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Logistics Related

• We have shared the VM mappings with Eng-IT. 
• We’ll update you once the clusters have been assigned.

• My pace is way faster than last year!
• Please feel free to ask questions.  



Today’s agenda

• Time and Clocks
• Chapter 14.1-14.3

• Logical Clocks and Timestamps
• Chapter 14.4



Clock Skew and Drift Rates

• Each process has an internal clock.
• Clocks between processes on different computers differ :

• Clock skew: relative difference between two clock values.
• Clock drift rate: change in skew from a perfect reference clock per 

unit time (measured by the reference clock).
• Depends on change in the frequency of oscillation of a crystal in the 

hardware clock.

• Synchronous systems have bound on maximum drift rate.



Synchronization in synchronous systems

Let max and min be maximum and minimum network delay. 
If Tc  = Ts, skew(client, server) ≤	max.
If Tc  = (Ts + max), skew(client, server) ≤	(max – min)
If Tc  = (Ts + min), skew(client, server) ≤	(max – min)
If Tc  = (Ts + (min + max)/2), skew(client,server) ≤	(max – min)/2

Provably the 
best you can 

do!

What time Tc should client adjust its local clock to after receiving ms ?

client server

mr: What is the time?

ms : It is Ts
Ts

Ts + ∆



Synchronization in asynchronous systems

• Cristian Algorithm

• Berkeley Algorithm

• Network Time Protocol 



Cristian Algorithm

What time Tc should client adjust its local clock to after receiving ms ?

Improve accuracy by sending multiple 
spaced requests and using response 
with smallest Tround.

Server failure: Use multiple 
synchronized time servers. 

Client measures the round 
trip time (Tround).
Tc = Ts + (Tround / 2)

skew ≤	(Tround / 2) – min 
										≤	(Tround / 2) 
(min is minimum one way  network 
delay which is atleast zero).

client server

mr: What is the time?

ms : It is Ts
Ts

Ts + ∆



Berkeley Algorithm

1. Server periodically polls clients: 
“what time do you think it is?”

2. Each client responds with its local 
time.

3. Server uses Cristian algorithm to 
estimate local time at each client.

4. Average all local times (including 
its own) – use as updated time.

5. Send the offset (amount by 
which each clock needs 
adjustment). 

Only supports internal synchronization.

Server
Client

Client Client

Client
Client

𝑜1 𝑜2

𝑜3

𝑜4

𝑜5



Strata 3, 
synched by  
secondary

Network Time Protocol

Time service over the Internet for synchronizing to UTC. 

1

2 2 2

3 3 3 3 3 3

Hierarchical structure for scalability.
Multiple lower strata servers for robustness.
Authentication mechanisms for security.
Statistical techniques for better accuracy. 

Primary, UTC synch

Secondary, 
synched with 
primary

A
ccuracy



Network Time Protocol

How clocks get synchronized:
• Servers may multicast timestamps within a LAN. Clients 

adjust time assuming a small delay. Low accuracy.
• Procedure-call (Cristian algorithm). Higher accuracy. 
• Symmetric mode used to synchronize lower strata 

servers. Highest accuracy.

Strata 3, 
synched by the 
secondary

1

2 2 2

3 3 3 3 3 3

Primary, UTC synch

Secondary, 
synched primary



NTP Symmetric Mode

• A and B exchange messages and record the send and receive 
timestamps. 
• TBr and TBs are local timestamps at B. 
• TAr and TAs are local timestamps at A. 
• A and B exchange their local timestamp with eachother. 

• Use these timestamps to compute offset with respect to one another.

TAr

TBsTBr

TAs

Server B

Server A

Time

m m'

Time



NTP Symmetric Mode

TBr = TAs + t + o 
TAr = TBs + t’ – o
o = ((TBr - TAs) - (TAr -TBs)+ (t’ – t))/2
oi = ((TBr - TAs) - (TAr -TBs))/2
o = oi + (t’ – t)/2

TAr

TBsTBr

TAs

Server B

Server A

Time

m m'

Time

• t and t’: actual transmission times 
for m and m’(unknown)

• o:  true offset of clock at B 
relative to clock at A (unknown)

• oi: estimate of actual offset   
between the two clocks



NTP Symmetric Mode

• t and t’: actual transmission times 
for m and m’(unknown)

• o:  true offset of clock at B 
relative to clock at A (unknown)

• oi: estimate of actual offset   
between the two clocks

•

TBr = TAs + t + o 
TAr = TBs + t’ – o
o = ((TBr - TAs) - (TAr -TBs)+ (t’ – t))/2
oi = ((TBr - TAs) - (TAr -TBs))/2
o = oi + (t’ – t)/2

TAr

TBsTBr

TAs

Server B

Server A

Time

m m'

Time



NTP Symmetric Mode

• t and t’: actual transmission times 
for m and m’(unknown)

• o:  true offset of clock at B 
relative to clock at A (unknown)

• oi: estimate of actual offset   
between the two clocks

• di: estimate of accuracy of oi ;
di=t+t’

• di/2: synchronization bound

o = oi + (t’ – t)/2
TAr

TBsTBr

TAs

Server B

Server A

Time

m m'

Time

How off can oi be?
• We do not know, t, t’ or (t’-t)
• We do not know max or min delays.
• We know (t + t’), t	≥	0, t’ ≥	0
di = t + t’
• (t’-t) ~= (t + t’), if t ~= 0 (one extreme)
• (t’-t) ~= - (t + t’), if t’ ~= 0 (other extreme)

(oi – di / 2) ≤ o ≤ (oi + di / 2) 



NTP Symmetric Mode

• t and t’: actual transmission times 
for m and m’(unknown)

• o:  true offset of clock at B 
relative to clock at A (unknown)

• oi: estimate of actual offset   
between the two clocks

• di: estimate of accuracy of oi ;
di=t+t’

• di/2: synchronization bound

TBr = TAs + t + o 
TAr = TBs + t’ – o
o = ((TBr - TAs) - (TAr -TBs)+ (t’ – t))/2
oi = ((TBr - TAs) - (TAr -TBs))/2
o = oi + (t’ – t)/2
di = t + t’ = (TBr - TAs) + (TAr - TBs)

TAr

TBsTBr

TAs

Server B

Server A

Time

m m'

Time

(oi – di / 2) ≤ o ≤ (oi + di / 2) given t, t’ ≥ 0



NTP Symmetric Mode

TAr

TBsTBr

TAs

Server B

Server A

Time

m m'

Time



NTP Symmetric Mode

A and B exchange messages and record the send and receive 
timestamps. 
Use these timestamps to compute offset with respect to one 
another (oi).
A server computes its offset from multiple different sources and 
adjust its local time accordingly. 

TAr

TBsTBr

TAs

Server B

Server A

Time

m m'

Time



Synchronization in asynchronous systems

• Cristian Algorithm
• Synchronization between a client and a server.
• Synchronization bound = (Tround / 2) – min ≤Tround / 2 

• Berkeley Algorithm
• Internal synchronization between clocks. 
• A central server picks the average time and disseminates 

offsets. 

• Network Time Protocol 
• Hierarchical time synchronization over the Internet. 



Today’s agenda

• Time and Clocks
• Chapter 14.1-14.3

• Logical Clocks and Timestamps
• Chapter 14.4



Event Ordering
• A usecase of synchronized clocks:

• Reasoning about order of events. 
• Why is it useful? 

• Debugging distributed applications
• Reconciling updates made to an object in a distributed datastore. 
• Rollback recovery during failures: 

1. Checkpoint state of the system; 2. Log events (with timestamps);        
3. Rollback to checkpoint and replay events in order if system 
crashes. 

• ….

• Can we reason about order of events without 
synchronized clocks? 



Process, state, events

• Consider a system with n processes: <p1, p2, p3, …., pn>

• Each process pi is described by its state si that gets 
transformed over time. 

• State includes values of all local variables, affected files, etc. 

• si gets transformed when an event occurs. 
• Three types of events: 

• Local computation.
• Sending a message.
• Receiving a message.



Event Ordering

• Easy to order events within a single process pi, based on 
their time of occurrence. 

• How do we reason about events across processes?
• A message must be sent before it gets received at 

another process.  

• These two notions help define happened-before (HB)
relationship denoted by →.

• e → e’ means e happened before e’. 



Happened-Before Relationship

• Happened-before (HB) relationship denoted by →.
• e → e’ means e happened before e’. 
• e →i e’ means e happened before e’, as observed by pi. 

• HB rules:
• If ∃ pi , e →i e’ then e → e’.
• For any message m, send(m) → receive(m)
• If e → e’ and e’ → e” then e → e’’

• Also called “causal” or “potentially causal” ordering.



Event Ordering: Example

p1

p2

p3

a b

c d

e f

m1

m2

Physical
time

p1

p2

p3

a b

c d

e f

m1

m2

Physical
time

Which event happened first?
a → b and b → c and c → d and d → f
a → b and a → c and a → d and a → f



Event Ordering: Example

p1

p2

p3

a b

c d

e f

m1

m2

Physical
time

What can we say about e?
e → f 

a → e and e → a 
a || e

a and e are concurrent.

/ /



Event Ordering: Example

p1

p2

p3

a b

c d

e f

m1

m2

Physical
time

What can we say about e and d?
e || d



Event Ordering: Example

p1

p2

p3

a b

c d

e f

m1

m2

Physical
time

g

h

What can we say about e and d?
e → d



Lamport’s Logical Clock

• Logical timestamp for each event that captures the 
happened-before relationship.

• Algorithm: Each process pi

1. initializes local clock Li = 0.
2. increments Li before timestamping each event.
3. piggybacks Li when sending a message.
4. upon receiving a message with clock value t

• sets Li = max(t, Li)
• increments Li before timestamping the receive event (as per 

step 2).



Logical Timestamps: Example

p1

p2

p3

a b

c d

e f

m1

m2

Physical
time

1 20

(2)

0 (2	>	0)

3

0

4

(4)

1 (4	>	1)

5



Lamport’s Logical Clock

• Logical timestamp for each event that captures the 
happened-before relationship.

• Algorithm: Each process pi

1. initializes local clock Li = 0.
2. increments Li before timestamping each event.
3. piggybacks Li when sending a message.
4. upon receiving a message with clock value t

• sets Li = max(t, Li)
• increments Li before timestamping the receive event (as per 

step 2).



Logical Timestamps: Example

p1

p2

p3

a b

c d

e f

m1

m2

Physical
time

1 20

(2)

0

3

0

5

(5)

1

6g

h

2

(2)

4



Lamport’s Logical Clock

• Logical timestamp for each event that captures the 
happened-before relationship.

• If e → e’ then 
• L(e) < L(e’)

• What if L(e) < L(e’)?
• We cannot say that e → e’
• We can say: e’ → e 
• Either e → e’ or e || e’

/



Logical Timestamps: Example

p1

p2

p3

a b

c d

e f

m1

m2

Physical
time

1 20

(2)

0 (2	>	0)

3

0

4

(4)

1 (4	>	1)

5

L(e) < L(d), e || d L(e) < L(f), e → f



Vector Clocks

• Next class….


