
Distributed Systems

CS425/ECE428

Instructor : Radhika Mittal

1

Logistics Related

• Make sure you are on CampusWire.
• Email Yu Li (yuli9) to get access if you are not already on it.

• Those registered for the course by Monday were added to
Gradescope.

• If you are newly registered, please email Yu Li (yuli9) to get added
to Gradescope.

• Please fill up VM cluster form by tonight.
• Form access changed – Google sign in no longer required.

• MP0 released today
• Will discuss in more details at the end of the class.

2

Logistics Related

• Every now and then, there’s error with video recording.
• Last class’s audio wasn’t recorded.
• Last year’s lectures added to the Mediaspace.

3

Today’s agenda

• Failure Detection
• Chapter 15.1

• Time and Clocks
• Chapter 14.1-14.3

• Logical Clocks and Timestamps (if time)
• Chapter 14.4

4

Key aspects of a distributed system

• Processes must communicate with one another to
coordinate actions. Communication time is variable.

• Different processes (on different computers) have different
clocks!

• Processes and communication channels may fail.

5

Two ways to model

• Synchronous distributed systems:
• Known upper and lower bounds on time taken by each step in a

process.
• Known bounds on message passing delays.
• Known bounds on clock drift rates.

• Asynchronous distributed systems:
• No bounds on process execution speeds.
• No bounds on message passing delays.
• No bounds on clock drift rates.

6

Types of failure

• Omission: when a process or a channel fails to perform
actions that it is supposed to do.

• Process may crash.
• Detected using ping-ack or heartbeat failure detector.
• Completeness and accuracy in synchronous and asynchronous systems.
• Worst case failure detection time.

7

Types of failure

• Omission: when a process or a channel fails to perform
actions that it is supposed to do.

• Process may crash.
• Fail-stop: if other processes can certainly detect the crash.
• Communication omission: a message sent by process was

not received by another.

8

Two Generals Problem

When to
attack?

X

9

Two Generals Problem

At dawn.

Has my
message
reached?

10

Two Generals Problem

confirm

Has my
confirmation

reached?

11

Two Generals Problem

ack “confirm”.

Has my ack
reached?

12

Two Generals Problem

At dawn.

Has my
message
reached?

Keep sending the message until confirmation arrives.

13

Two Generals Problem

confirm

Has my
confirmation

reached?

Assume confirmation has reached in the absence of a
repeated message.

Still no guarantees! But may be good enough in practice.
14

Types of failure

• Omission: when a process or a channel fails to perform
actions that it is supposed to do.

• Process may crash.
• Fail-stop: if other processes can detect that the process

has crashed.
• Communication omission: a message sent by process was

not received by another.

Message drops (or omissions) can be
mitigated by network protocols.

15

Types of failure

• Omission: when a process or a channel fails to perform
actions that it is supposed to do, e.g. process crash and
message drops.

• Arbitrary (Byzantine) Failures: any type of error, e.g. a
process executing incorrectly, sending a wrong message, etc.

• Timing Failures: Timing guarantees are not met.
• Applicable only in synchronous systems.

16

How to detect a crashed process?

p q
Periodic ping

ack

p q
Periodic

heartbeats

17

Extending heartbeats

• Looked at detecting failure between two processes.

• How do we extend to a system with multiple
processes?

18

Centralized heartbeating

pj, Heartbeat Seq++

pi

Downside:

What if pi fails?

19

Ring heartbeating

pi, Heartbeat Seq++

pi

pj

Downside:
What if multiple
processes fail?

pk

Ring repair overhead

20

All-to-all heartbeats

…

pj

pi

Everyone can keep track of everyone.
Downside: Bandwidth.

pj, Heartbeat Seq++

21

Extending heartbeats

• Looked at detecting failure between two processes.

• How do we extend to a system with multiple
processes?

• Centralized heartbeating: not complete.
• Ring heartbeating: not entirely complete, ring repair overhead.
• All-to-all: complete, but more bandwidth usage.

22

Failures: Summary

• Three types
• omission, arbitrary, timing.

• Failure detection (detecting a crashed process):
• Send periodic ping-acks or heartbeats.
• Report crash if no response until a timeout.
• Timeout can be precisely computed for synchronous systems

and estimated for asynchronous.
• Metrics: completeness, accuracy, failure detection time, bandwidth.
• Failure detection for a system with multiple processes:

• Centralized, ring, all-to-all
• Trade-off between completeness and bandwidth usage.

23

Today’s agenda

• Failure Detection
• Chapter 15.1

• Time and Clocks
• Chapter 14.1-14.3

• Logical Clocks and Timestamps (if time)
• Chapter 14.4

24

Why are clocks useful?

• How long did it take my search request to reach Google?
• Requires my computer’s clock to be synchronized with

Google’s server.

• Use timestamps to order events in a distributed system.
• Requires the system clocks to be synchronized with one

another.

• At what day and time did Alice transfer money to Bob?
• Require accurate clocks (synchronized with a global

authority).
25

Clock Skew and Drift Rates

• Each process has an internal clock.
• Clocks between processes on different computers differ :

• Clock skew: relative difference between two clock values.
• Clock drift rate: change in skew from a perfect reference clock per

unit time (as measured by the reference clock).
• Depends on change in the frequency of oscillation of a crystal in the

hardware clock.

• Synchronous systems have bound on maximum drift rate.

26

Ordinary and Authoritative Clocks

• Ordinary quartz crystal clocks:
• Drift rate is about 10-6 seconds/second.
• Drift by 1 second every 11.6 days.
• Skew of about 30minutes after 60 years.

• High precision atomic clocks:
• Drift rate is about 10-13 seconds/second.
• Skew of about 0.18ms after 60 years.
• Used as standard for real time.
• Universal Coordinated Time (UTC) obtained from such clocks.

27

Two forms of synchronization

• External synchronization
• Synchronize time with an authoritative clock.
• When accurate timestamps are required.

• Internal synchronization
• Synchronize time internally between all processes in a distributed

system.
• When internally comparable timestamps are required.

• If all clocks in a system are externally synchronized, they are
also internally synchronized.

28

Synchronization Bound
• Synchronization bound (D) between two clocks A and B over

a real time interval I.
• |A(t) – B(t)| < D, for all t in the real time interval I.

• Skew(A, B) < D during the time interval I.
• A and B agree within a bound D.

• If A is authoritative, D can also be called accuracy bound.
• B is accurate within a bound of D.

• Synchronization/accuracy bound (D) at time ‘t’
• worst-case skew between two clocks at time ‘t’

• Skew(A, B) < D at time t
Q: If all clocks in a system are externally synchronized within a bound of D,
what is the bound on their skew relative to one another?

A: 2D. So the clocks are internally synchronized within a bound of 2D. 29

Synchronization in synchronous systems

What time Tc should client adjust its local clock to after receiving ms ?

client server

mr: What is the time?

ms : It is Ts

30

Synchronization in synchronous systems

What time Tc should client adjust its local clock to after receiving ms ?

client server

mr: What is the time?

ms : It is Ts
Ts

Ts + ∆

31

Synchronization in synchronous systems

Let max and min be maximum and minimum network delay.
If Tc = Ts, skew(client, server) ≤	max.
If Tc = (Ts + max), skew(client, server) ≤	(max – min)
If Tc = (Ts + min), skew(client, server) ≤	(max – min)
If Tc = (Ts + (min + max)/2), skew(client,server) ≤	(max – min)/2

Provably the
best you can

do!

What time Tc should client adjust its local clock to after receiving ms ?

client server

mr: What is the time?

ms : It is Ts
Ts

Ts + ∆

32

Synchronization in asynchronous systems

• Cristian Algorithm

• Berkeley Algorithm

• Network Time Protocol

33

Cristian Algorithm

What time Tc should client adjust its local clock to after receiving ms ?

Client measures the round trip time (Tround)
= time difference between when client sends mr and receives ms.

client server

mr: What is the time?

ms : It is Ts
Ts

Ts + ∆

34

Cristian Algorithm

What time Tc should client adjust its local clock to after receiving ms ?

Tc = Ts + (Tround / 2)

skew ≤	(Tround / 2) – min
										≤	(Tround / 2)
(min is minimum one way network
delay which is atleast zero).

Try deriving the worst case skew!

Hint: client is assuming its one-way
delay from server is ∆ = (Tround/2). How
off can it be?

Client measures the round trip time (Tround)

35

client server

mr: What is the time?

ms : It is Ts
Ts

Ts + ∆

Cristian Algorithm

What time Tc should client adjust its local clock to after receiving ms ?
t

Ts = t + min

Ts + Tround - min
t

Ts = t + Tround - min

Ts + min

(∆	= Tround – min)

(∆ = min)

Client measures the round
trip time (Tround).
Tc = Ts + (Tround / 2)

skew ≤	(Tround / 2) – min
										≤	(Tround / 2)
(min is minimum one way network
delay which is atleast zero).

client server

mr: What is the time?

ms : It is Ts
Ts

Ts + ∆

36

Cristian Algorithm

What time Tc should client adjust its local clock to after receiving ms ?

Improve accuracy by sending multiple
spaced requests and using response
with smallest Tround.

Server failure: Use multiple
synchronized time servers.

Client measures the round
trip time (Tround).
Tc = Ts + (Tround / 2)

skew ≤	(Tround / 2) – min
										≤	(Tround / 2)
(min is minimum one way network
delay which is atleast zero).

client server

mr: What is the time?

ms : It is Ts
Ts

Ts + ∆

37

Cristian Algorithm

What time Tc should client adjust its local clock to after receiving ms ?

Cannot handle
faulty time
servers.

Client measures the round
trip time (Tround).
Tc = Ts + (Tround / 2)

skew ≤	(Tround / 2) – min
										≤	(Tround / 2)
(min is minimum one way network
delay which is atleast zero).

client server

mr: What is the time?

ms : It is Ts
Ts

Ts + ∆

38

Berkeley Algorithm

1. Server periodically polls clients:
“what time do you think it is?”

Only supports internal synchronization.

Server
Client

Client Client

Client
Client

? ?

?

?

?

39

Berkeley Algorithm

1. Server periodically polls clients:
“what time do you think it is?”

2. Each client responds with its local
time.

3. Server uses Cristian algorithm to
estimate local time at each client.

4. Average all local times (including
its own) – use as updated time.

Only supports internal synchronization.

Server
Client

Client Client

Client
Client

t1 t2

t3

t4

t5

40

Berkeley Algorithm

1. Server periodically polls clients:
“what time do you think it is?”

2. Each client responds with its local
time.

3. Server uses Cristian algorithm to
estimate local time at each client.

4. Average all local times (including
its own) – use as updated time.

5. Send the offset (amount by
which each clock needs
adjustment).

Only supports internal synchronization.

Server
Client

Client Client

Client
Client

𝑜1 𝑜2

𝑜3

𝑜4

𝑜5

41

Berkeley Algorithm

Handling faulty processes:
Only use timestamps within
some threshold of each other.

Handling server failure:
Detect the failure and elect a
new leader.

Only supports internal synchronization.

Server
Client

Client Client

Client
Client

t1 t2

t3

t4

t5

42

Network Time Protocol

To be continued next class….

43

MP0: Event Logging

• https://courses.grainger.illinois.edu/ece428/sp2026/mps/mp0.html
• Lead TA: Naman Raina

• Task:
• Collect events from distributed nodes.
• Aggregate them into a single log at a centralized logger.

• Objective:
• Familiarize yourself with the cluster development environment.
• Practice distributed experiments and performance analysis.
• Build infrastructure that might be useful in future MPs.

44

MP0: Event Logging

• We provide you with a script that generates logs

Timestamp Event name (random)

generator.py

45

MP0: Event Logging

generator.py

node	1

stdin

generator.py

node	2

stdin

generator.py

node	3

stdin

logger

stdout

VM1 VM2 VM3

VM4

TCP TCP
TCP

46

MP0: Event Logging

generator.py

node	1

stdin

generator.py

node	2

stdin

generator.py

node	3

stdin

VM1 VM2 VM3

logger

stdout

VM4

TCP TCP TCP

47

MP0: Event Logging

• Run two experiments
• 3 nodes, 2 events/s each
• 8 nodes, 5 events/s each

• Collect graphs of two metrics:
• Delay between event generation at the node and it appearing in the

centralized log.
• Amount of bandwidth used by the central logger.
• Need to add instrumentation to your code to track these metrics.

48

MP0: Event Logging

• Due on Feb 11, 11:59pm
• Late policy: Can use part of your 168hours of grace period

accounted per student over the entire semester.

• Carried out in groups of 1-2
• Same expectations regardless of group size.
• Fill out form on CampusWire to get access to cluster.

• Getting cluster access may take some time.
• But you can start coding now!

• Can use any language.
• Supported languages are C/C++, Go, Java, Python.
• Remember that MP2 must be in Go. 49

