Distributed Systems

CS425/ECE428

Instructor: Radhika Mittal

Logistics Related

* We have shared the VIM mappings with Eng-IT.

* We'll update you once the clusters have been assigned.

* My pace Is way faster than last year!
* Please feel free to ask questions.

Today’s agenda

* Time and Clocks
e Chapter [4.1-14.3

* Logical Clocks and Timestamps
* Chapter 144

Clock Skew and Drift Rates

* Fach process has an internal clock.

* Clocks between processes on different computers differ:
* Clock skew: relative difference between two clock values.

* Clock drift rate: change in skew from a perfect reference clock per
unit time (measured by the reference clock).

* Depends on change in the frequency of oscillation of a crystal in the
hardware clock.

* Synchronous systems have bound on maximum drift rate.

Synchronization in synchronous systems

m.:What is the time?

T.+A
What time T, should client adjust its local clock to after receiving m ?

et max and min be maximum and minimum network delay.

f T, = T, skew(client, server) < max. Provably the

If T. = (T, + max), skew(client, server) < (max — min) | 2 éof can
O.

If T, = (T, + min), skew(client, server) < (max —min) —_~
it T, = (T, + (min + max)/2), skew(clientserver) < (max — min)/2

Synchronization in asynchronous systems

* Cristian Algorithm
* Berkeley Algorithm

 Network Time Protocol

Cristian Algorithm

m.:What is the time?

T.+A
What time T, should client adjust its local clock to after receiving m ?

Client measures the round

trip time (T.o.q) Improve accuracy by sending multiple

spaced requests and using response

Tc = Ts + (Tround / 2) with smallest Tround'
skew < (T oung/ 2) — min | |
< (Tl 2) Server failure: Use multiple

(min is minimum one way network synchronized time servers.

delay which is atleast zero).

Berkeley Algorithm

Only supports internal synchronization.

|. Server periodically polls clients:
“what time do you think it is?”

2. Each client responds with its local

0) time.

3. Server uses Cristian algorithm to
> Server estimate local time at each client.
’ 05 4, Average all local times (including

its own) — use as updated time.

. Send the offset (amount by
which each clock needs
adjustment).

O4

Network Time Protocol

Time service over the Internet for synchronizing to UTC.

synched by
secondary

Hierarchical structure for scalability.
Multiple lower strata servers for robustness.
Authentication mechanisms for security.
Statistical techniques for better accuracy.

Primary, UTC synch A

Aoeandoy

Network Time Protocol

n Primary, UTC synch
Secondary,
synched primary 0 0 o Strata 3,

7N N AN\
synched by the

@ 0 o e @ secondary

N7V N J U AVN 7\

How clocks get synchronized:

* Servers may multicast timestamps within a LAN. Clients
adjust time assuming a small delay. Low accuracy.

* Procedure-call (Cristian algorithm). Higher accuracy.

* Symmetric mode used to synchronize lower strata
servers. Highest accuracy.

NTP Symmetric Mode

Server B Tg, T

Time

Time
Server A Tas Tar

* A and B exchange messages and record the send and receive
timestamps.
* T[g and Ty are local timestamps at B.
* T, and T, are local timestamps at A.
* A and B exchange their local timestamp with eachother.

* Use these timestamps to compute offset with respect to one another.

NTP Symmetric Mode

Server B Tg, T

Time

Time
Server A Tas Tar

e t and t": actual transmission times TBr — TAs +1t+4 0

for m and m'(unknown) ,
= + 1 —
e 0: true offset of clock at B TA" TBS t—o

relative to clock at A (unknown) o = ((Tg. - Ty.) - (Ta.-Tg)+ (' —1))/2

* O ebstimate of actual offset 0, = (Tg, - Ta) - (Ta.-Tg))/2
etween the two clocks . ,
o=o+ (t—-1/2

NTP Symmetric Mode

Server B Tg, T

Time

Time
Server A Tas Tar

e t and t": actual transmission times TBr — TAs +1t+4 0

for m and m'(unknown) ,
= + 1 —
e 0: true offset of clock at B TA" TBS t—o

relative to clock at A (unknown) o = ((Tg. - Ty.) - (Ta.-Tg)+ (' —1))/2

* O ebstimate of actual offset 0, = (Tg, - Ta) - (Ta.-Tg))/2
etween the two clocks . ,
o=o+ (t—-1/2

NTP Symmetric Mode

Server B Tg, T

Time

Time
Server A Tas Tar

+ t and t:actual transmission times ~ © = Oj T (' —=1)/2
for m and m'(unknown) How off can o; be?
o: true offset of clock at B * Wedonot know,t, t or (t-1)
relative to clock at A (unknown) * Wedo not kno\{‘/ max O'”’ min delays.
o; estimate of actual offset * Weknow (t+1) 120120

=t+t
between the two clocks d' ,t E . _
e d: estimate of accuracy of o; ; © (Y == () it ~=0 (one extreme)
: aeedraty Y e (t-t) ~=-(t+1),ift ~= 0 (other extreme)

d=t+t

d,/2: synchronization bound (0,—di/2) <o =(o+d/2)

NTP Symmetric Mode

Server B Tg, T

Time

Time
Server A Tas Tar

e t and t": actual transmission times TBr — TAs +1t+4 0

for m and m'(unknown) ,
= + 1 —
o: true offset of clock at B TA" TBS t—o

relative to clock at A (unknown) o = ((Tg. - Ty.) - (Ta.-Tg)+ (' —1))/2

* O; estimate of actual offset 0, = (Tg, - Ta) - (Ta.-Tg))/2
between the two clocks . ,
o | o=o+ (t—-1/2
* d: estimate of accuracy of o, ; o
d=t+t di =ttt = (TBr B TAs) + (TAr B TBs)

d/2: synchronization bound (o—d/2)<o<(o+d/2) gventt=0

NTP Symmetric Mode

Server B Tg, T

Time

Time

Server A Tas Tar

NTP Symmetric Mode

Server B Tg, T

Time

Time
Server A Tas Tar

A and B exchange messages and record the send and receive
timestamps.

Use these timestamps to compute offset with respect to one
another (o).

A server computes Its offset from multiple different sources and
adjust 1ts local time accordingly.

Synchronization in asynchronous systems

* Cristian Algorithm

* Synchronization between a client and a server.
* Synchronization bound = (1 ./ 2) —min < T

round — 'round

/2

* Berkeley Algorithm
* Internal synchronization between clocks.
* A central server picks the average time and disseminates
offsets.

* Network Time Protocol
* Hierarchical time synchronization over the Internet.

Today’s agenda

* Logical Clocks and Timestamps
* Chapter 144

Event Ordering

* A usecase of synchronized clocks:
* Reasoning about order of events.

* Why Is It useful?
* Debugging distributed applications
* Reconciling updates made to an object in a distributed datastore.

Rollback recovery during failures:

I. Checkpoint state of the system; 2. Log events (with timestamps);
3. Rollback to checkpoint and replay events in order if system
crashes.

e Can we reason about order of events without
synchronized clocks?

Process, state, events

* Consider a system with n processes: <py, Ps P3s -« -+ P,

* Fach process p; Is described by its state s; that gets

transformed over time.
e State includes values of all local variables, affected files, etc.

* s, gets transformed when an event occurs.

* Three types of events:
* Local computation.
* Sending a message.
* Recelving a message.

Event Ordering

* Fasy to order events within a single process p;, based on
their time of occurrence.

* How do we reason about events across processes!
* A message must be sent before it gets received at
another process.

* These two notions help define happened-before (HB)
relationship denoted by —.
* e = e means e happened before ¢€’.

Happened-Before Relationship

* Happened-before (HB) relationship denoted by —.
* e = € means e happened before €.
* e >. e means e happened before €', as observed by p;.

 HB rules:

fAp ,e—> e thene— e
~or any message m, send(m) — receive(m)

fe—o>eande’ - e’ thene —» e”

* Also called “causal” or “potentially causal” ordering.

Event Ordering: Example

P4 e e
p2 A & @ - Ph yS|Ca|
time
C d\
p3 8 >

Which event happened first!
a—>bandb—->candc—>dandd - f
a—>banda—>canda—>danda—f

Event Ordering: Example

P1 ® e
Py e o _ Physical
time
C d\

P3 8 8 >

e f
What can we say about e’ a~e ande+a

e —>f alle

a and e are concurrent.

Event Ordering: Example

P+ e e

p2 A & @ > Ph yS|Ca |

time
C d\

P3 . . >

What can we say about e and d!
elld

Event Ordering: Example

P4 e e
N
A h Physi
P2 ’ o . ysical
time
C d\
p3 v 8 >
e 8 f

What can we say about e and d!
e > d

Lamport’s Logical Clock

* Logical timestamp for each event that captures the
happened-before relationship.

* Algorithm: Each process p.
| inttializes local clock L, = 0.
2. Increments L, before timestamping each event.
3. piggybacks L, when sending a message.
4. upon receiving a message with clock value t
* sets L, = max(t, L)

* increments L, before timestamping the receive event (as per
step 2).

Logical Timestamps: Example

P4

P2

P3

.. Physical

0 1 2
¢ ¢
a b\\\\\\i:\jZ)
0 \?>0) .4
3
0 f Ja>1)

time

f5

Lamport’s Logical Clock

* Logical timestamp for each event that captures the
happened-before relationship.

* Algorithm: Each process p.
| inttializes local clock L, = 0.
2. Increments L, before timestamping each event.
3. piggybacks L, when sending a message.
4. upon receiving a message with clock value t
* sets L, = max(t, L)

* increments L, before timestamping the receive event (as per
step 2).

Logical Timestamps: Example

P4

P2

P3

. Physical

’ e -
3 .
C d m, (5) time
(2)

Lamport’s Logical Clock

* Logical timestamp for each event that captures the
happened-before relationship.

e |[f e »> e’ then
* L(e) < L(e)

* What if L(e) < L(e’)!
* We cannot say that e — €’
* We can say: e’ » e
* Eithere - e’ orel| €

Logical Timestamps: Example

P4

P2

P3

o 1 2

a b\MZ)
0 . £2 > 0) 4

.. Physical

time

, (4)

3
¢ d m
0 1

e

_(4>1).
f5

L(e) < L(d), e || d L(e) < L(f), e > f

Vector Clocks

 Next class.. ..

