, F, I}

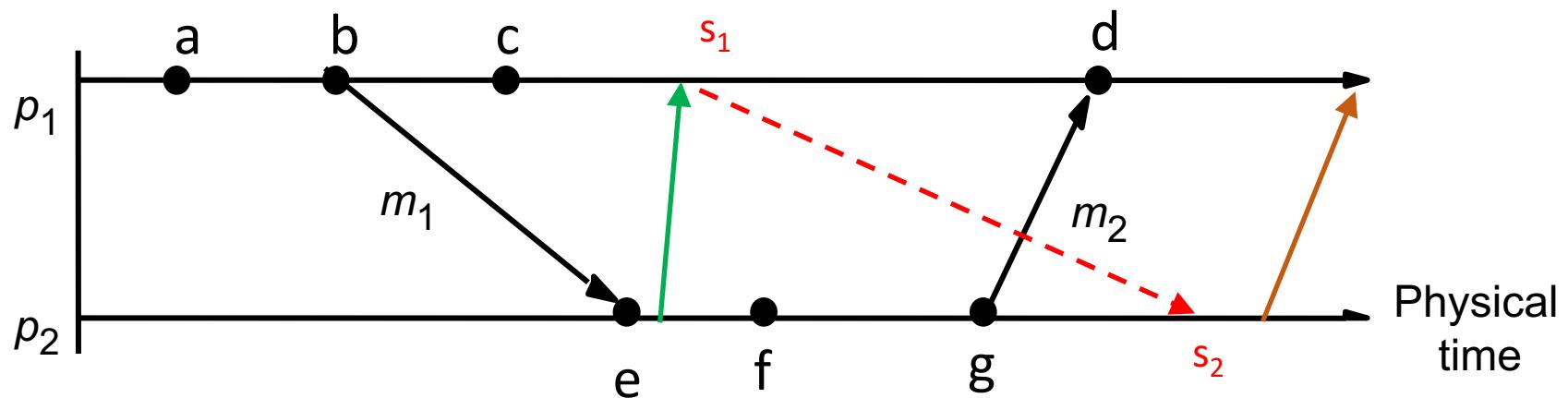
Chandy-Lamport Algorithm

- First, initiator p_i :
 - records its own state.
 - creates a special **marker** message.
 - sends the **marker** to all other process.
- When a process receives a **marker**.
 - If marker is received for the first time.
 - records its own state.
 - sends **marker** on all other channels.

Leads to a consistent cut.

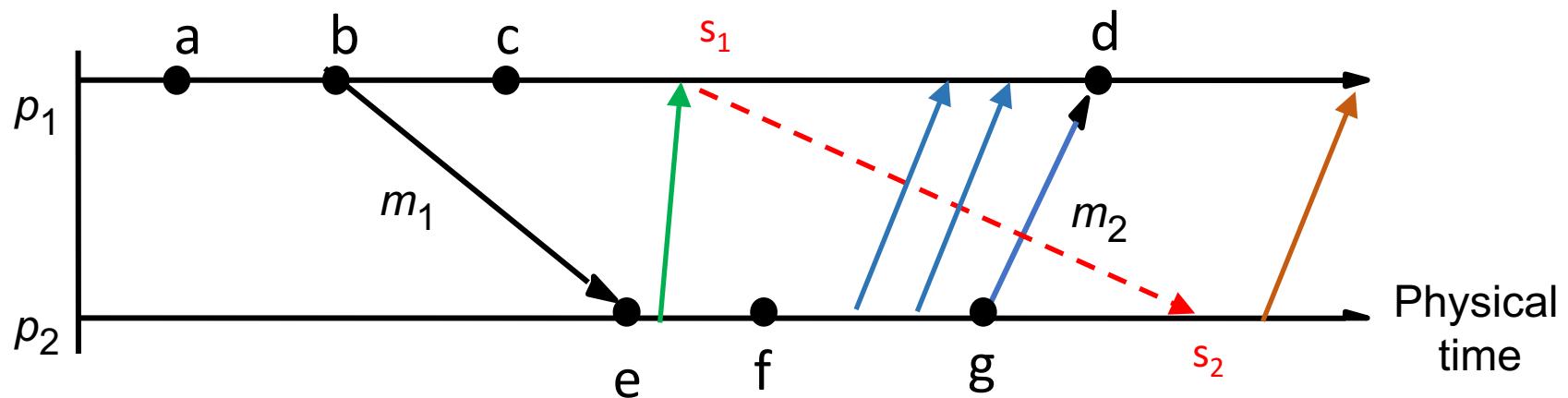
What about the channel state?

Chandy-Lamport Algorithm Intuition



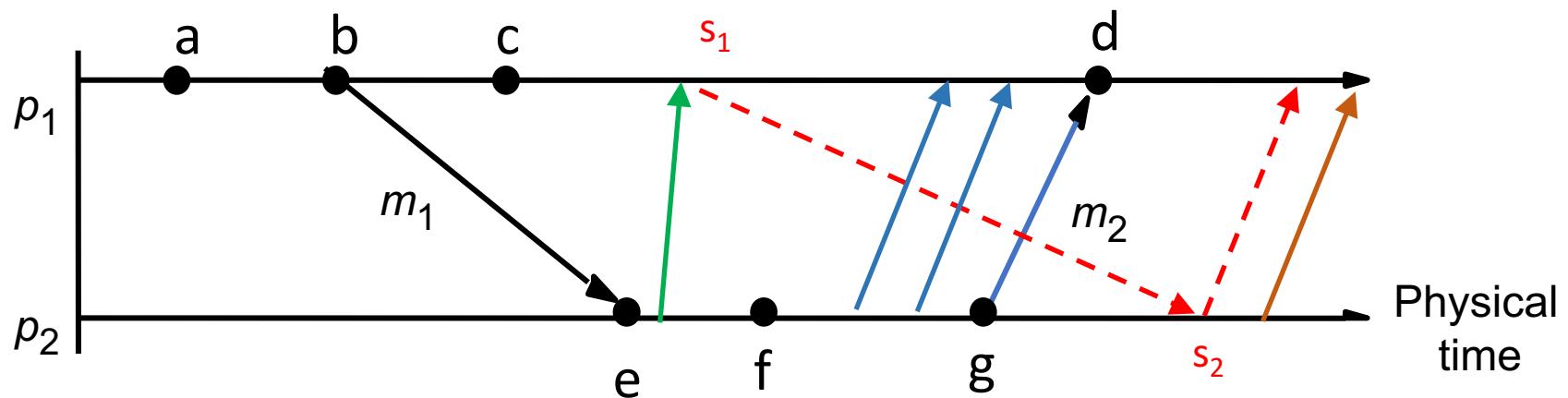
Cut frontier: $\{c, g\}$

Chandy-Lamport Algorithm Intuition



Cut frontier: $\{c, g\}$

Chandy-Lamport Algorithm Intuition



Cut frontier: $\{c, g\}$

Chandy-Lamport Algorithm Intuition

- First, initiator p_i :
 - records its own state.
 - creates a special **marker** message.
 - sends the **marker** to all other process.
 - start recording messages received on other channels.
 - until a marker is received on a channel.
- When a process receives a **marker**.
 - If marker is received for the first time.
 - records its own state.
 - sends **marker** on all other channels.
 - start recording messages received on other channels.
 - until a marker is received on a channel.

Chandy-Lamport Algorithm

- First, initiator p_i :
 - records its own state.
 - creates a special **marker** message.
 - for $j=1$ to n except i
 - p_i sends a **marker** message on outgoing channel c_{ij}
 - starts recording the incoming messages on each of the incoming channels at $p_i : c_{ji}$ (for $j=1$ to n except i).

Chandy-Lamport Algorithm

Whenever a process p_i receives a **marker** message on an incoming channel c_{ki}

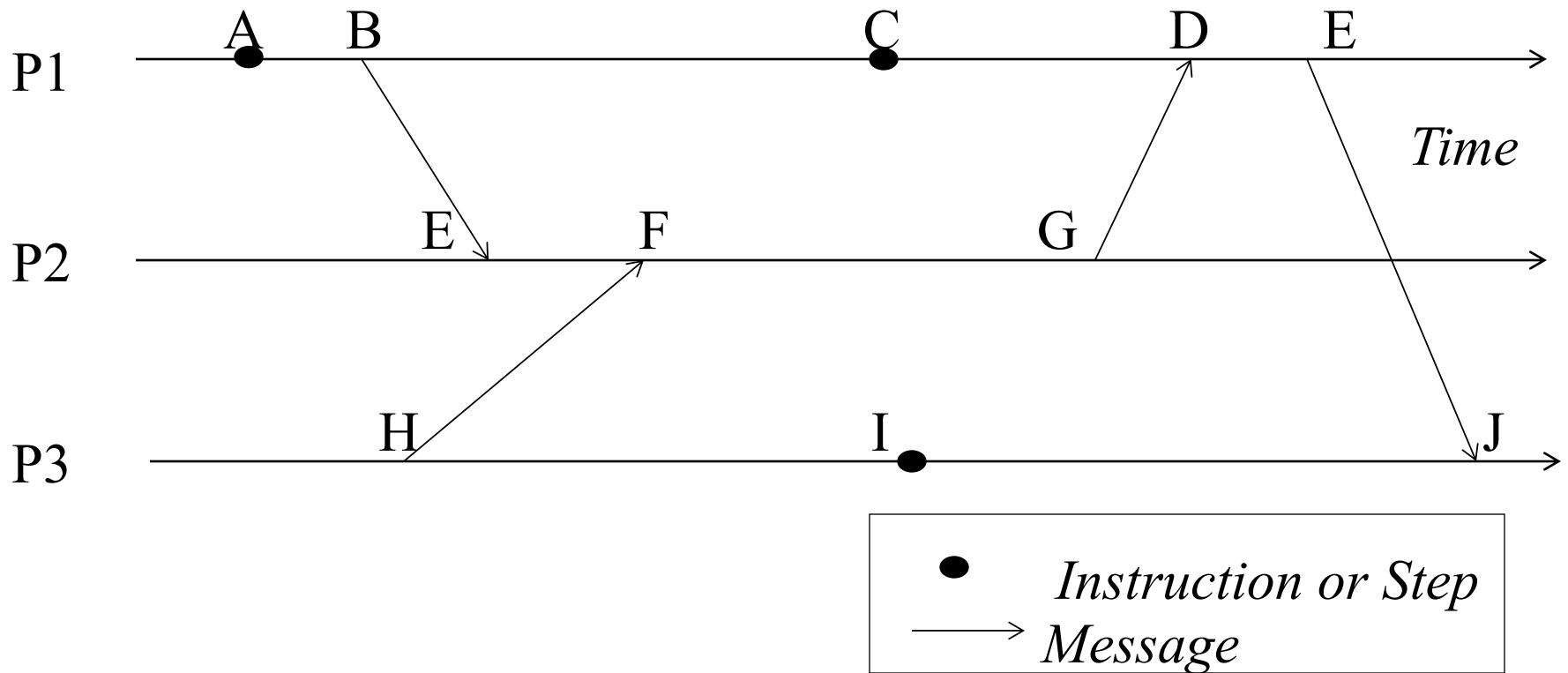
- if (this is the first **marker** p_i is seeing)
 - p_i records its own state first
 - marks the state of channel c_{ki} as “empty”
 - for $j=1$ to n except i
 - p_i sends out a **marker** message on outgoing channel c_{ij}
 - starts recording the incoming messages on each of the incoming channels at $p_i : c_{ji}$ (for $j=1$ to n except i and k).
- else // already seen a **marker** message
 - mark the state of channel c_{ki} as all the messages that have arrived on it since recording was turned on for c_{ki}

Chandy-Lamport Algorithm

The algorithm terminates when

- All processes have received a **marker**
 - To record their own state
- All processes have received a **marker** on all the $(n-1)$ incoming channels
 - To record the state of all channels

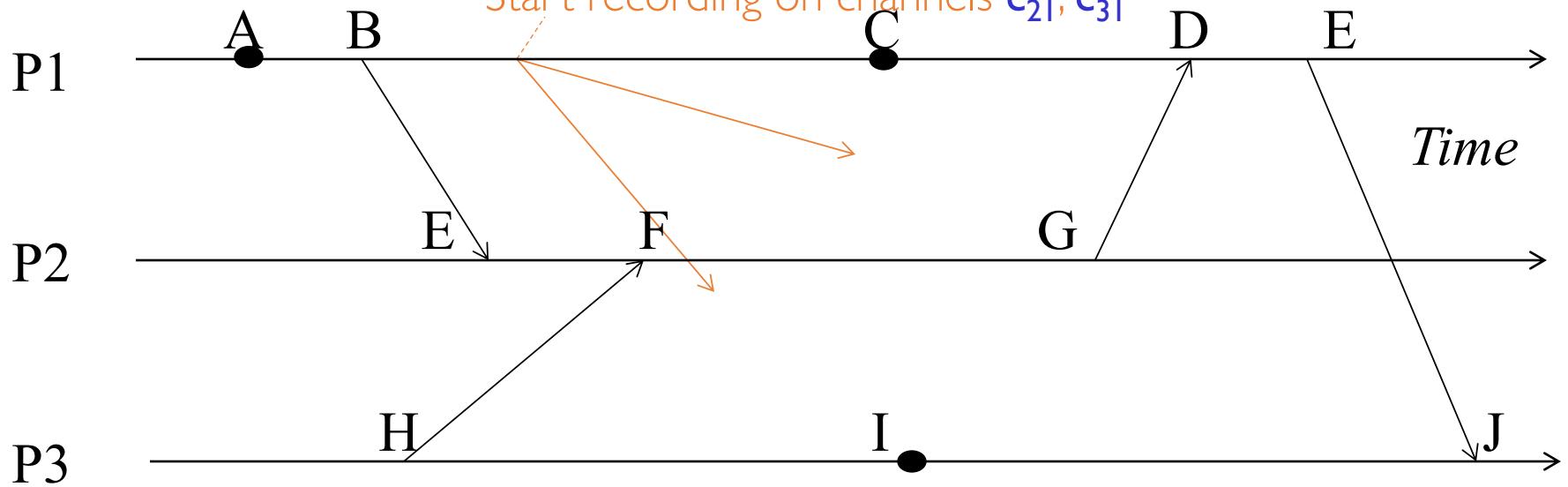
Example



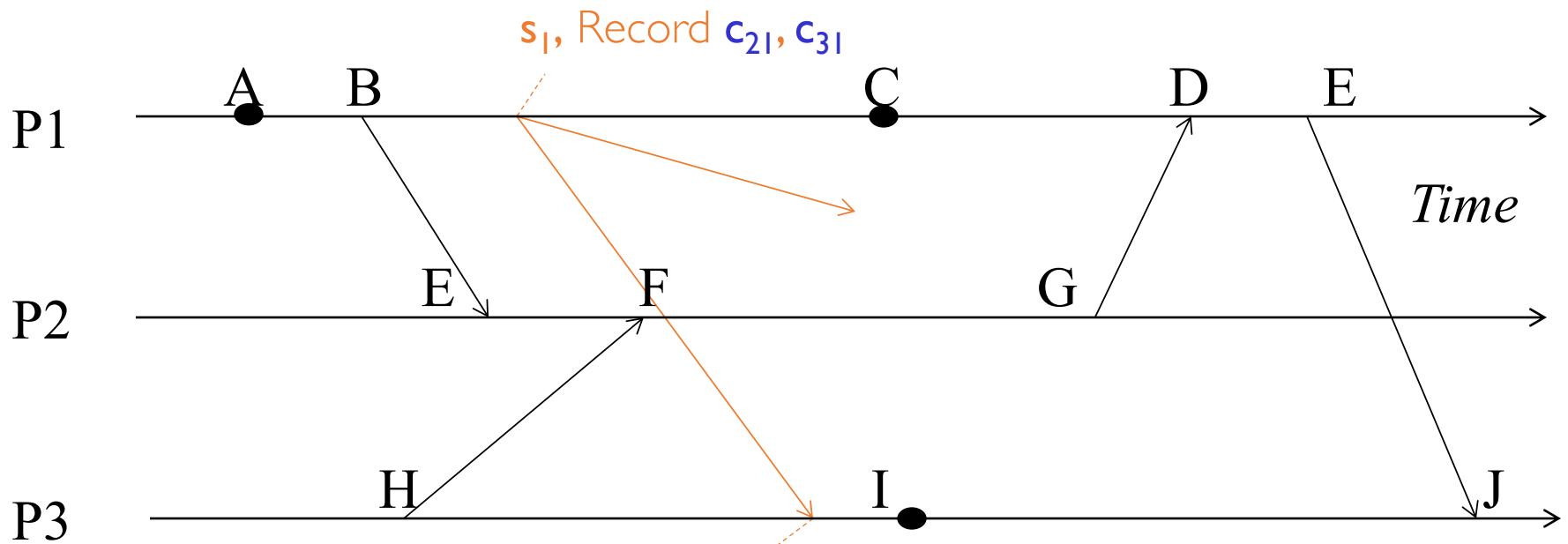
Example

P_1 is initiator:

- Record local state s_1 ,
- Send out markers
- Start recording on channels c_{21}, c_{31}

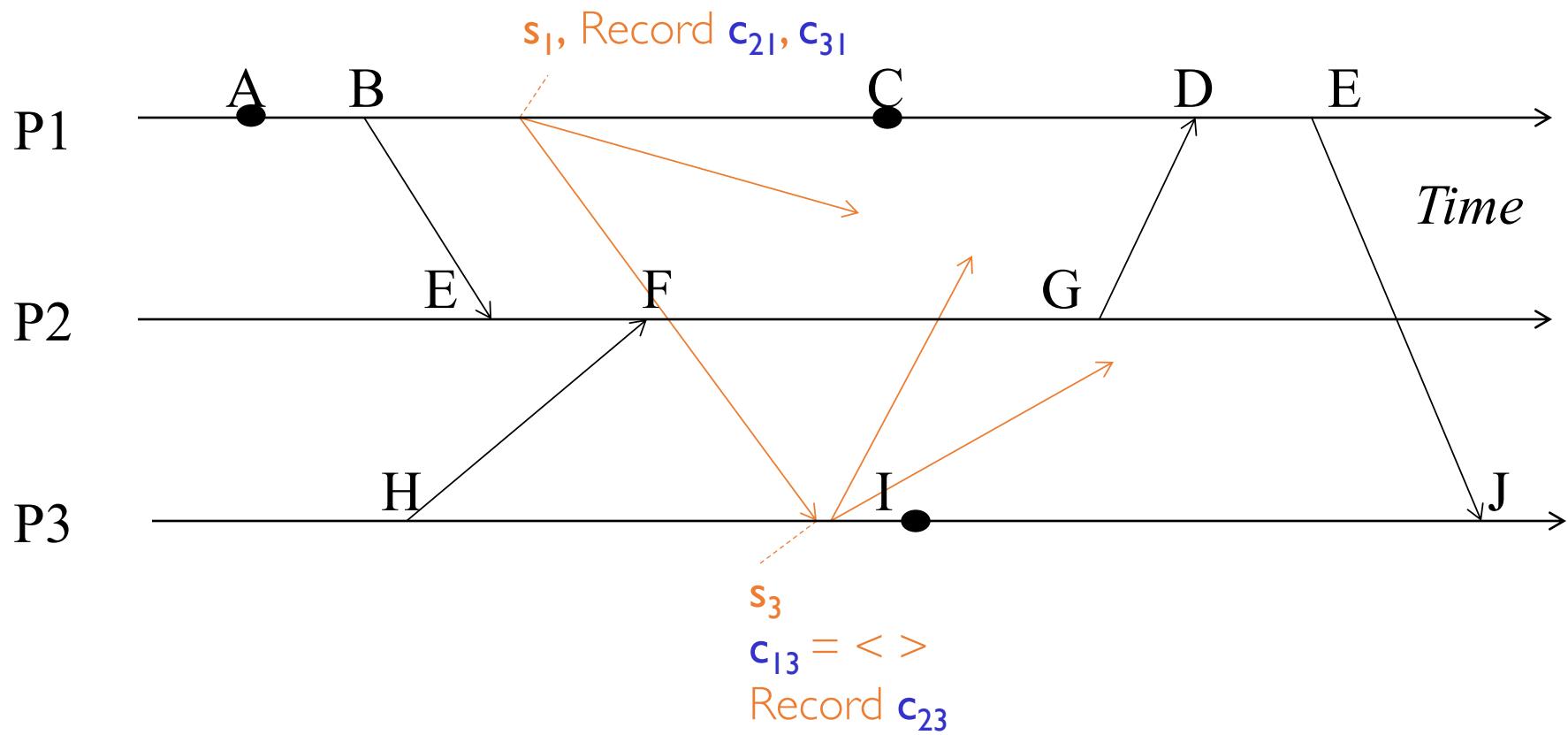


Example

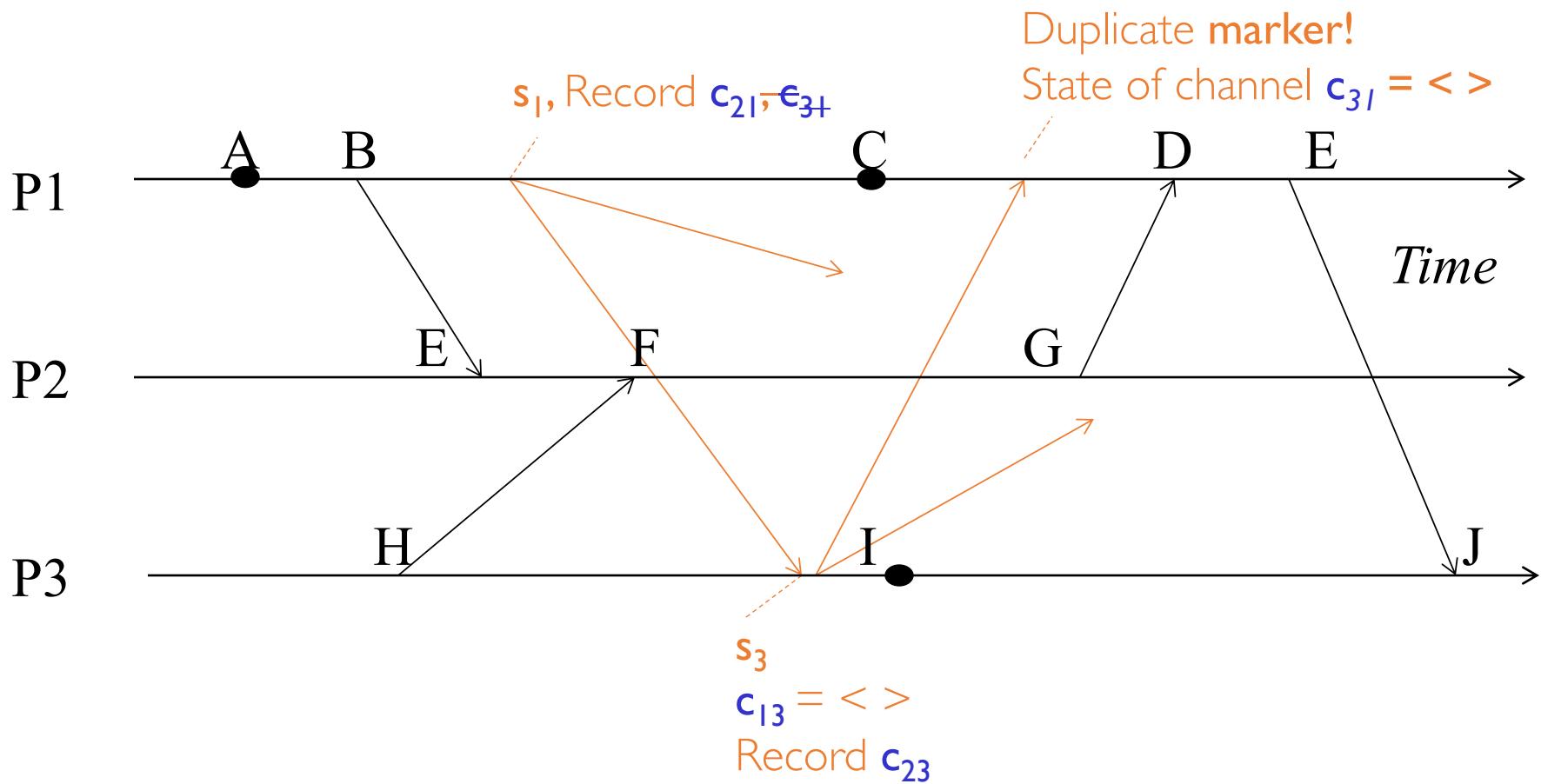


- First marker!
- Record own state as s_3
- Mark c_{13} state as empty
- Start recording on other incoming c_{23}
- Send out markers

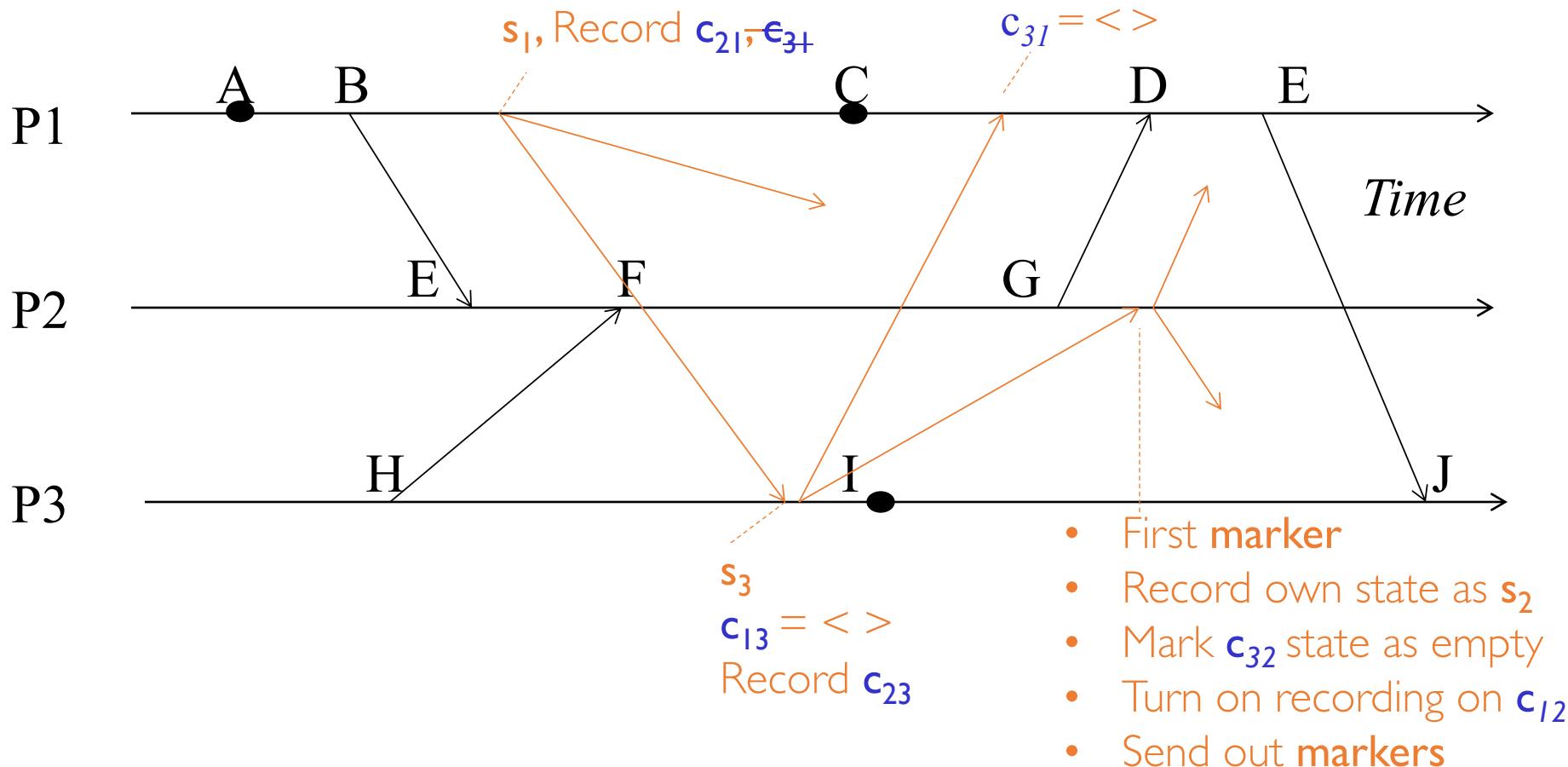
Example



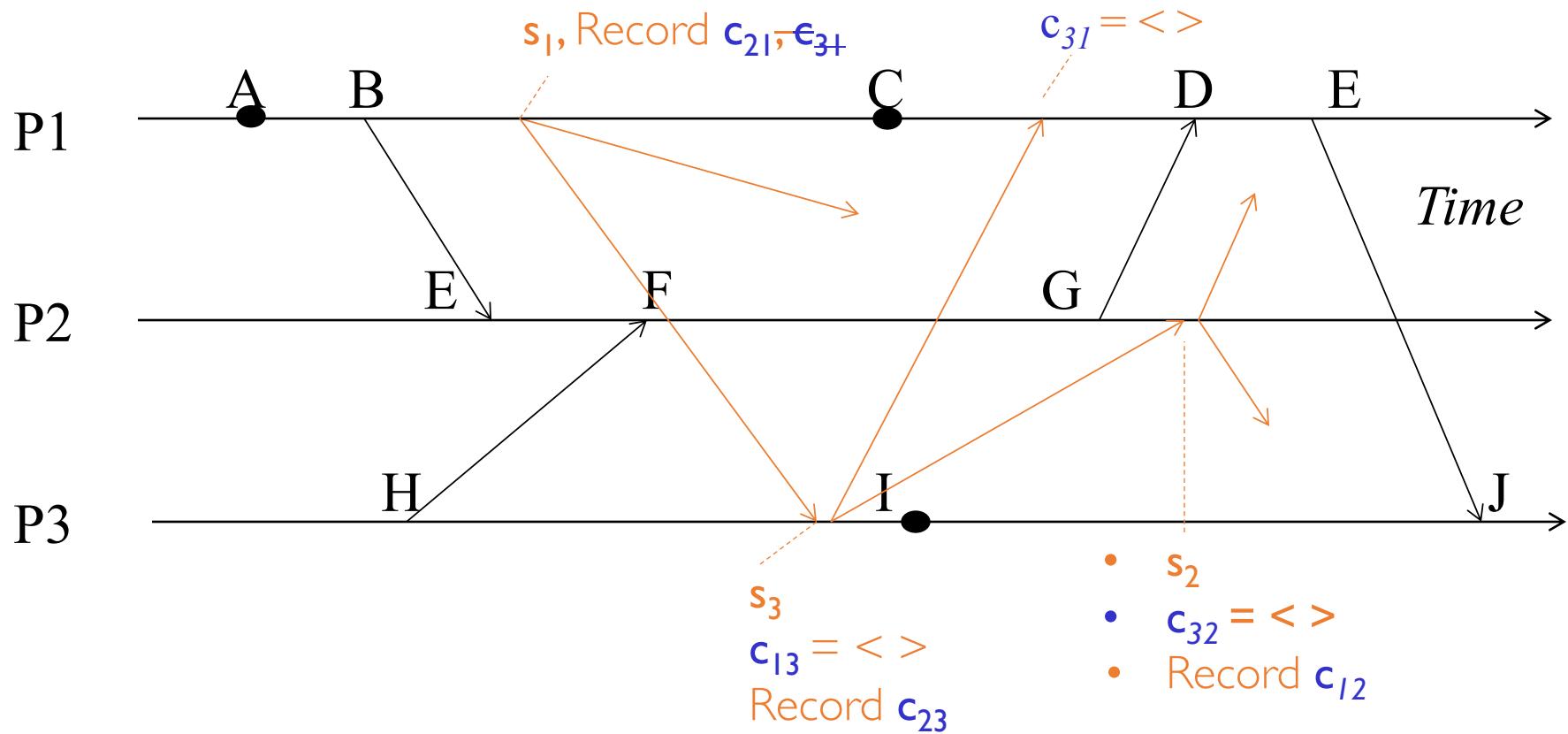
Example



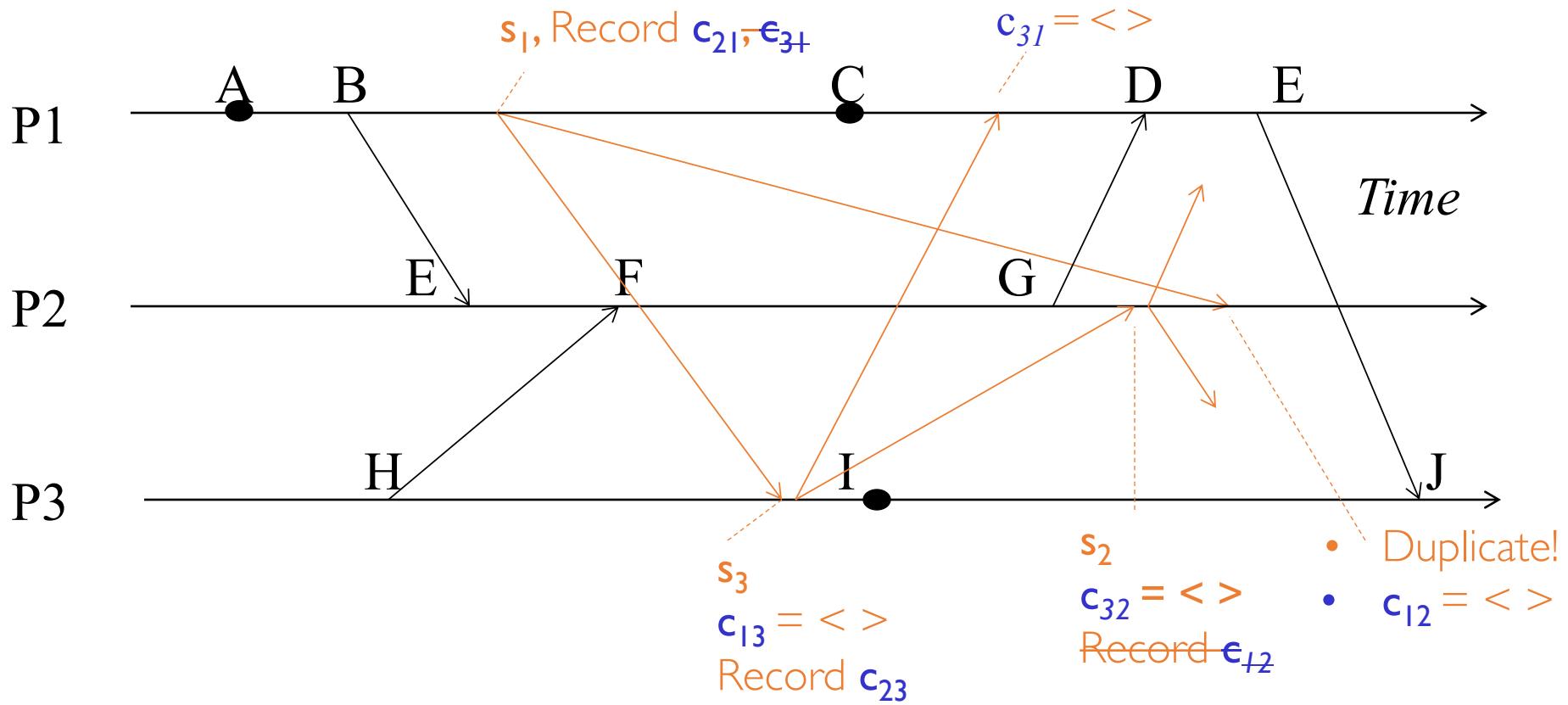
Example



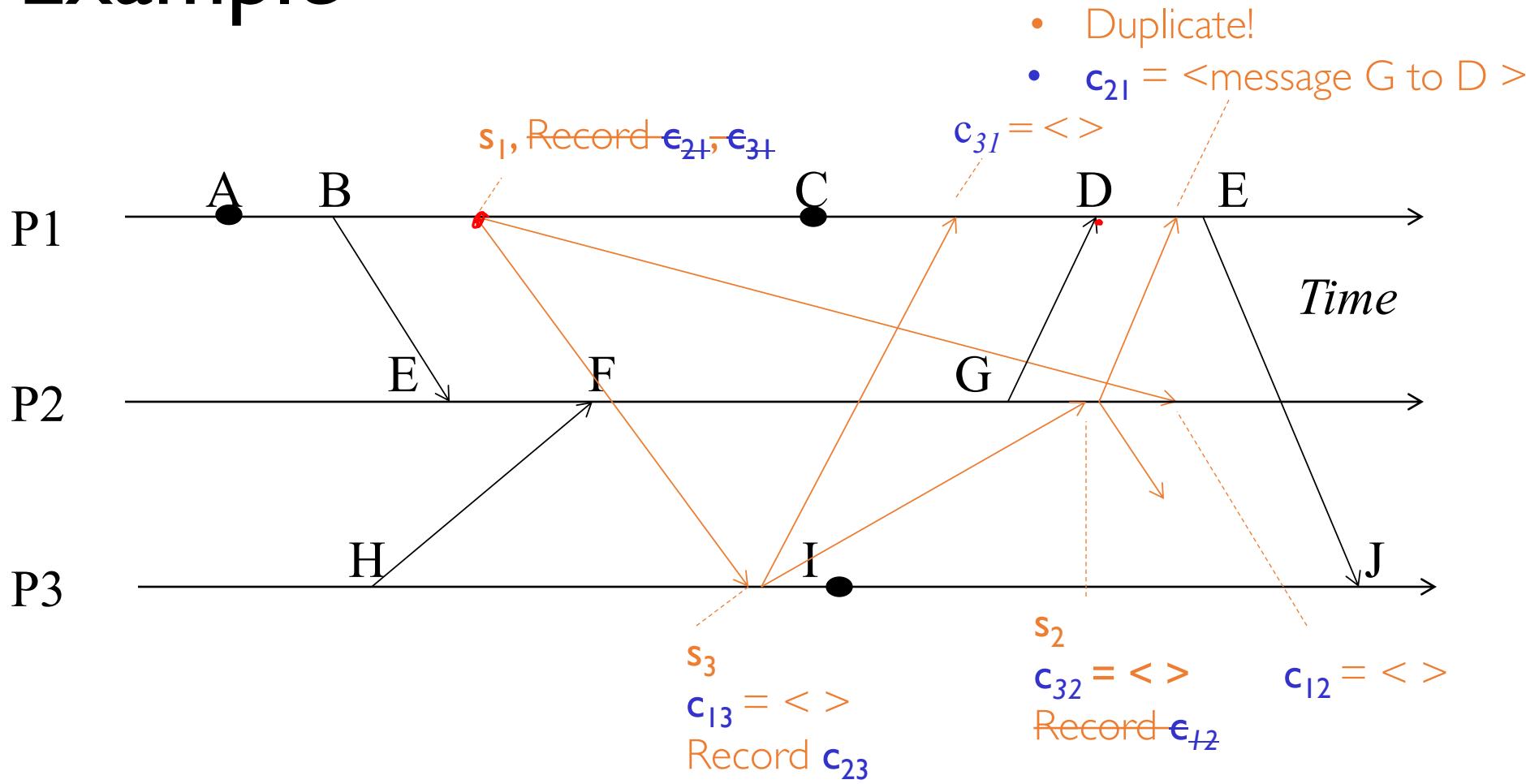
Example



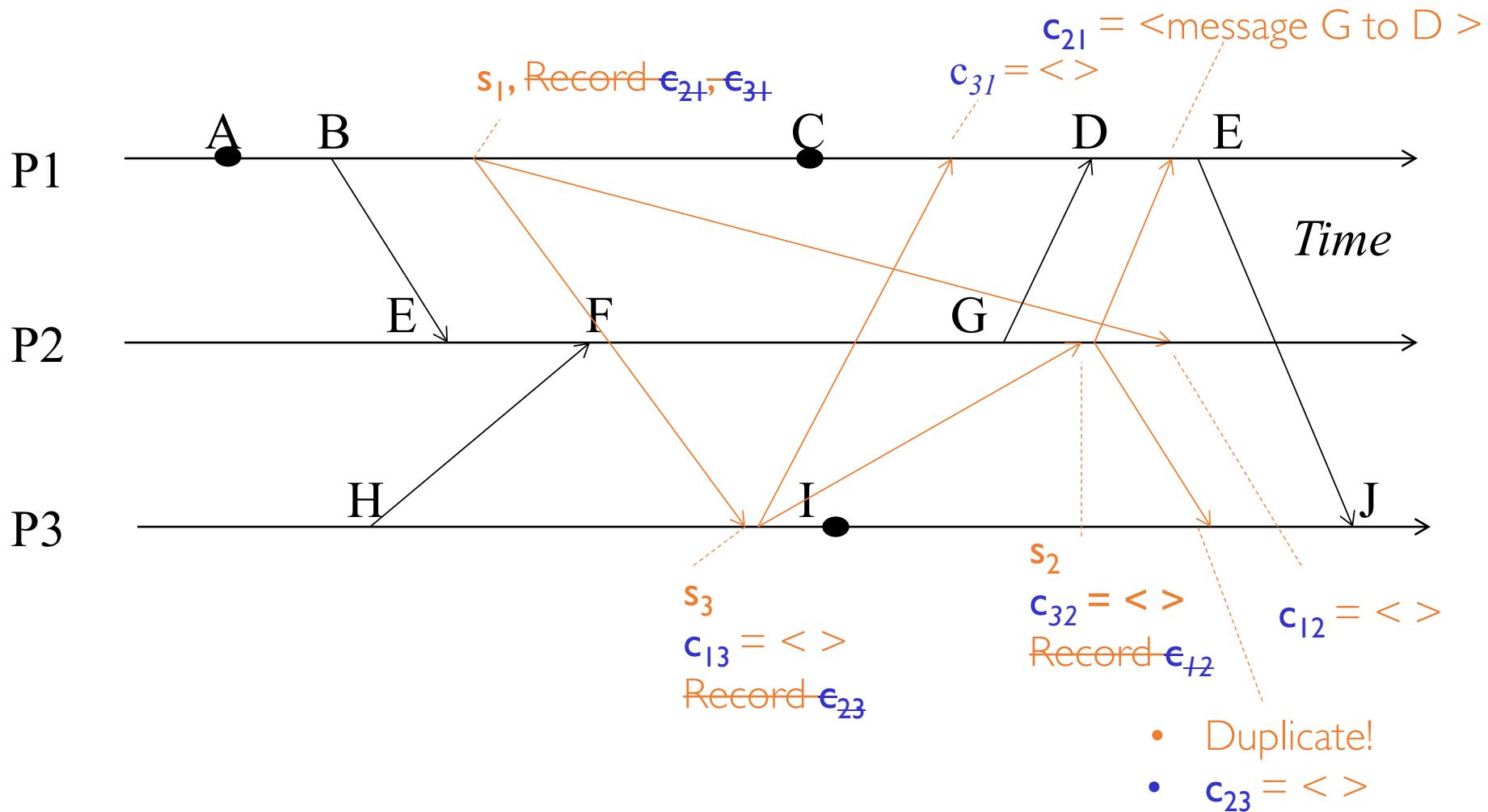
Example



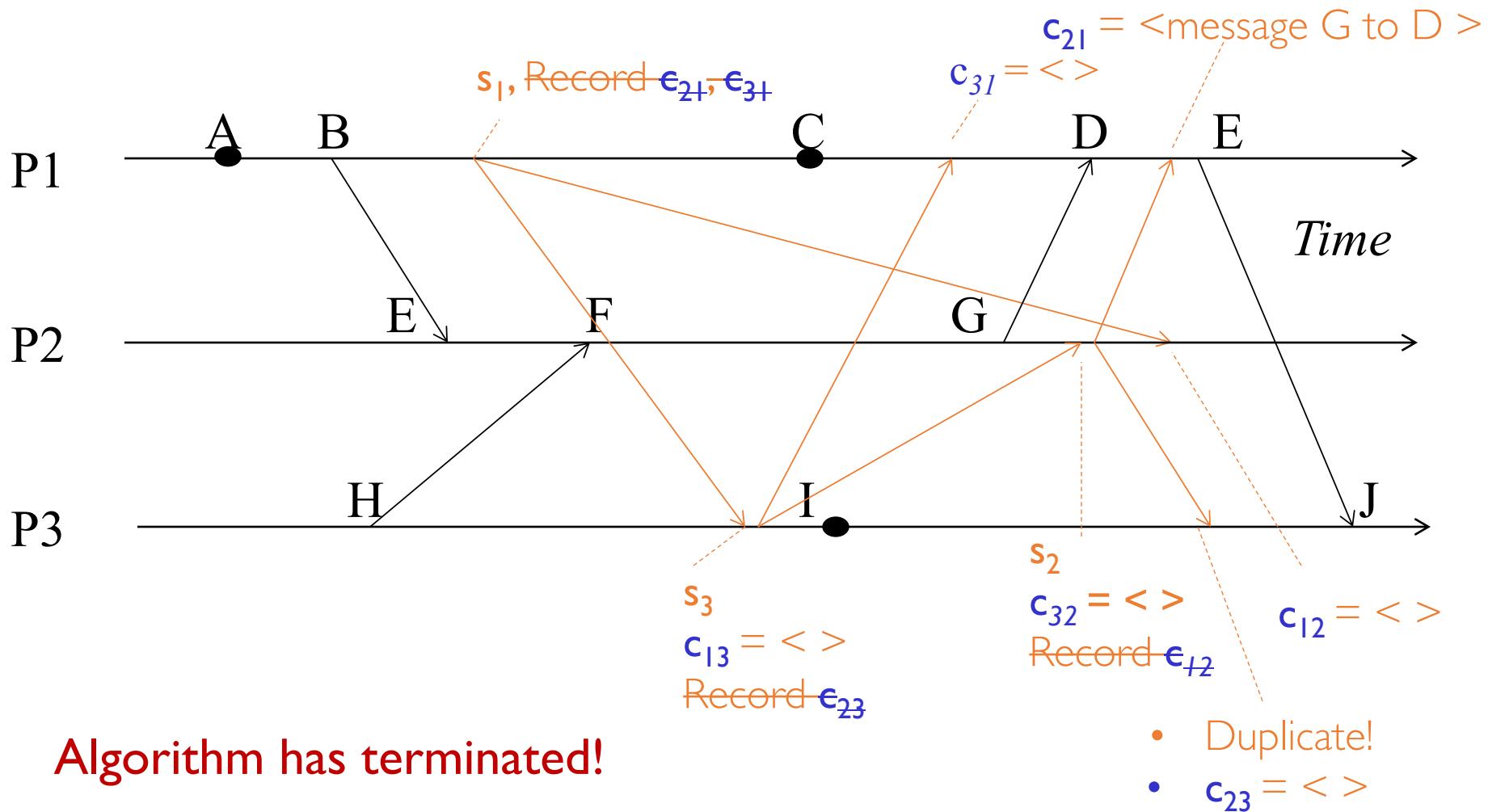
Example



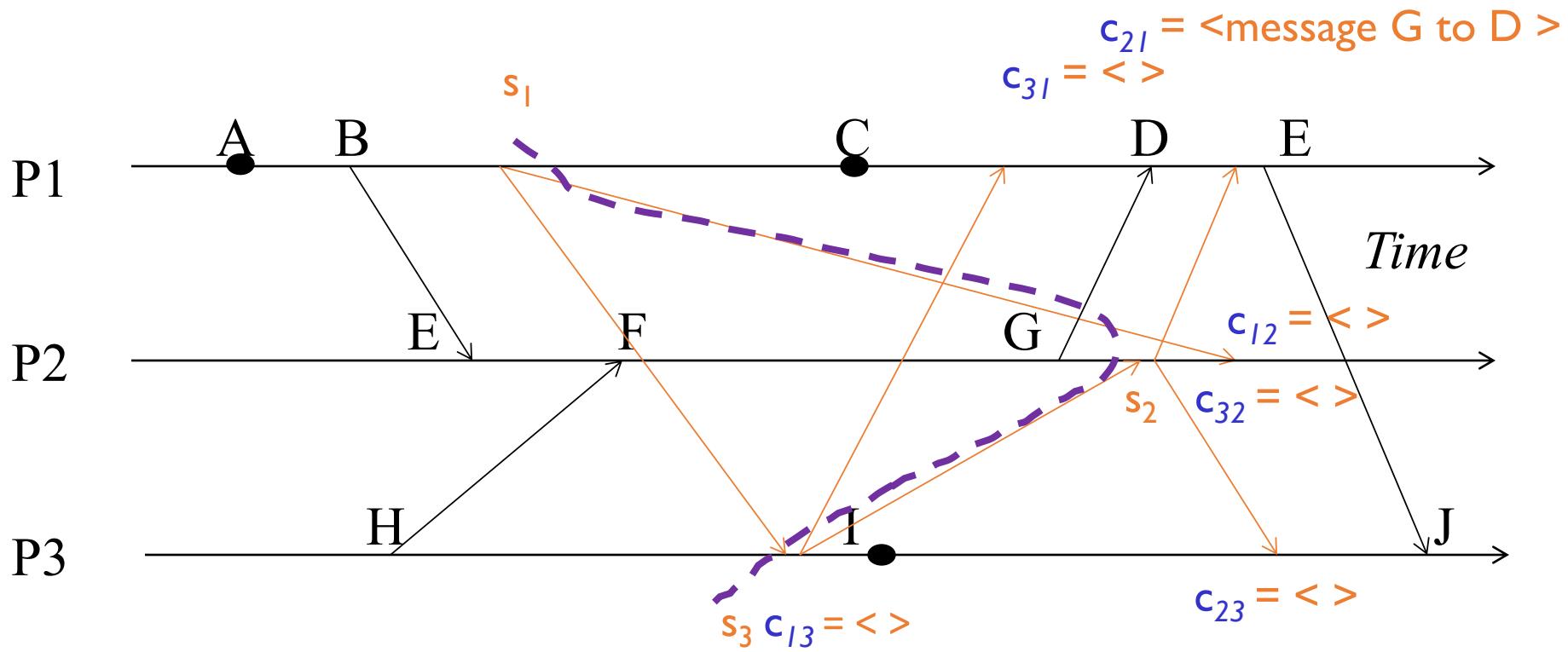
Example



Example



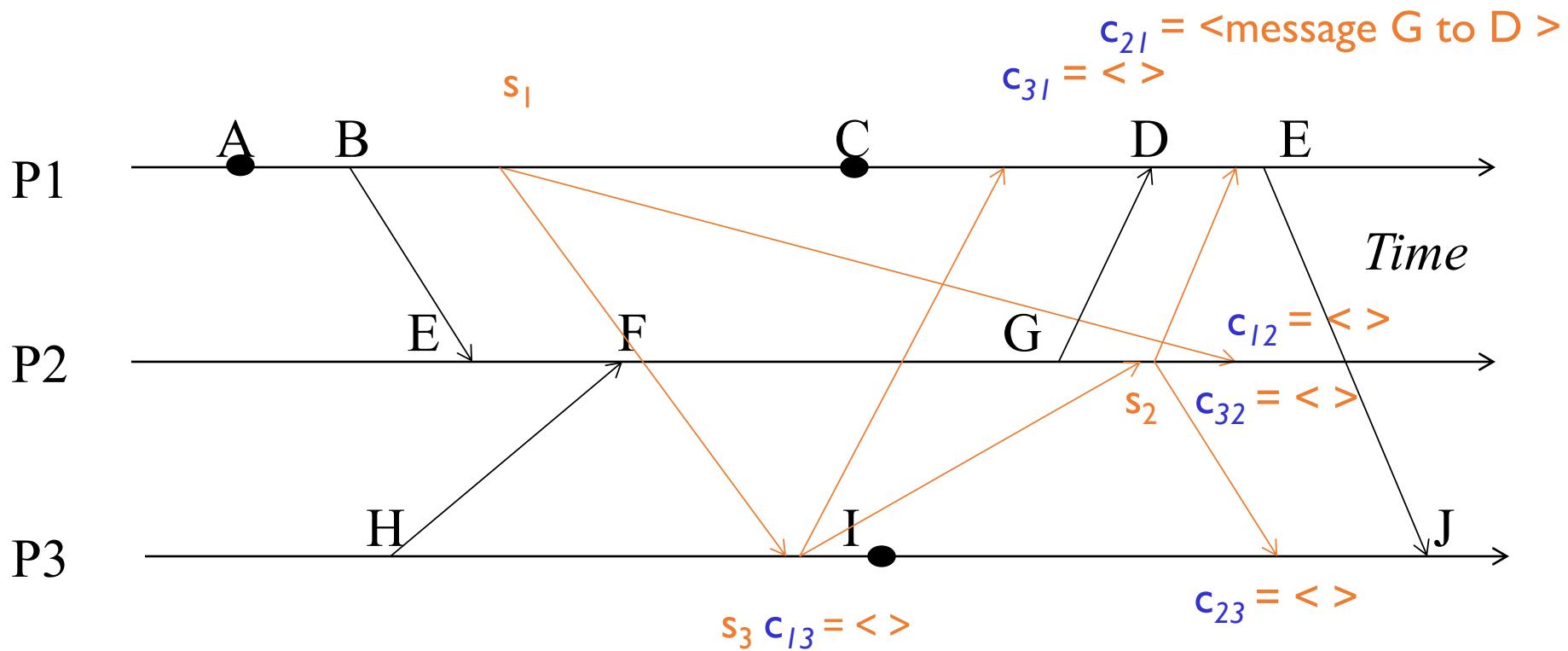
Example



Frontier for the resulting cut:
 $\{B, G, H\}$

Channel state for the cut:
Only c_{21} has a pending message.

Example



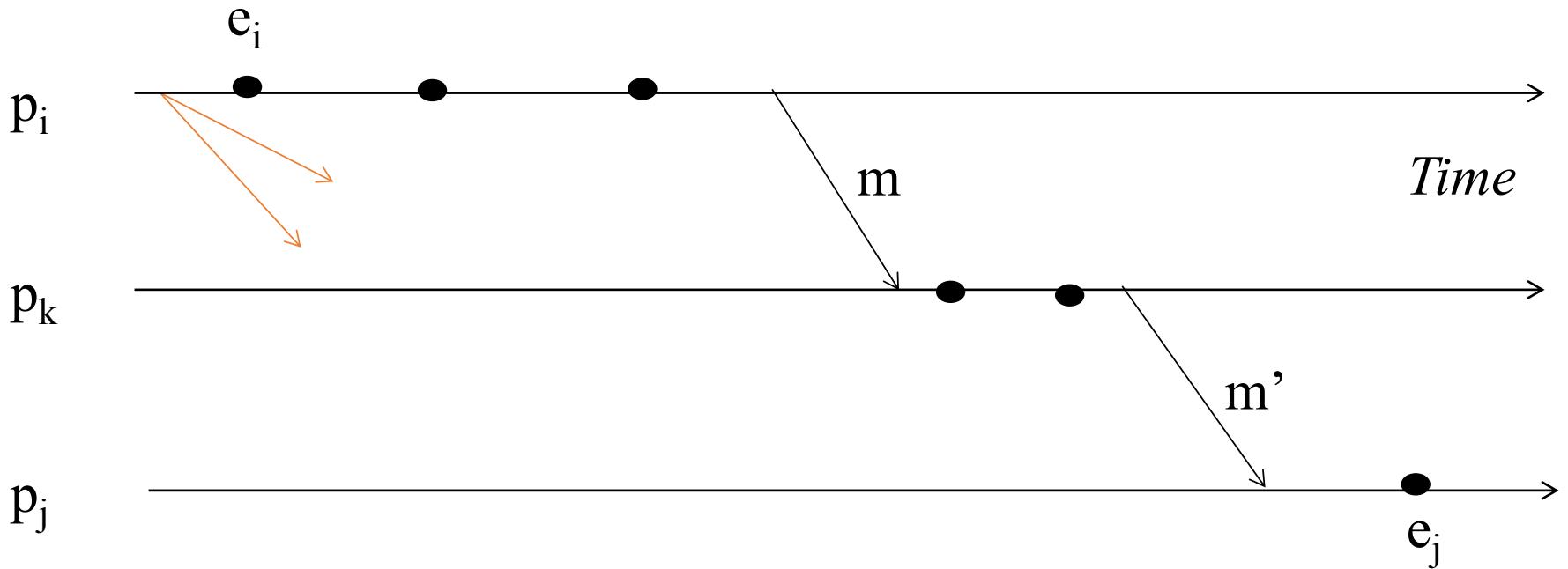
Global snapshots pieces can be collected at a central location.

Chandy-Lamport Algorithm: Properties

- Any run of the Chandy-Lamport Global Snapshot algorithm creates a consistent cut.
- Let e_i and e_j be events occurring at p_i and p_j , respectively such that
 - $e_i \rightarrow e_j$ (e_i happens before e_j)
- The snapshot algorithm ensures that
 - if e_j is in the cut then e_i is also in the cut.
- That is: if $e_j \rightarrow < p_j \text{ records its state} >$, then it must be true that $e_i \rightarrow < p_i \text{ records its state} >$.

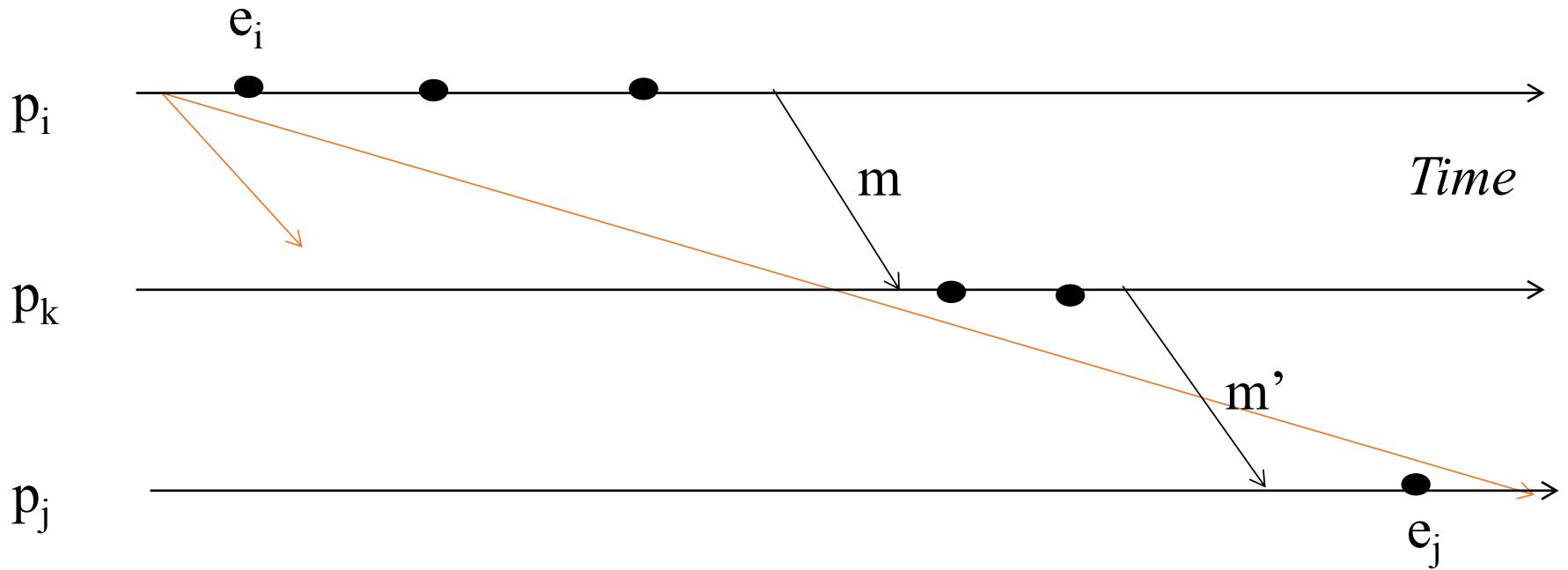
Chandy-Lamport Algorithm: Properties

- If $e_j \rightarrow \langle p_j \text{ records its state} \rangle$, then it must be true that $e_i \rightarrow \langle p_i \text{ records its state} \rangle$.
- By contradiction, suppose $e_j \rightarrow \langle p_j \text{ records its state} \rangle$, and $\langle p_i \text{ records its state} \rangle \rightarrow e_i$.



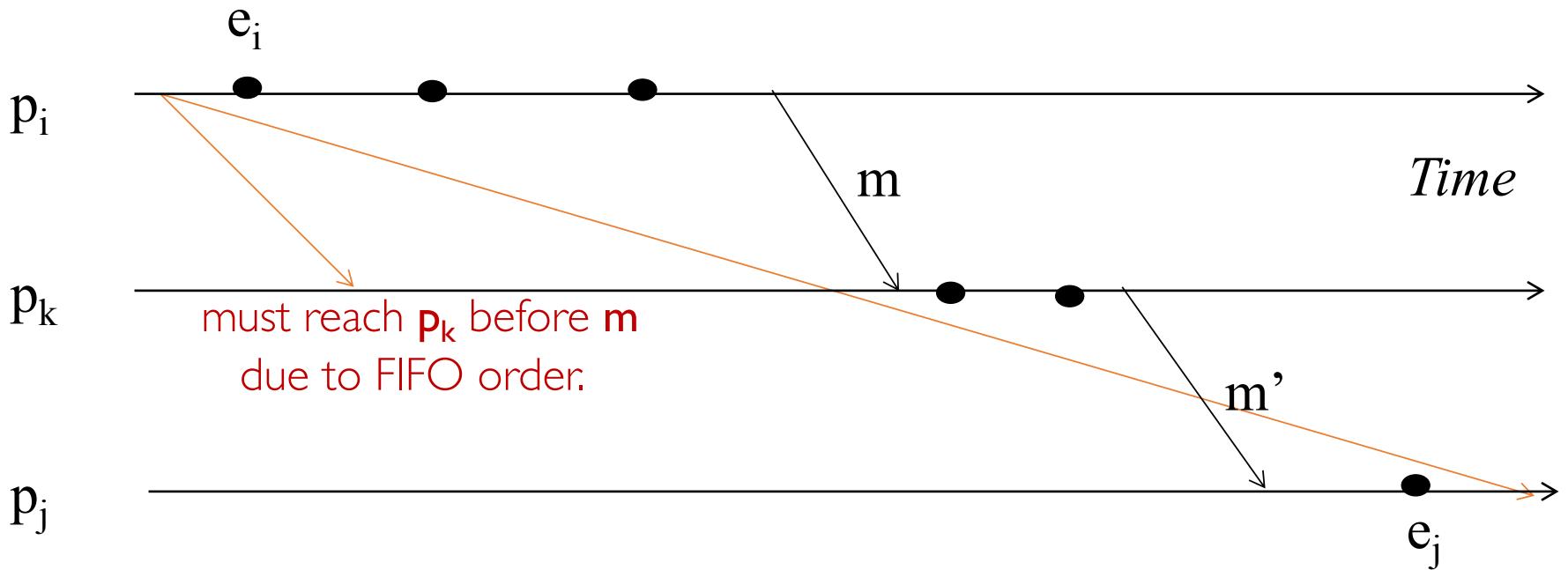
Chandy-Lamport Algorithm: Properties

- If $e_j \rightarrow \langle p_j \text{ records its state} \rangle$, then it must be true that $e_i \rightarrow \langle p_i \text{ records its state} \rangle$.
- By contradiction, suppose $e_j \rightarrow \langle p_j \text{ records its state} \rangle$, and $\langle p_i \text{ records its state} \rangle \rightarrow e_i$.



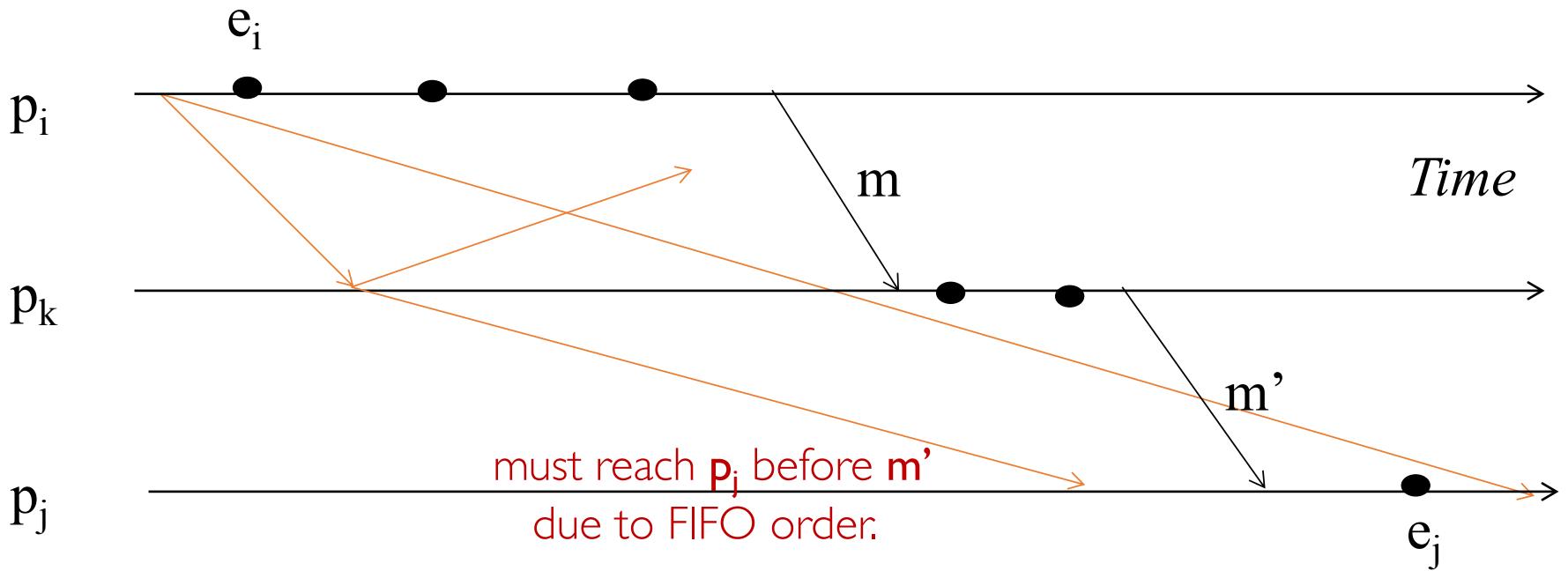
Chandy-Lamport Algorithm: Properties

- If $e_j \rightarrow \langle p_j \text{ records its state} \rangle$, then it must be true that $e_i \rightarrow \langle p_i \text{ records its state} \rangle$.
- By contradiction, suppose $e_j \rightarrow \langle p_j \text{ records its state} \rangle$, and $\langle p_i \text{ records its state} \rangle \rightarrow e_i$.



Chandy-Lamport Algorithm: Properties

- If $e_j \rightarrow \langle p_j \text{ records its state} \rangle$, then it must be true that $e_i \rightarrow \langle p_i \text{ records its state} \rangle$.
- By contradiction, suppose $e_j \rightarrow \langle p_j \text{ records its state} \rangle$, and $\langle p_i \text{ records its state} \rangle \rightarrow e_i$.



Chandy-Lamport Algorithm: Properties

- If $e_j \rightarrow \langle p_j \text{ records its state} \rangle$, then it must be true that $e_i \rightarrow \langle p_i \text{ records its state} \rangle$.
- By contradiction, suppose $e_j \rightarrow \langle p_j \text{ records its state} \rangle$, and $\langle p_i \text{ records its state} \rangle \rightarrow e_i$.
- Consider the path of app messages (through other processes) that go from e_i to e_j .
- Due to FIFO ordering, markers on each link in above path will precede regular app messages.
- Thus, since $\langle p_i \text{ records its state} \rangle \rightarrow e_i$, it must be true that p_j received a marker before e_j .
- Thus e_j is not in the cut \Rightarrow contradiction.

Global Snapshot Summary

- The ability to calculate global snapshots in a distributed system is very important.
- But don't want to interrupt running distributed application.
- Chandy-Lamport algorithm calculates global snapshot.
- Obeys causality (creates a consistent cut).
- Can be used to detect global properties.
 - Safety vs. Liveness.

Revisions: notations and definitions

- For a process p_i , where events e_i^0, e_i^1, \dots occur:

history(p_i) = $h_i = \langle e_i^0, e_i^1, \dots \rangle$

prefix history(p_i^k) = $h_i^k = \langle e_i^0, e_i^1, \dots, e_i^k \rangle$

s_i^k : p_i 's state immediately after k^{th} event.

- For a set of processes $\langle p_1, p_2, p_3, \dots, p_n \rangle$:

global history: $H = \cup_i (h_i)$

a **cut** $C \subseteq H = h_1^{c_1} \cup h_2^{c_2} \cup \dots \cup h_n^{c_3}$

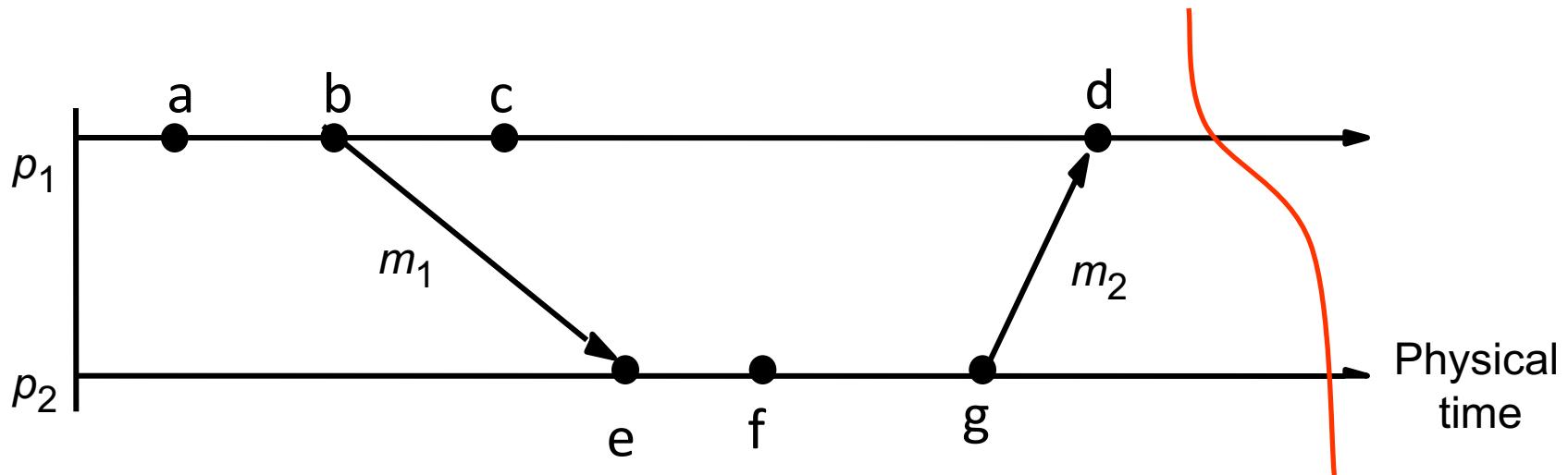
the **frontier** of $C = \{e_i^{c_i}, i = 1, 2, \dots, n\}$

global state S that corresponds to cut $C = \cup_i (s_i^{c_i})$

More notations and definitions

- A **run** is a total ordering of events in H that is consistent with each h_i 's ordering.
- A **linearization** is a run consistent with happens-before (\rightarrow) relation in H .

Example



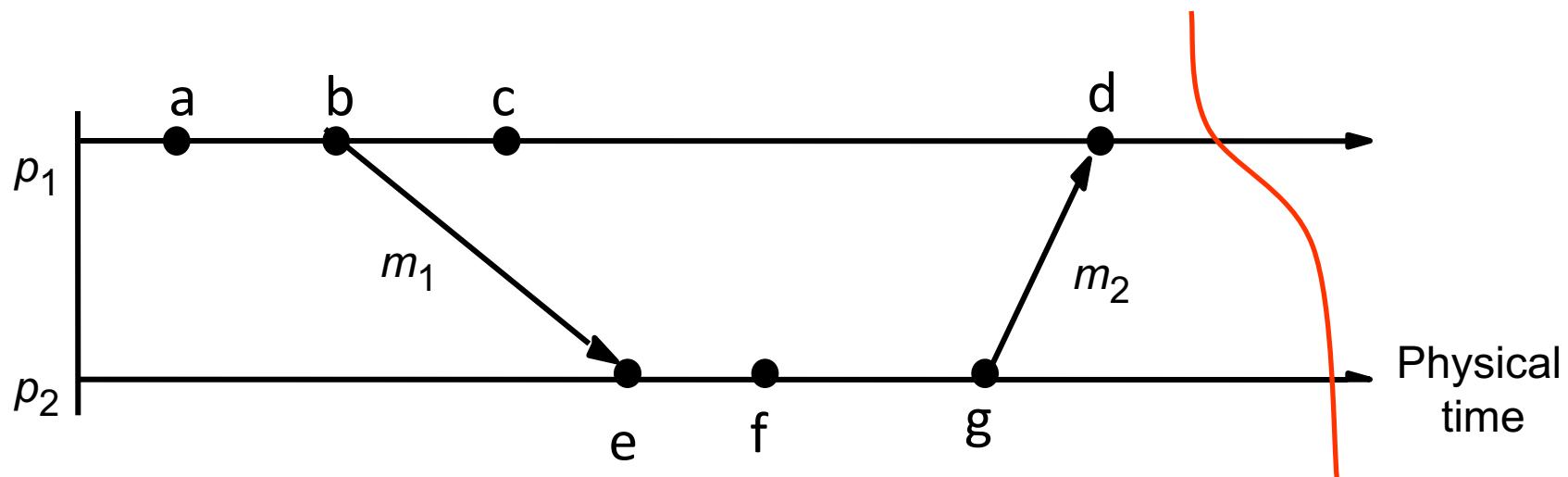
Order at p_1 : $\langle a, b, c, d \rangle$ Order at p_2 : $\langle e, f, g \rangle$

Causal order across p_1 and p_2 : $b \rightarrow e, g \rightarrow d$

Run: $\langle a, b, c, d, e, f, g \rangle$

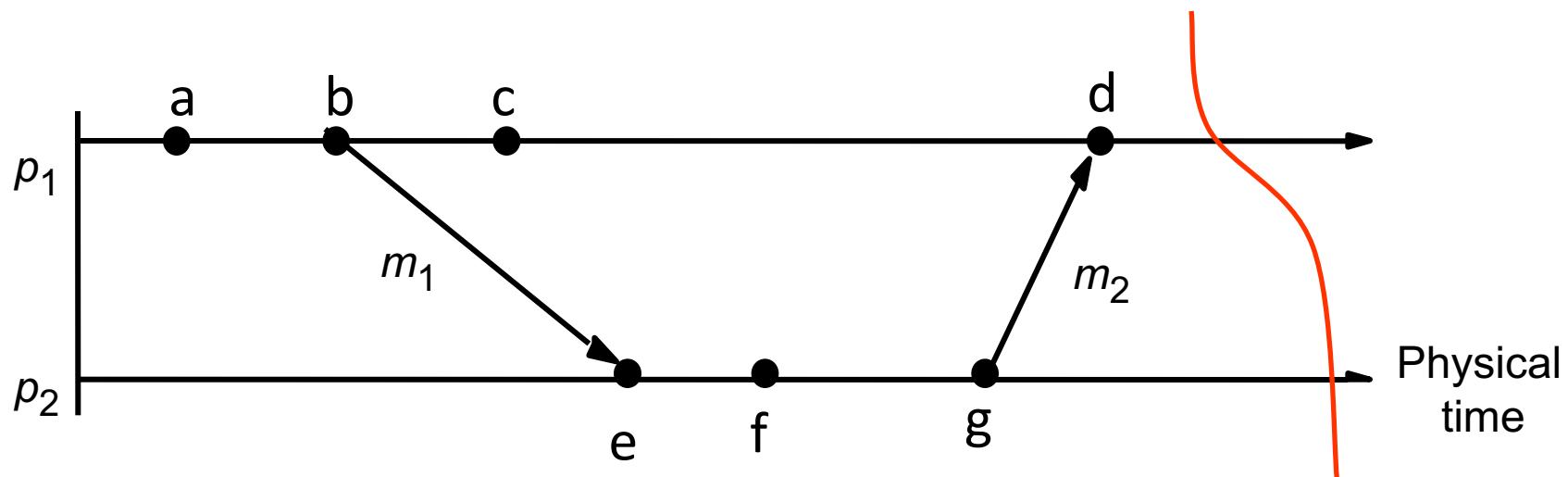
Linearization: $\langle a, b, c, e, f, g, d \rangle$

Example



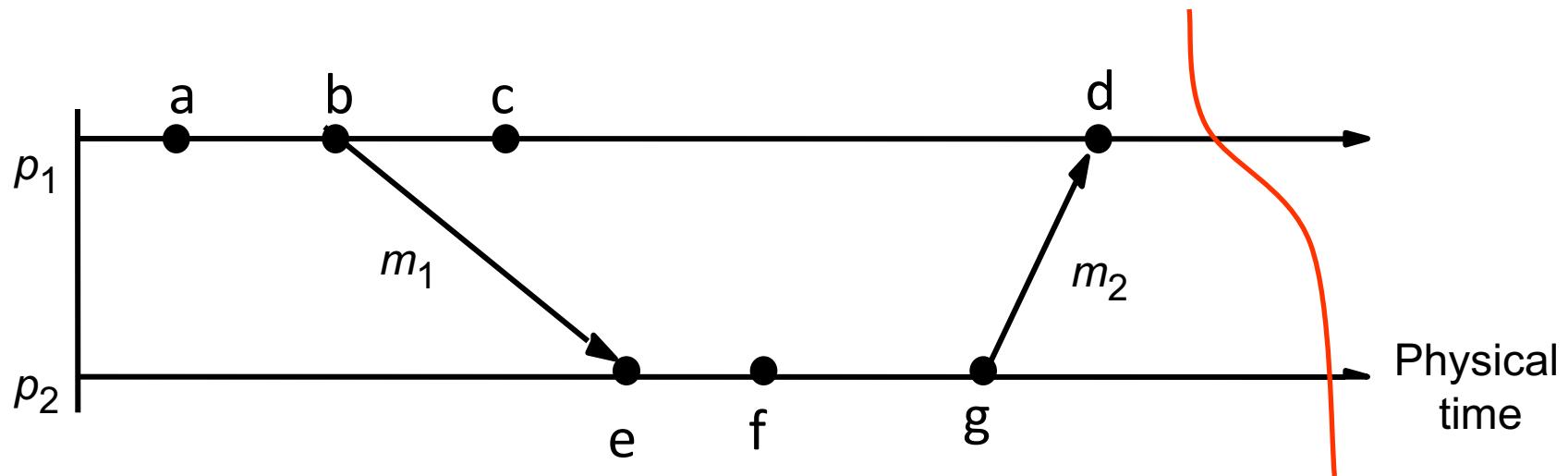
$\langle a, b, e, f, c, g, d \rangle$:

Example



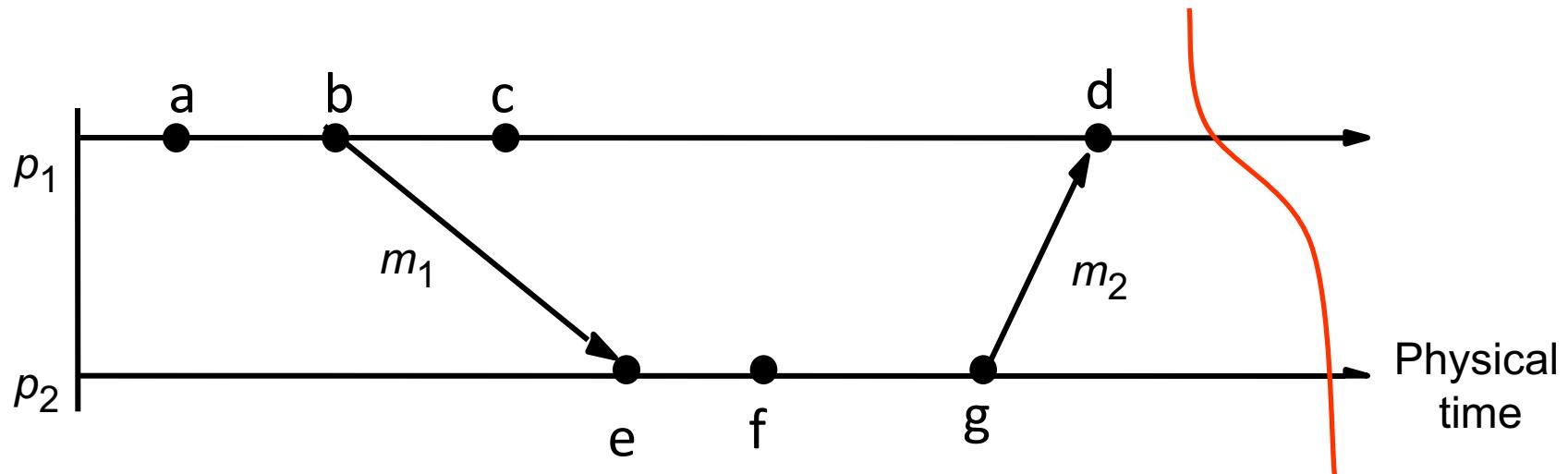
$\langle a, b, e, f, c, g, d \rangle$: **Linearization**

Example



$\langle a, f, e, b, c, g, d \rangle$:

Example

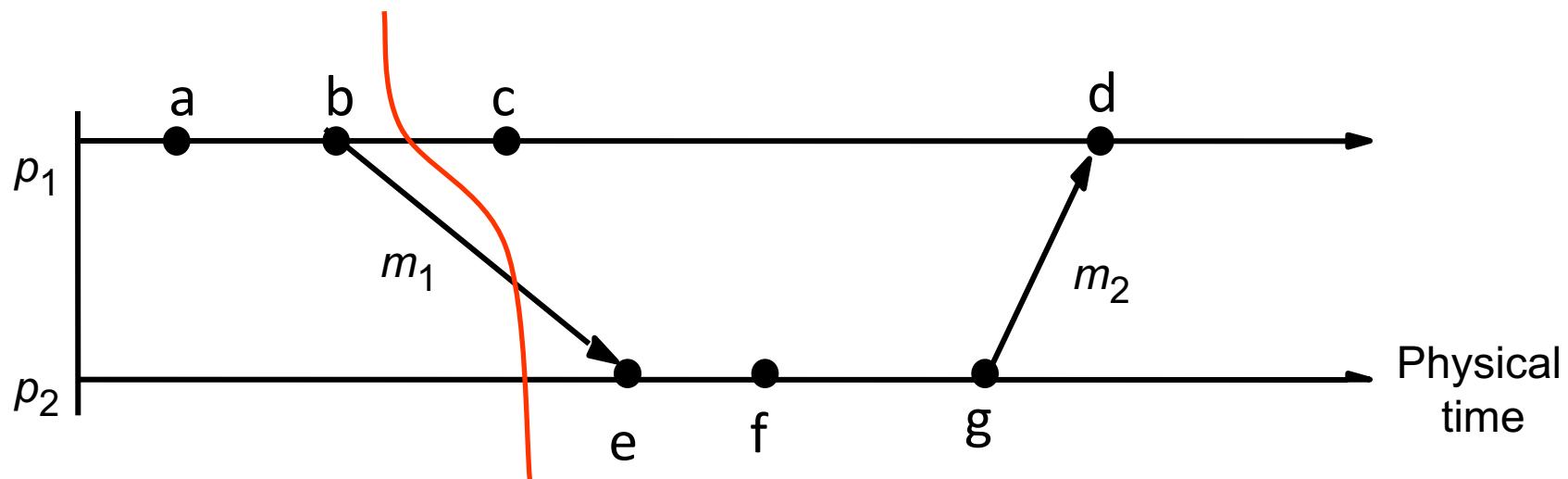


$\langle a, f, e, b, c, g, d \rangle$: **Not even a run**

More notations and definitions

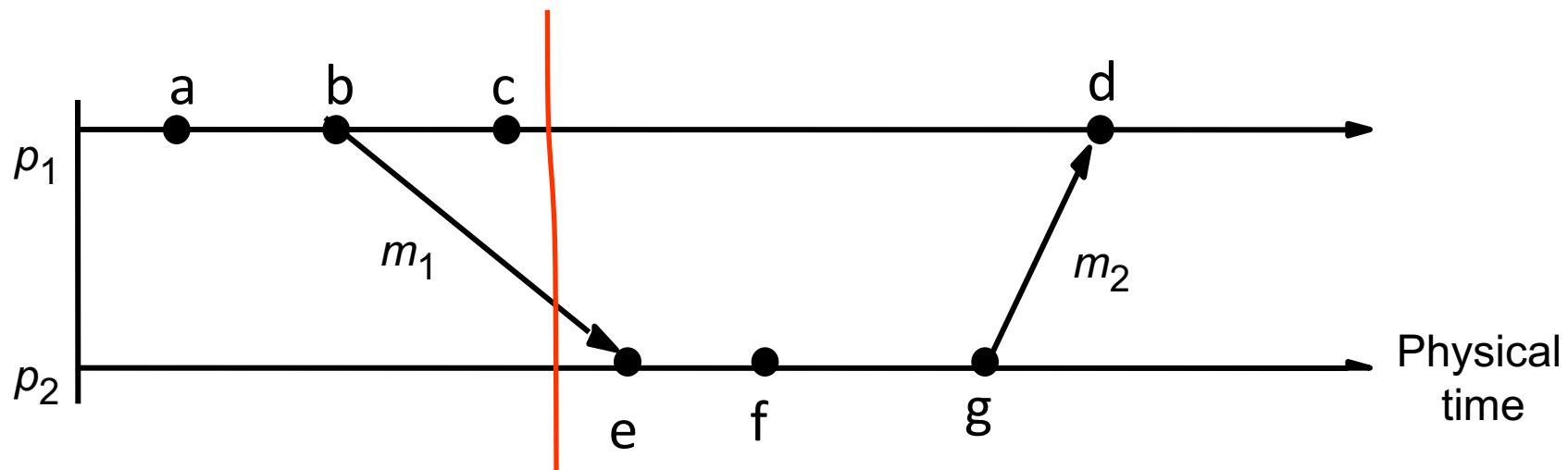
- A **run** is a total ordering of events in H that is consistent with each h_i 's ordering.
- A **linearization** is a run consistent with happens-before (\rightarrow) relation in H .
- Linearizations pass through consistent global states.

Example



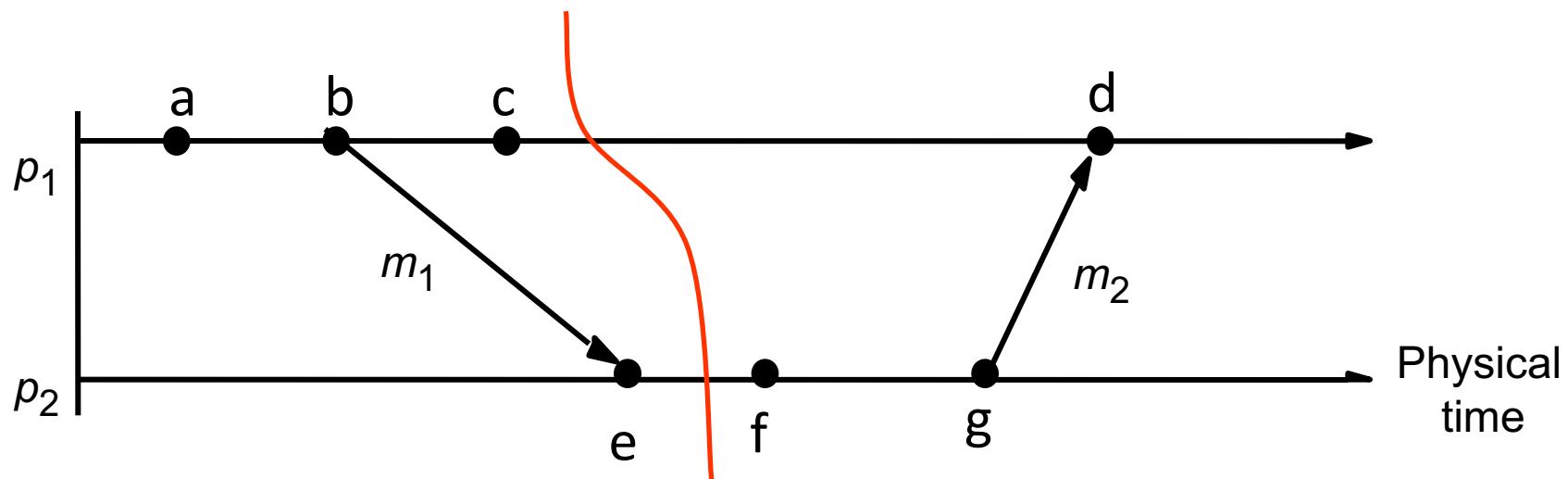
Linearization: $< a, b, | c, e, f, g, d >$

Example



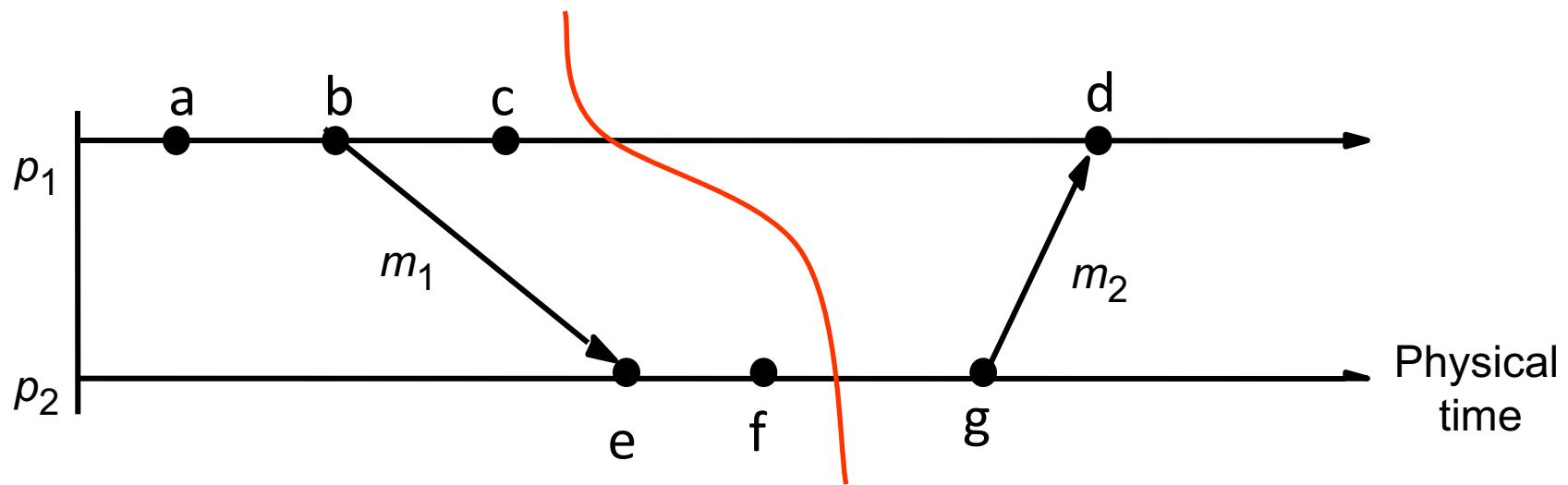
Linearization: $< a, b, c, | e, f, g, d >$

Example



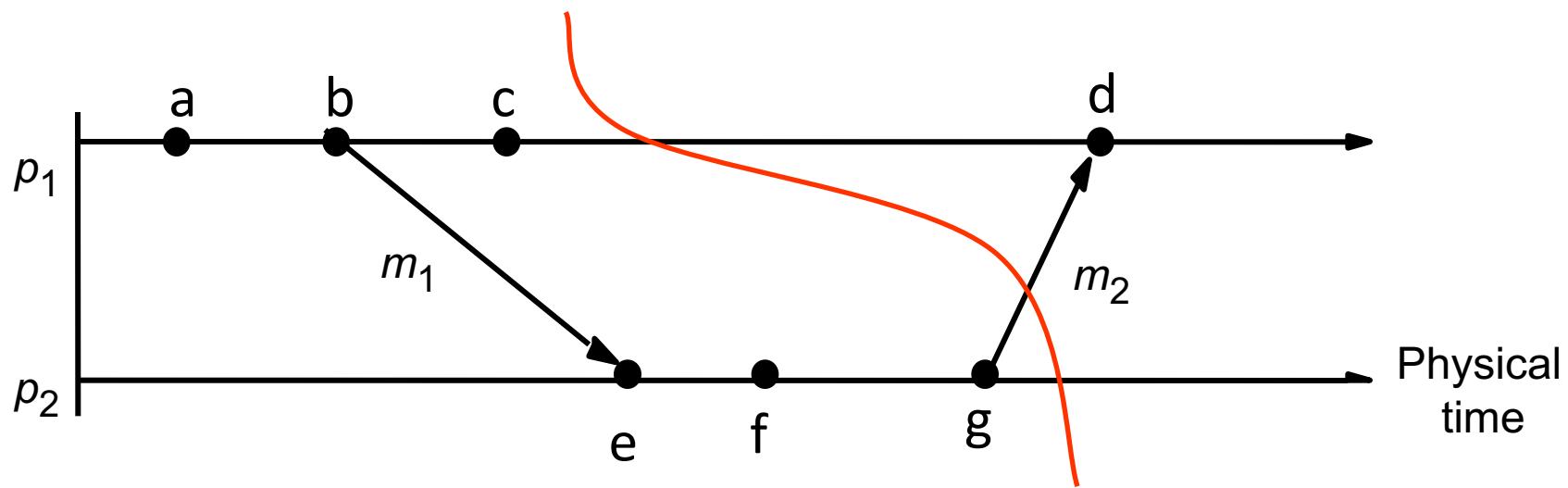
Linearization: $< a, b, c, e | f, g, d >$

Example



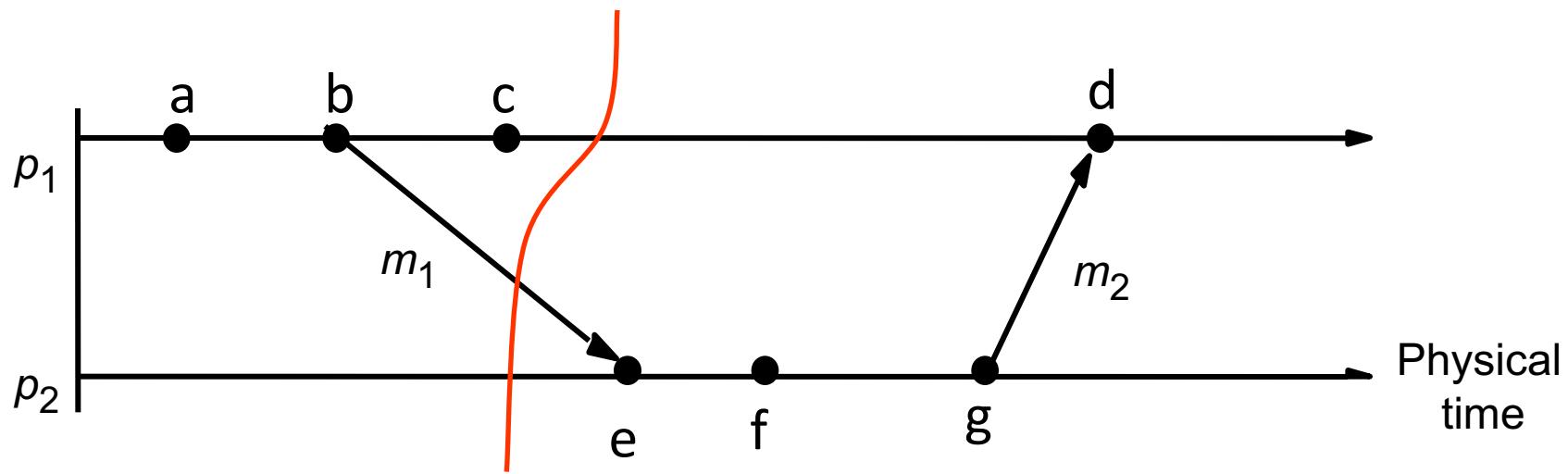
Linearization: $< a, b, c, e, f, | g, d >$

Example



Linearization: $< a, b, c, e, f, g | d >$

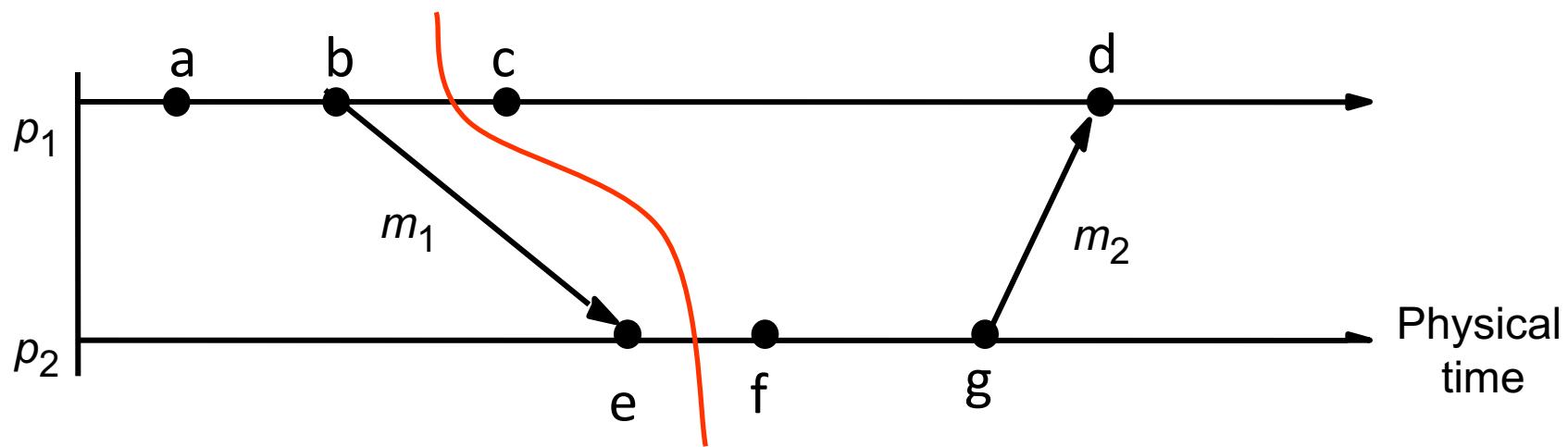
Example



Linearization: $< a, b, c, e, f, g, d >$

Linearization: $< a, b, e, c, f, g, d >$

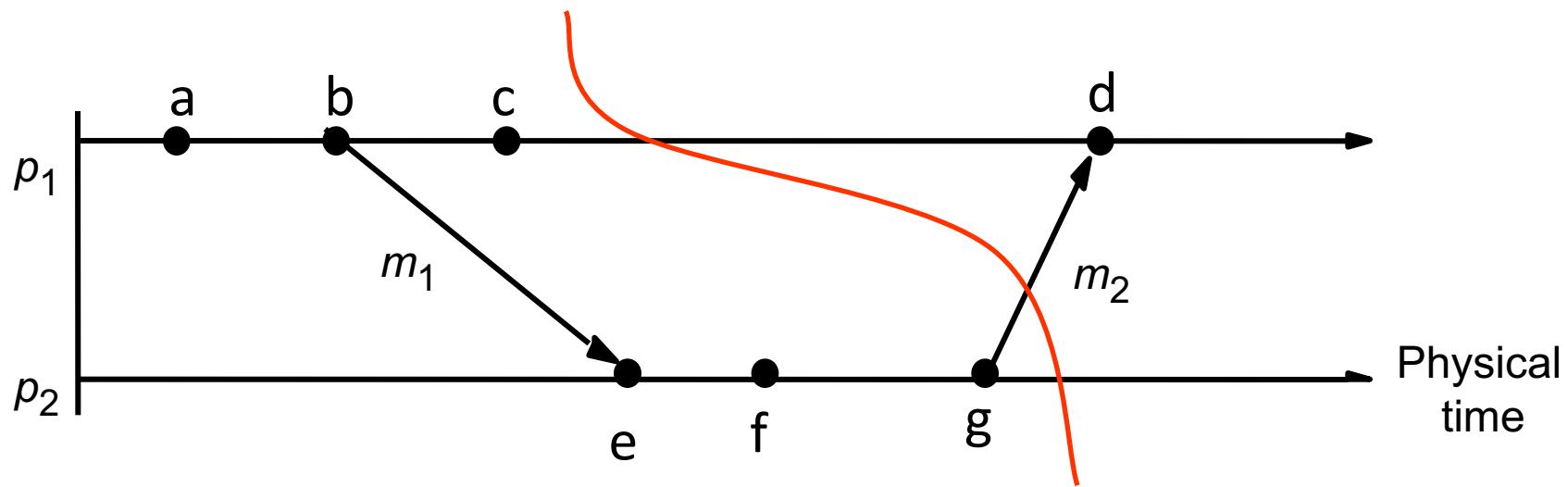
Example



Linearization: $< a, b, c, e, f, g, d >$

Linearization: $< a, b, e, c, f, g, d >$

Example



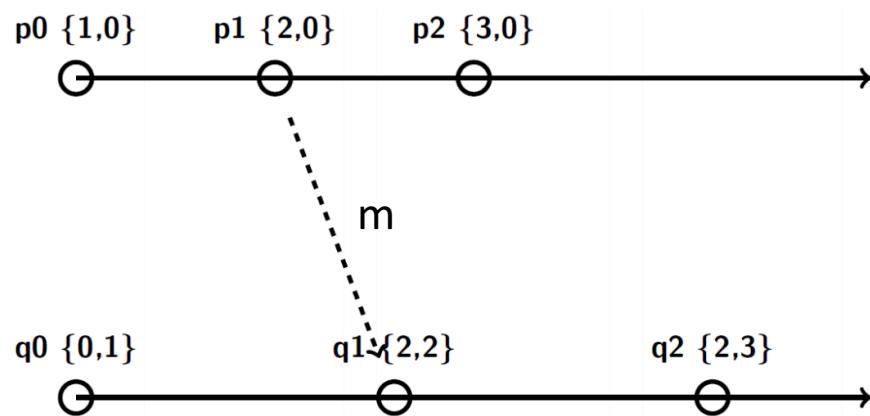
Linearization: $\langle a, b, \textcolor{brown}{c}, \textcolor{brown}{e}, f, g \mid \textcolor{red}{d} \rangle$

Linearization: $\langle a, b, \textcolor{blue}{e}, \textcolor{blue}{c}, f, g \mid \textcolor{red}{d} \rangle$

More notations and definitions

- A **run** is a total ordering of events in H that is consistent with each h_i 's ordering.
- A **linearization** is a run consistent with happens-before (\rightarrow) relation in H .
- Linearizations pass through consistent global states.
- A global state S_k is reachable from global state S_i , if there is a linearization that passes through S_i and then through S_k .
- The distributed system evolves as a series of transitions between global states S_0, S_1, \dots

State Transitions: Example



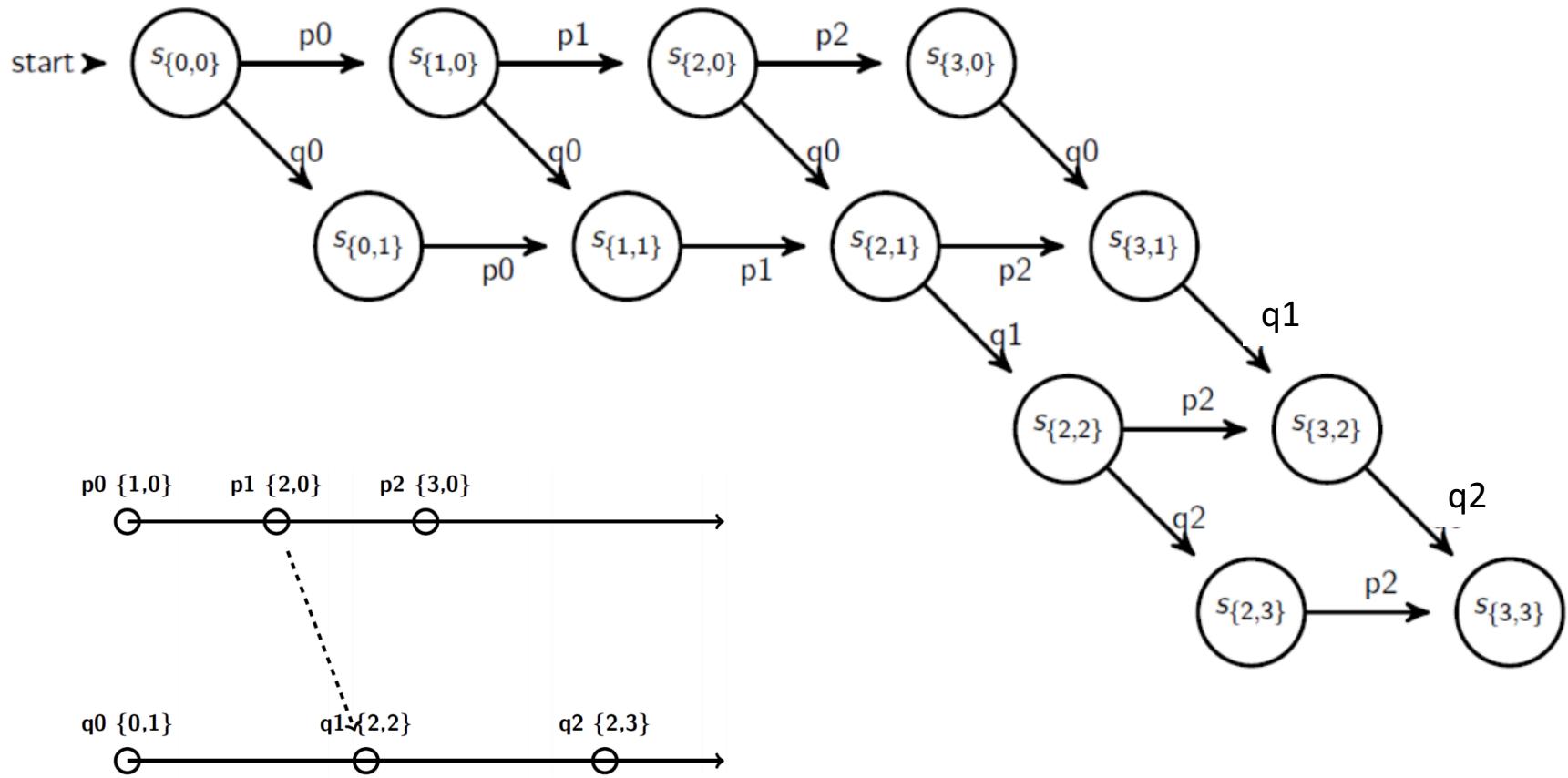
Many linearizations:

- $\langle p0, p1, p2, q0, q1, q2 \rangle$
- $\langle p0, q0, p1, q1, p2, q2 \rangle$
- $\langle q0, p0, p1, q1, p2, q2 \rangle$
- $\langle q0, p0, p1, p2, q1, q2 \rangle$
-

- Causal order:
 - $p0 \rightarrow p1 \rightarrow p2$
 - $q0 \rightarrow q1 \rightarrow q2$
 - $p0 \rightarrow p1 \rightarrow q1 \rightarrow q2$
- Concurrent:
 - $p0 \parallel q0$
 - $p1 \parallel q0$
 - $p2 \parallel q0, p2 \parallel q1, p2 \parallel q2$

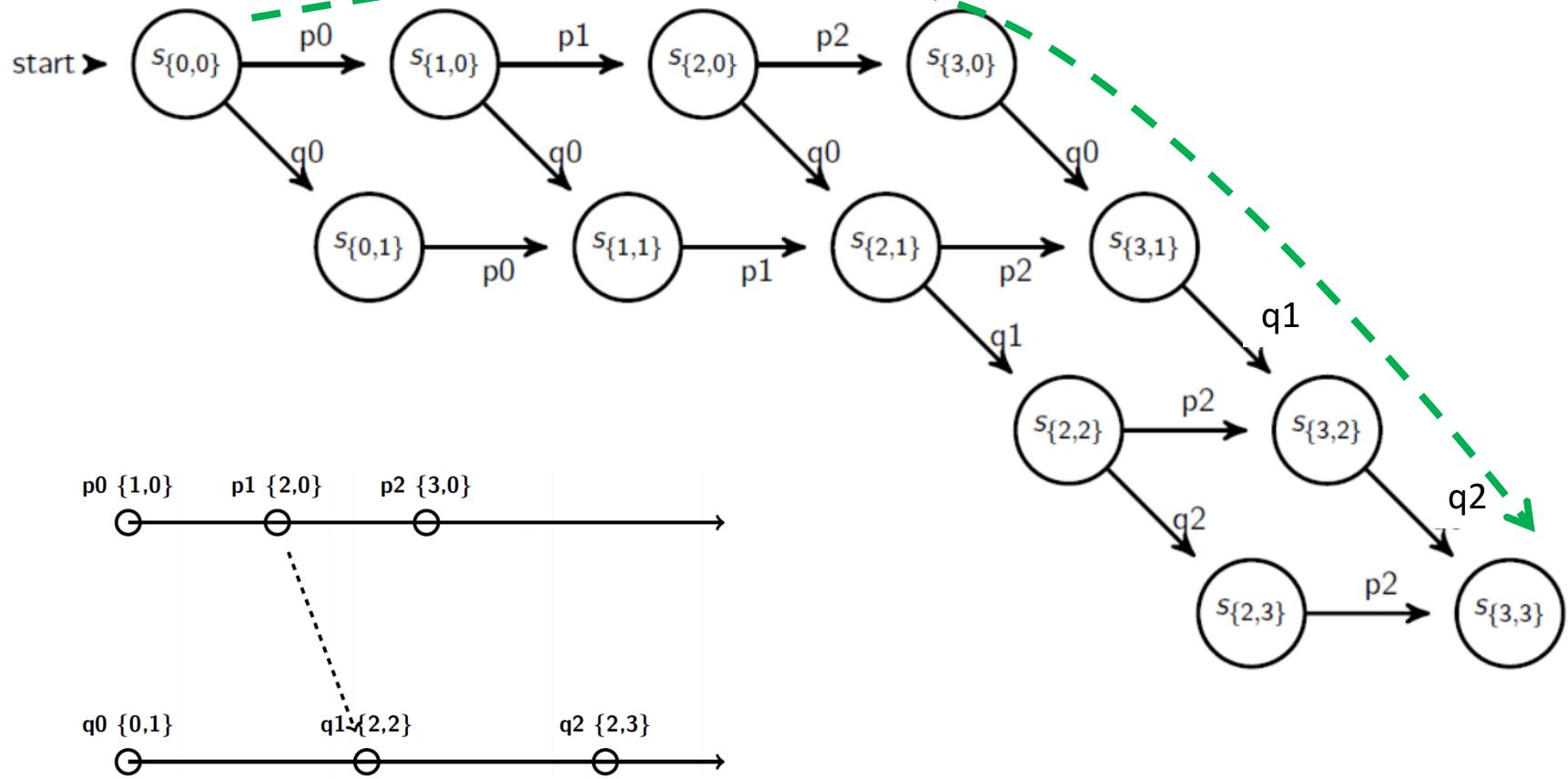
State Transitions: Example

Execution Lattice. Each path represents a linearization.



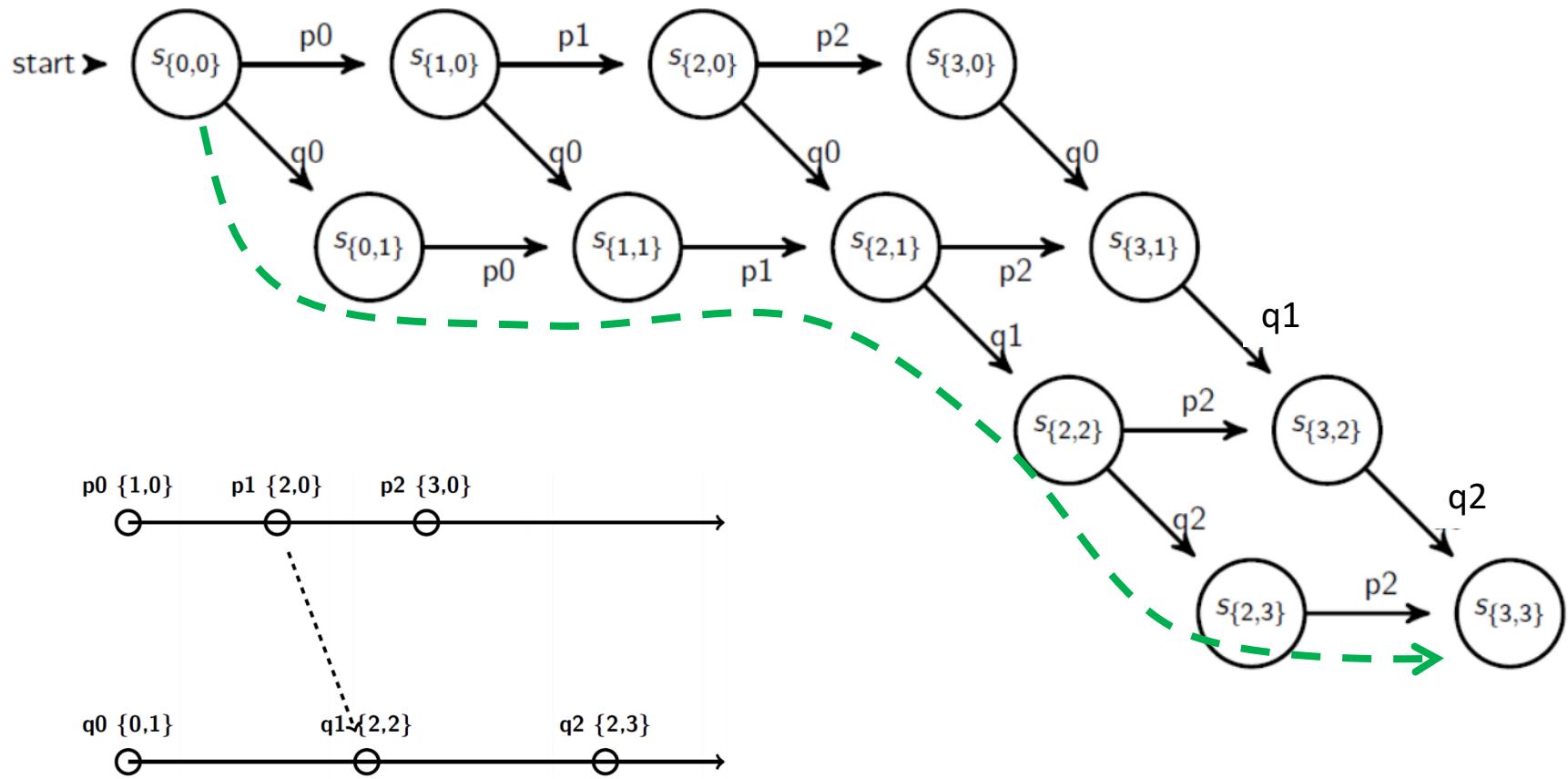
State Transitions: Example

Execution Lattice. Each path represents a linearization.



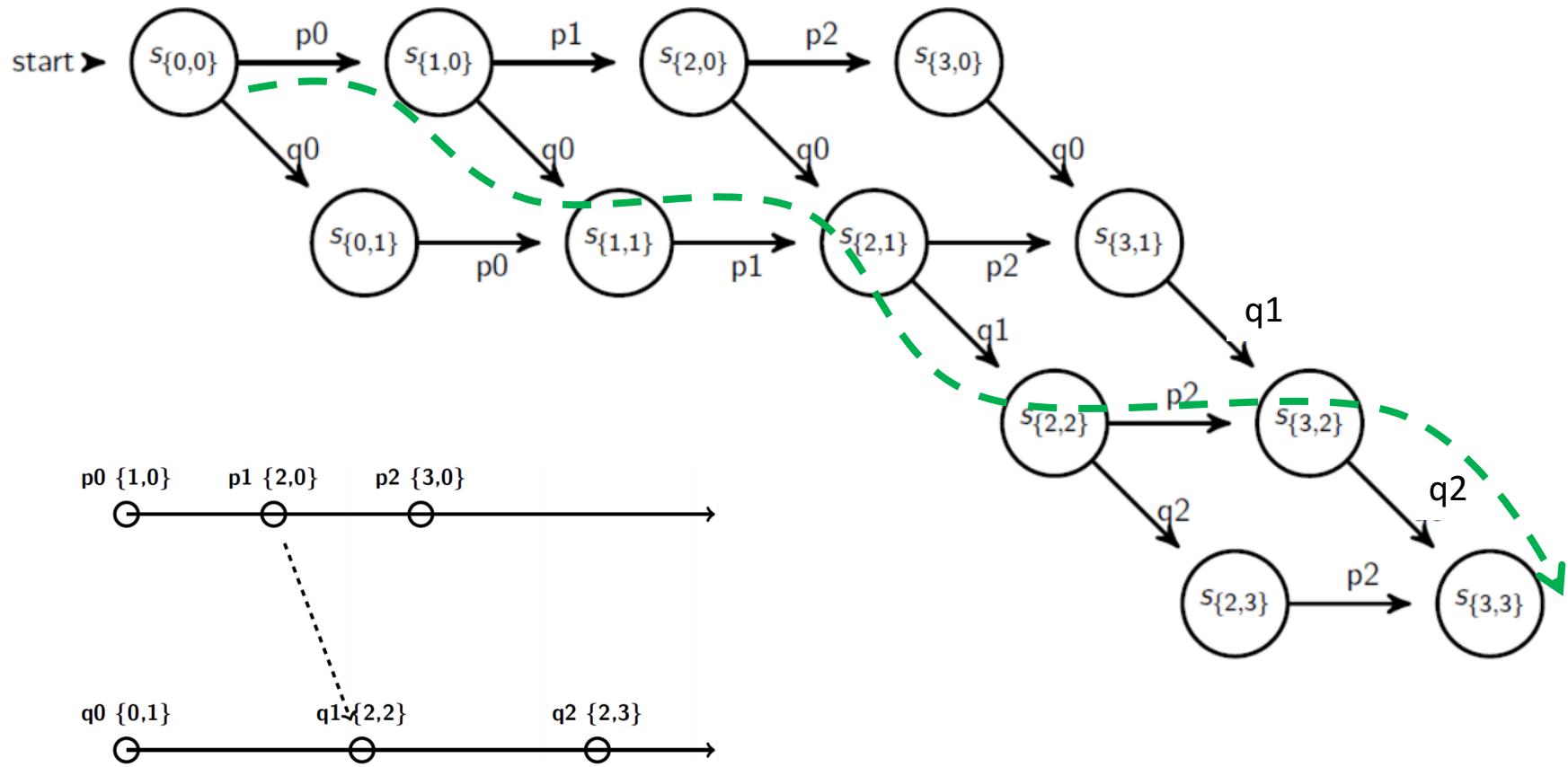
State Transitions: Example

Execution Lattice. Each path represents a linearization.



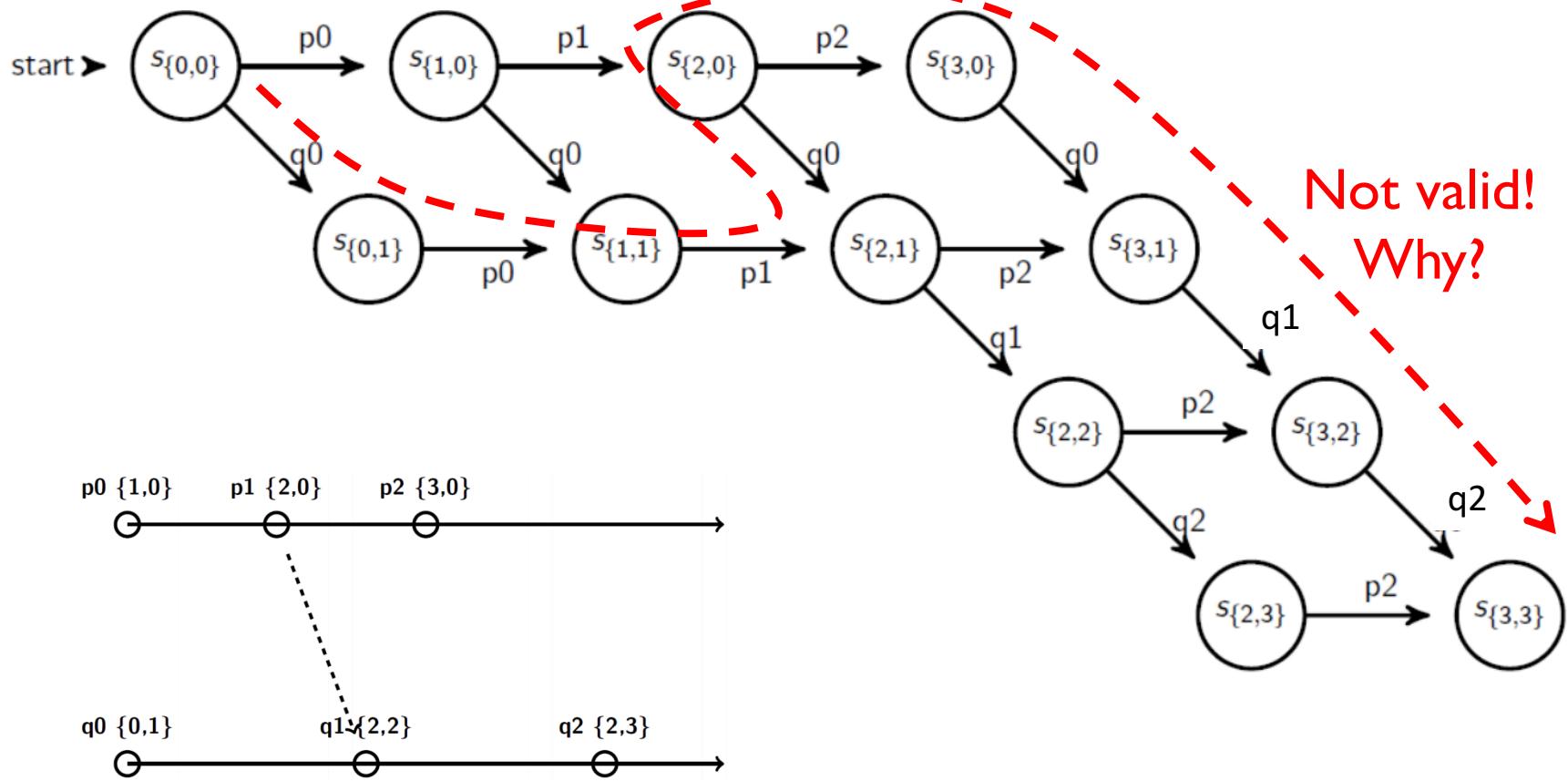
State Transitions: Example

Execution Lattice. Each path represents a linearization.

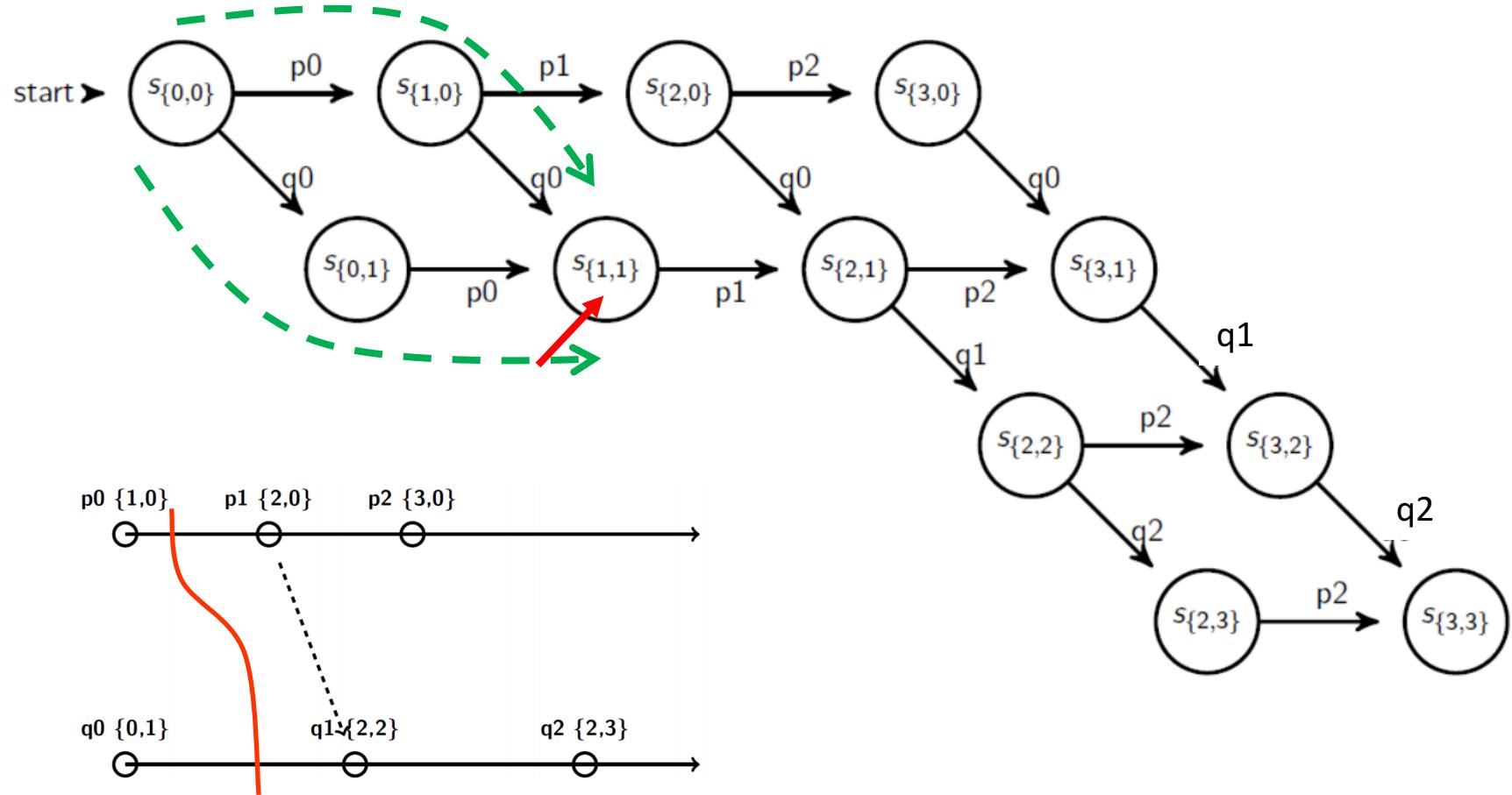


State Transitions: Example

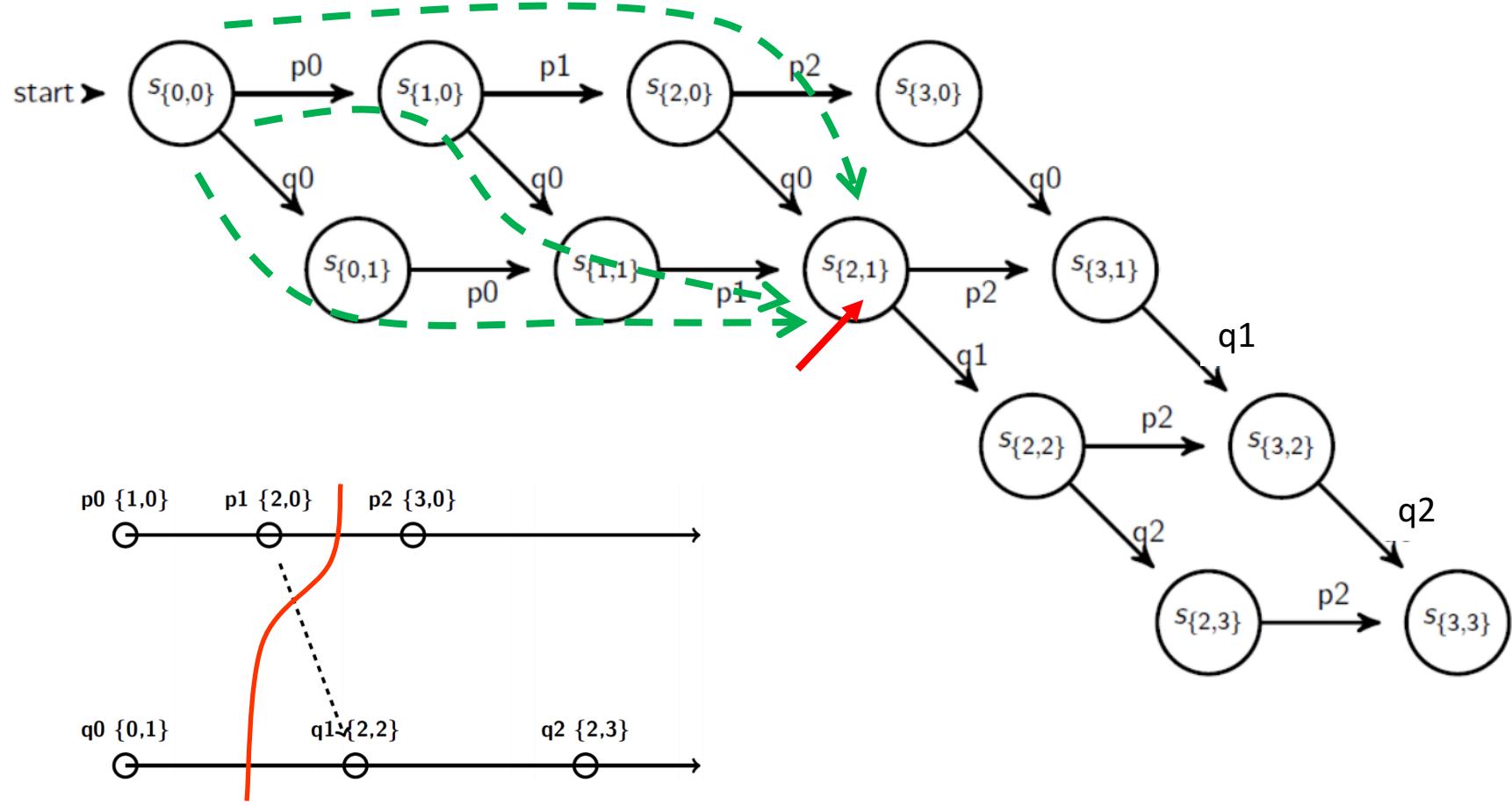
Execution Lattice. Each path represents a linearization.



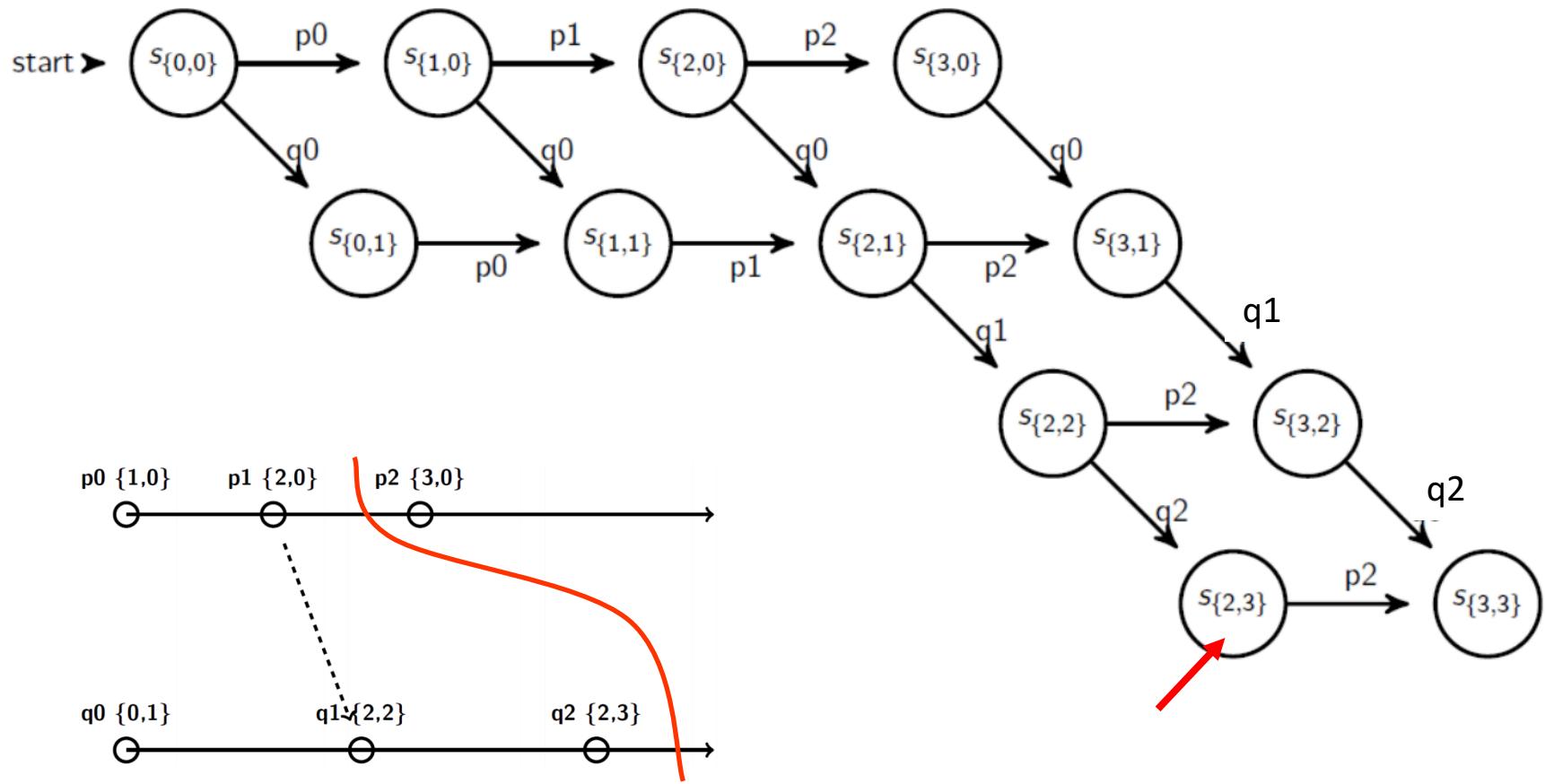
State Transitions: Example



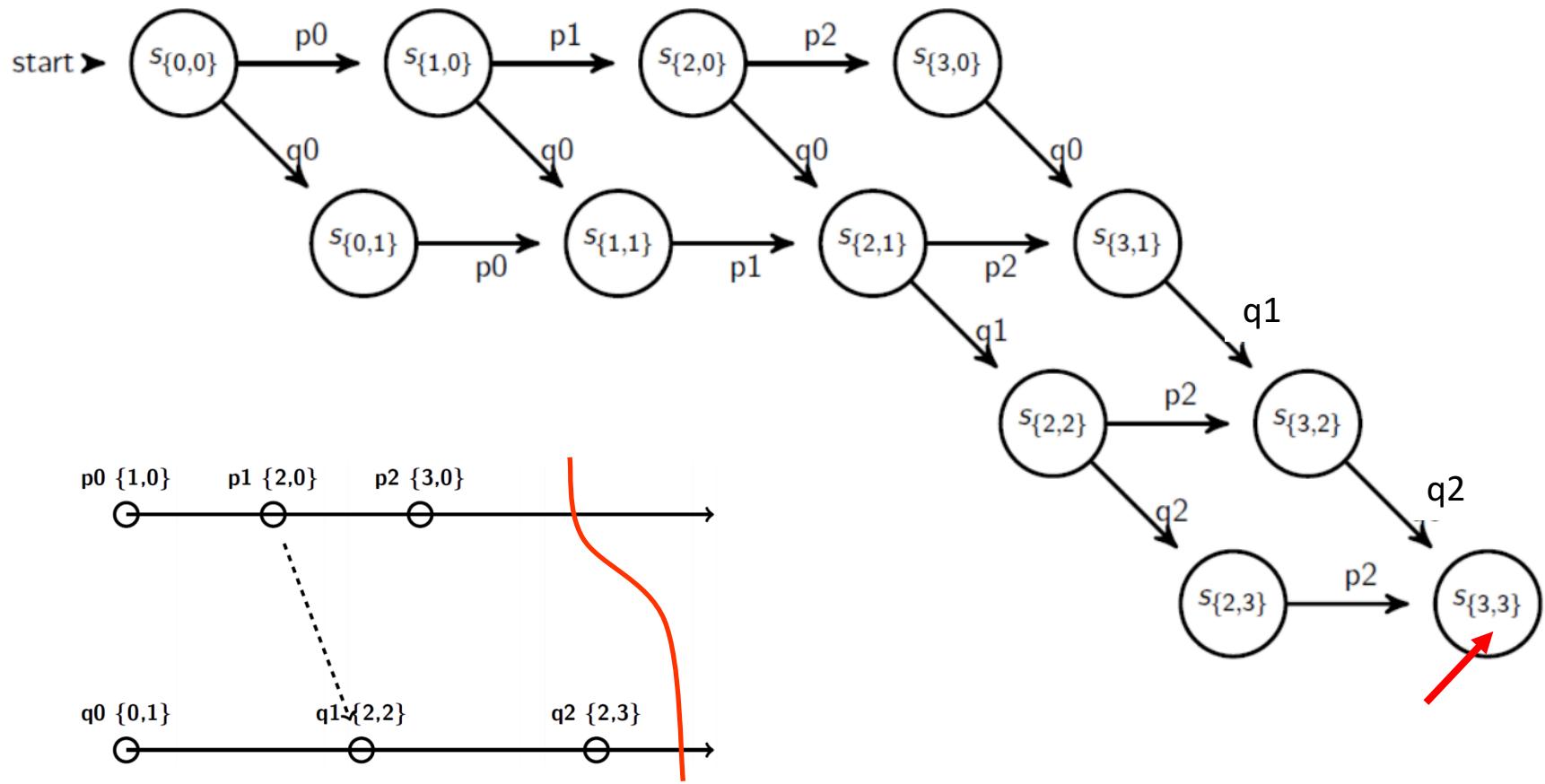
State Transitions: Example



State Transitions: Example



State Transitions: Example



More notations and definitions

- A **run** is a total ordering of events in H that is consistent with each h_i 's ordering.
- A **linearization** is a run consistent with happens-before (\rightarrow) relation in H .
- Linearizations pass through consistent global states.
- A global state S_k is reachable from global state S_i , if there is a linearization that passes through S_i and then through S_k .
- The distributed system evolves as a series of transitions between global states S_0, S_1, \dots

Global State Predicates

- A global-state-predicate is a property that is *true* or *false* for a global state.
 - Is there a deadlock?
 - Has the distributed algorithm terminated?
- Two ways of reasoning about predicates (or system properties) as global state gets transformed by events.
 - Liveness
 - Safety
- To be continued in next class....