Distributed Systems

CS425/ECE428

Instructor: Radhika Mittal

Logistics Related

* Make sure you are on CampusWire.
* Email Yu Li (yuli9) to get access if you are not already on It.

* Those registered for the course by Monday were added to
Gradescope.
* If you are newly registered, please emall Yu Li (yuli9) to get added
to Gradescope.
* Please fill up VM cluster form by tonight.

* Form access changed — Google sign in no longer required.

* MPO released today

Wil discuss in more details at the end of the class.

Logistics Related

* Every now and then, there’s error with video recording.
* Last class’'s audio wasn't recorded.
* Last year's lectures added to the Mediaspace.

Today’s agenda

e Failure Detection
* Chapter |5.]

* Time and Clocks
* Chapter [4.1-14.3

* Logical Clocks and Timestamps (if time)
* Chapter 14.4

Key aspects of a distributed system

* Processes must communicate with one another to
coordinate actions. Communication time s variable.

* Different processes (on different computers) have different
clocks!

* Processes and communication channels may falil.

Two ways to model

* Synchronous distributed systems:
* Known upper and lower bounds on time taken by each step in a
process.
* Known bounds on message passing delays.
* Known bounds on clock drift rates.

* Asynchronous distributed system:s:
* No bounds on process execution speeds.
* No bounds on message passing delays.
* No bounds on clock drift rates.

Types of failure

* Omission: when a process or a channel fails to perform
actions that i1t i1s supposed to do.

* Process may crash.
* Detected using ping-ack or heartbeat failure detector.
* Completeness and accuracy in synchronous and asynchronous systems.
* Worst case failure detection time.

Types of failure

* Omission: when a process or a channel fails to perform
actions that i1t i1s supposed to do.
* Process may crash.
* Fail-stop: If other processes can certainly detect the crash.
* Communication omission: a message sent by process was
not recerved by another.

Two Generals Problem

. OOOO -
attack!
/TN
/

/S

Two Generals Problem

.OOQ Has my .

message

/‘\ reached?
/

NN
/S

\ At dawn. /

Two Generals Problem

('I' Has my (:>C>O"I'

confirmation

////\\\\ reached! ////\\\\
AN N\

=
7 \ /

\ confirm /

Two Generals Problem

®--c

Has my ack
reached?

\ ack “‘confirm”.

Two Generals Problem

Has my
message
reached?

\ At dawn. / AN

Keep sending the message until confirmation arrives.

13

Two Generals Problem

Has my
confirmation
reached?

\ confirm / .

Assume confirmation has reached in the absence of a
repeated message.

: | : :
Still no guarantees! But may be good enough in practice.

Types of failure

* Omission: when a process or a channel fails to perform
actions that i1t i1s supposed to do.
* Process may crash.
* Fail-stop: if other processes can detect that the process
has crashed.
* Communication omission: a message sent by process was
not received by another.

Message drops (or omissions) can be
mitigated by network protocols.

Types of failure

* Omission: when a process or a channel fails to perform
actions that i1t i1s supposed to do, e.g. process crash and
message drops.

* Arbitrary (Byzantine) Failures: any type of error, e.g. a
process executing incorrectly, sending a wrong message, etc.

* Timing Failures: Timing guarantees are not met.
* Applicable only in synchronous systems.

How to detect a crashed process?

Periodic ping

heartbeats

@ @
ack
Periodic

e L

Extending heartbeats

* Looked at detecting failure between two processes.

* How do we extend to a system with multiple
processes!

Centralized heartbeating

Downside:
What if p. fails?

p;, Heartbeat Seq++

19

Ring heartbeating

p;, Heartbeat Seq++

P
HEN
S
(@7
P

Pi @ P«

X l Downside:
What if multiple
processes fail?

@ Ring repair overnead

20

All-to-all heartbeats

eartbeat Seq++

Everyone can keep track of everyone.

Downside;

21

Extending heartbeats

* Looked at detecting failure between two processes.

* How do we extend to a system with multiple

processes!
* Centralized heartbeating: not complete.
* Ring heartbeating: not entirely complete, ring repair overnead.
* All-to-all: complete, but more bandwidth usage.

Failures: Summary

* [hree types
* omission, arbitrary, timing.

* Failure detection (detecting a crashed process):
* Send periodic ping-acks or heartbeats.
* Report crash if no response until a timeout.
* Timeout can be precisely computed for synchronous systems
and estimated for asynchronous.
* Metrics: completeness, accuracy, failure detection time, bandwidth.

* Fallure detection for a system with multiple processes:
* Centralized, ring, all-to-all
* Trade-off between completeness and bandwidth usage.

Today’s agenda

* Time and Clocks
* Chapter [4.1-14.3

* Logical Clocks and Timestamps (if time)
* Chapter 14.4

Why are clocks useful?

* How long did it take my search request to reach Google!?
* Requires my computer’s clock to be synchronized with
Google's server.

* Use timestamps to order events in a distributed system.
* Requires the system clocks to be synchronized with one
another.

* At what day and time did Alice transfer money to Bob!
* Require accurate clocks (synchronized with a global
authority).

Clock Skew and Drift Rates

* Fach process has an internal clock.

* Clocks between processes on different computers differ:
* Clock skew: relative difference between two clock values.

* Clock drift rate: change in skew from a perfect reference clock per
unit time (as measured by the reference clock).

* Depends on change in the frequency of oscillation of a crystal in the
hardware clock.

* Synchronous systems have bound on maximum drift rate.

Ordinary and Authoritative Clocks

* Ordinary quartz crystal clocks:
* Drift rate is about 10 seconds/second.
* Drift by | second every | 1.6 days.
* Skew of about 30minutes after 60 years.

* High precision atomic clocks:
* Drift rate is about 10-'3 seconds/second.
* Skew of about O.]8ms after 60 years.
* Used as standard for real time.
* Universal Coordinated Time (UTC) obtained from such clocks.

Two forms of synchronization

* External synchronization
* Synchronize time with an authoritative clock
* When accurate timestamps are required.

* Internal synchronization
* Synchronize time internally between all processes in a distributed
system.
* When internally comparable timestamps are required.

* |f all clocks In a system are externally synchronized, they are
also internally synchronized.

Synchronization Bound

* Synchronization bound (D) between two clocks A and B over
a real time interval |.

* |A(t) — B(t)| < D, for all tin the real time interval |.
* Skew(A, B) < D during the time interval |.
* A and B agree within a bound D.

* [f A'Is authoritative, D can also be called accuracy bound.
* B is accurate within a bound of D.

* Synchronization/accuracy bound (D) at time 't

e Wworst-case skew between two clocks at time ‘t’
e Skew(A B) <D attime t

Q:If all clocks in a system are externally synchronized within a bound of D,
what is the bound on their skew relative to one another?

A:2D. 5o the clocks are internally synchronized within a bound of 2D.

Synchronization in synchronous systems

m.:What is the time?

What time T, should client adjust its local clock to after receiving m ?

Synchronization in synchronous systems

m.:What is the time?

T.+A
What time T, should client adjust its local clock to after receiving m ?

Synchronization in synchronous systems

m.:What is the time?

T.+A
What time T, should client adjust its local clock to after receiving m ?

et max and min be maximum and minimum network delay.

It T, = T, skew(client, server) < Provably the

f T, = (T, + max), skew(client, server) < best éof can
. : O.

It T, = (T + min), skew(client, server) < 7

It T. = (T, + (min + max)/2), skew(client,server) <

Synchronization in asynchronous systems

* Cristian Algorithm
* Berkeley Algorithm

 Network Time Protocol

Cristian Algorithm

m.:What is the time?

T.+A
What time T, should client adjust its local clock to after receiving m ?

Client measures the round trip time (T,,,nq)
= time difference between when client sends m, and receives m..

Cristian Algorithm

m.:What is the time?

T.+A
What time T, should client adjust its local clock to after receiving m ?

Client measures the round trip time (T._,.q)

T. =T+ (Teouna! 2) Try deriving the worst case skew!

skew < (T oung/ 2) — min

<(T.. /2 Hint: client is assuming its one-way
— round : .
(min is minimum one way network delay from serveris & = (1,4 2). How

delay which is atleast zero). off can it be’

Cristian Algorithm

m.:What is the time?

T,+A
What time T, should client adjust its local clock to after receiving m ?
Client measures the round ¢ i\mr):
trlp tlme (Tround)' i | ’ =t +min
_ : M, : (A - Tround o mm)

Tc - Ts + (Tround/ 2) T, +Troun:d - min |
skew < (T, 4/ 2) —min t |

S (Tround/ 2) : : Ts = +Tround min
(min is minimum one way network ! ' (A = min)

delay which is atleast zero). T, + min!

Cristian Algorithm

m.:What is the time?

T.+A
What time T, should client adjust its local clock to after receiving m ?

Client measures the round

trip time (T.o.q) Improve accuracy by sending multiple

spaced requests and using response

Tc = Ts + (Tround / 2) with smallest Tround'
skew < (T oung/ 2) — min | |
< (Tl 2) Server failure: Use multiple

(min is minimum one way network synchronized time servers.

delay which is atleast zero).

Cristian Algorithm

m.:What is the time?

T.+A
What time T, should client adjust its local clock to after receiving m ?

Client measures the round

trip time (Troung)- Cannot handle

Tc = Ts + (Tround / 2) f&Ult)’ time
skew < (T, ng/ 2) — min servers.
< (Tround/ 2)

(min is minimum one way network
delay which is atleast zero).

Berkeley Algorithm

Only supports internal synchronization.

|. Server periodically polls clients:
“what time do you think it is?”

?

39

Berkeley Algorithm

Only supports internal synchronization.

|. Server periodically polls clients:
“what time do you think it is?”

2. Each client responds with its local
time.

3. Server uses Cristian algorithm to
estimate local time at each client.

4. Average all local times (including
its own) — use as updated time.

ts Server t
5

t,

40

Berkeley Algorithm

Only supports internal synchronization.

|. Server periodically polls clients:
“what time do you think it is?”

2. Each client responds with its local

0) time.

3. Server uses Cristian algorithm to
> Server estimate local time at each client.
’ 05 4, Average all local times (including

its own) — use as updated time.

. Send the offset (amount by
which each clock needs
adjustment).

O4

41

Berkeley Algorithm

Only supports internal synchronization.

Handling faulty processes:
Only use timestamps within

some threshold of each other;
MServer ts Handling server failure:
Detect the failure and elect a
new leader

t,

42

Network Time Protocol

To be continued next class.. ..

MPO: Event Logging

* https://courses.grainger.illinois.edu/ece428/sp2026/mps/mp0.html

e | ead TA: Naman Raina

* Task:
* Collect events from distributed nodes.
* Aggregate them into a single log at a centralized logger.

* Objective:
* Familiarize yourself with the cluster development environment.
* Practice distributed experiments and performance analysis.
* Build infrastructure that might be useful in future MPs.

44

MPO:

* We provide you with a script that generates logs | generator.py

Timestamp

Event Logging

Event name (random)

/

\
% python?\generator.py 0.1 l

1610688413.

782391|ce783874ba65a148930de32704cd4c809d22a98359f7aed2c2@85bc1bd10f096

1610688433

1610688418.
1610688428.
1610688432.
. 771072 deafbbc7b28c868fec560e40cffaeddaf757b677eab62b51e8bec87955ca3274
1610688449.
1610688455.
1610688455.
1610688463.

2844002 b6b9592d531331512fd4f74b1e055434b2d8126e772dc30fb9b8c65298696517
992117 4e51685633af8aacd4bcd2cfceelbbbbc2514be43faa20743f2d2cc4de853162
144099 5828e97bf79bef141f2c243ab1203fd119a16a35d6354039¢12289841bc33608

1301062 cabe5225e2ea02c1174701dd0320954fbfffb51dbcd9d15717el11d7e40556efb
484428 ed4bleb8a7bd980alf@dad4l1f5d6513e919e2bf201ba9ec9f9c05201bd777at94
813278 3b014179elccld2cc9cf553441492ad4f054634d2f0fOb66d0185c60fc4355da
543133 8110f0cc37404a10989bfeld4ae83224a73e642bb676ded625b08ed7d3e439706

45

MPO: Event Logging

VM1 VM2 VM3
generator.py generator.py generator.py
| stdin | stdin | stdin
node 1 node 2 node 3
SN ~
'IN TeP TCP
VM4
logger

stdout

MPO: Event Logging

VM1

generator.py

stdin

node 1

TCP

TCP

VM4

logger

stdout

VM2 VM3
generator.py generator.py
"stdin "stdin
node 2 node 3
—

TCP

11610688413.743385 — nodel connected |

1610688413.782391 nodel ce783874ba65a148930de32704cd4c809d22a98359f7aed2¢c2085bc1bd10f096

1610688418.2844002) nodel p6b9592d531331512fd4f74b1e055434b2d8126e772dc30fb9b8c65298696517
1610688426.373611 connected

1610688426.4092941) node2 p33cc5cch2b360c95bc429e3fcd60bb@03ce52d9345df033a4345bded49f5da2c
1610688428.992117 nodel 4e51685633af8aacd4bcd2cfceelbbbbc2514be43faa20743f2d2cc4de853162

1610688432.144099 nodel 5828e97bf79bef141f2c243ab1203fd119a16a35d6354039c12289841bc33608

1610688433.771072 nodel deafbbc7b28c868fec560e40cffaeddaf757b677eab62b51e8bec87955ca3274

[1A10ARQAAT EQICEE _ nnde rannorcted 47

MPO: Event Logging

* Run two experiments
* 3 nodes, 2 events/s each
8 nodes, 5 events/s each

* Collect graphs of two metrics:
* Delay between event generation at the node and it appearing in the
centralized log.
* Amount of bandwidth used by the central logger.
* Need to add instrumentation to your code to track these metrics.

MPO: Event Logging

* Dueontfteb I'], | [:59pm

* Late policy: Can use part of your |68hours of grace period
accounted per student over the entire semester.

* Carried out in groups of |-2
* Same expectations regardless of group size.
* Fill out form on CampusWire to get access to cluster.
* Getting cluster access may take some time.
* But you can start coding now!

* Can use any language.

* Supported languages are C/C++, Go, Java, Python.
* Remember that MP2 must be in Go.

