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Logistics
• Note about exams on CampusWire:

• Midterm 1 (Mar 4-6), Midterm 2 (April 8-10), Finals (May 8-16). 
• Reservation via PrairieTest. 

• You can reserve a slot for Midterm 1 starting Feb 20. 
• If you need DRES accommodations, please upload your Letter of Accommodations 

on the CBTF website. 

• MP1 has been (will be?) released today. 
• Due on March 14th, 11:59pm.

• HW1 is due next week Friday. 
• You should be able to solve all questions by now.



Today’s agenda

• Multicast
• Chapter 15.4



What we are designing in this class? 

Application
(at process p)

MULTICAST PROTOCOL

multicast(g,m)

One process p

‘g’ is a multicast group that also includes the process ‘p’. 

Outgoing
messages

Incoming
messages

deliver(m)



Basic Multicast (B-Multicast)

• Straightforward way to implement B-multicast:
• use a reliable one-to-one send (unicast) operation:

B-multicast(group g, message m): 
for each process p in g, send (p,m).

receive(m): B-deliver(m) at p.
• Guarantees: message is eventually delivered to the group if:

• Processes are non-faulty.
• The unicast “send” is reliable. 
• Sender does not crash. 

• Can we provide reliable delivery even after sender crashes?
• What does this mean?



Reliable Multicast (R-Multicast)

• Integrity: A correct (i.e., non-faulty) process p delivers a message m at 
most once.

• Assumption: no process sends exactly the same message twice

• Validity: If a correct process multicasts (sends) message m, then it will 
eventually deliver m to itself.

• Liveness for the sender.

• Agreement: If a correct process delivers message m, then all the other 
correct processes in group(m) will eventually deliver m.

• All or nothing.

• Validity and agreement together ensure overall liveness: if some 
correct process multicasts a message m, then, all correct processes 
deliver m too.



Reliable Multicast (R-Multicast)

• Integrity: A correct (i.e., non-faulty) process p delivers a message m at 
most once.

• Assumption: no process sends exactly the same message twice

• Validity: If a correct process multicasts (sends) message m, then it will 
eventually deliver m itself.

• Liveness for the sender.

• Agreement: If a correct process delivers message m, then all the other 
correct processes in group(m) will eventually deliver m.

• All or nothing.

• Validity and agreement together ensure overall liveness: if some 
correct process multicasts a message m, then, all correct processes 
deliver m too.

What happens if a process initiates B-multicasts 
of a message but fails after unicasting to a 

subset of processes in the group?

Agreement is violated! R-multicast not satisfied. 



Implementing R-Multicast
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Implementing R-Multicast
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Implementing R-Multicast

On initialization
Received := {};

For process p to R-multicast message m to group g
B-multicast(g,m);  (p∈ g is included as destination)

On B-deliver(m) at process q in g = group(m)
if (m ∉ Received):

Received := Received ∪ {m};
if (q ≠ p): B-multicast(g,m); 
R-deliver(m)



Reliable Multicast (R-Multicast)

• Integrity: A correct (i.e., non-faulty) process p delivers a message m at 
most once.

• Assumption: no process sends exactly the same message twice

• Validity: If a correct process multicasts (sends) message m, then it will 
eventually deliver m to itself.

• Liveness for the sender.

• Agreement: If a correct process delivers message m, then all the other 
correct processes in group(m) will eventually deliver m.

• All or nothing.

• Validity and agreement together ensure overall liveness: if some 
correct process multicasts a message m, then, all correct processes 
deliver m too.



Ordered Multicast

• Three popular flavors implemented by several multicast 
protocols:

1. FIFO ordering
2. Causal ordering
3. Total ordering



1. FIFO Order

• Multicasts from each sender are delivered in the order 
they are sent, at all receivers.

• Don’t care about multicasts from different senders.

• More formally
• If a correct process issues multicast(g,m) and then 

multicast(g,m’), then every correct process that delivers 
m’ will have already delivered m.



FIFO Order: Example

M1:1 and M1:2 should be delivered in that order at each receiver.
Order of delivery of M3:1 and M1:2 could be different at different receivers.

P2

Time
P1

P3

M1:1 M1:2

P4

M3:1



2. Causal Order

• Multicasts whose send events are causally related, must 
be delivered in the same causality-obeying order at all 
receivers.

• More formally
• If multicast(g,m) à multicast(g,m’) then any correct 

process that delivers m’ will have already delivered m.



Where is causal ordering useful?

• Group = set of your friends on a social network.

• A friend sees your message m, and she posts a response 
(comment) m’ to it.

• If friends receive m’ before m, it wouldn’t make sense
• But if two friends post messages m” and n” concurrently, 

then they can be seen in any order at receivers.

• A variety of systems implement causal ordering: 
• social networks, bulletin boards, comments on websites, 

etc.



2. Causal Order

• Multicasts whose send events are causally related, must 
be delivered in the same causality-obeying order at all 
receivers.

• More formally
• If multicast(g,m) à multicast(g,m’) then any correct 

process that delivers m’ will have already delivered m.
• à is Lamport’s happens-before
• à is induced only by multicast messages in group g, 

and when they are delivered to the application, rather 
than all network messages.



What we are designing in this class? 
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HB Relationship for Causal Ordering

• HB rules in causal ordered multicast:
• If ∃ pi , e →i e’ then e → e’.

• If ∃ pi , multicast(g,m) →i multicast(g,m’), then multicast(g,m) → multicast(g,m’)
• If ∃ pi , delivery(m) →i multicast(g,m’),  then delivery(m) → multicast(g,m’)
• …

• For any message m, send(m) → receive(m)



HB Relationship for Causal Ordering

• HB rules in causal ordered multicast:
• If ∃ pi , e →i e’ then e → e’.

• If ∃ pi , multicast(g,m) →i multicast(g,m’), then multicast(g,m) → multicast(g,m’)
• If ∃ pi , delivery(m) →i multicast(g,m’),  then delivery(m) → multicast(g,m’)
• …

• For any message m, send(m) → receive(m)
• For any multicast message m, multicast(g,m) → delivery(m)

• If e → e’ and e’ → e” then e → e’’
• multicast(g,m) at pi → delivery(m) at pj
• delivery(m) at pj → multicast(g,m’) at pj
• multicast(g,m) at pi → multicast(g,m’) at pj

• Application can only see when messages are “multicast” by the application 
and “delivered” to the application, and not when they are sent or received by 
the protocol. 



Causal Order: Example

M3:1 à M3:2, M1:1 à M2:1, M1:1 à M3:1 and so should be delivered in that order 
at each receiver.
M3:1 and M2:1 are concurrent and thus ok to be delivered in any (and even 
different) orders at different receivers.

P2

Time
P1

P3

M1:1

P4

M3:1 M3:2

M2:1

Message	delivery	indicated	by	arrow	endings.
Self-delivery	happens	when	multicast	is	issued.		



Causal vs FIFO

• Does Causal Ordering imply FIFO Ordering?
• Yes

• Does FIFO Order imply Causal Order?
• No



Example

P2

Time
P1

P3

M1:1 M1:2

P4

M3:1

Does this satisfy FIFO order?
No 

Message	delivery	indicated	by	arrow	endings.
Self-delivery	happens	when	multicast	is	issued.		



Example

P2

Time
P1

P3

M1:1 M1:2

P4

M3:1

Does this satisfy FIFO order?
No Yes 

Message	delivery	indicated	by	arrow	endings.
Self-delivery	happens	when	multicast	is	issued.		



Example

P2

Time
P1

P3

M1:1 M1:2

P4

M3:1

Does this satisfy causal order?
No 

Message	delivery	indicated	by	arrow	endings.
Self-delivery	happens	when	multicast	is	issued.		



Example

P2

Time
P1

P3

M1:1 M1:2

P4

M3:1

Does this satisfy causal order?
No 

Message	delivery	indicated	by	arrow	endings.
Self-delivery	happens	when	multicast	is	issued.		



Example

P2

Time
P1

P3

M1:1 M1:2

P4

M3:1

M1:1 is delivered at P3 after M3:1’s multicast.
Does this satisfy causal order?

Yes 

Message	delivery	indicated	by	(extended)	arrow	endings.
Self-delivery	happens	when	multicast	is	issued.		



Example

P2

Time
P1

P3

M1:1 M1:2

P4
Does this satisfy causal order?

No

Message	delivery	indicated	by	(extended)	arrow	endings.
Self-delivery	happens	when	multicast	is	issued	when	no	extra	arrow.		



Example

P2

Time
P1

P3

M1:1 M1:2

P4
Does this satisfy FIFO order?

No

Message	delivery	indicated	by	(extended)	arrow	endings.
Self-delivery	happens	when	multicast	is	issued	when	no	extra	arrow.		



3. Total Order

• Ensures all processes deliver all multicasts in the same 
order.

• Unlike FIFO and causal, this does not pay attention to 
order of multicast sending.

• Formally
• If a correct process delivers message m before m’ 

(independent of the senders), then any other correct 
process that delivers m’ will have already delivered m.

• A reliable totally ordered multicast is also known as 
“atomic multicast”.



Total Order: Example

The order of receipt of multicasts is the same at all processes.
M1:1, then M2:1, then M3:1, then M3:2
May need to delay delivery of some messages.

P2

Time
P1

P3

M1:1

P4

M3:1 M3:2

M2:1

Message	delivery	indicated	by	(extended)	arrow	endings.
Self-delivery	happens	when	multicast	is	issued	(when	no	extra	arrow).		



Causal vs Total

• Total ordering does not imply causal ordering.

• Causal ordering does not imply total ordering.  



Hybrid variants

• We can have hybrid ordering protocols:
• Causal-total hybrid protocol satisfies both Causal and 

total orders.



Example

P2

Time
P1

P3

M1:1 M1:2

P4

M3:1

Does this satisfy causal (and FIFO) order?
Yes 

Message	delivery	indicated	by	(extended)	arrow	endings.
Self-delivery	happens	when	multicast	is	issued	(when	no	extra	arrow).		



Example

P2

Time
P1

P3

M1:1 M1:2

P4

M3:1

Does this satisfy total order?
No

Message	delivery	indicated	by	(extended)	arrow	endings.
Self-delivery	happens	when	multicast	is	issued	(when	no	extra	arrow).		



Example

P2

Time
P1

P3

M1:1 M1:2

P4

M3:1

Does this satisfy total order?
Yes 

Message	delivery	indicated	by	(extended)	arrow	endings.
Self-delivery	happens	when	multicast	is	issued	(when	no	extra	arrow).		



Ordered Multicast

• FIFO ordering: If a correct process issues multicast(g,m) and 
then multicast(g,m’), then every correct process that delivers 
m’ will have already delivered m.

• Causal ordering: If multicast(g,m) à multicast(g,m’) then any 
correct process that delivers m’ will have already delivered m.

• Note that à counts messages delivered to the application, rather 
than all network messages.

• Total ordering: If a correct process delivers message m before 
m’ (independent of the senders), then any other correct 
process that delivers m’ will have already delivered m.



Next Question

How do we implement ordered multicast? 



Ordered Multicast

• FIFO ordering
• If a correct process issues multicast(g,m) and then multicast(g,m’), 

then every correct process that delivers m’ will have already 
delivered m.

• Causal ordering
• If multicast(g,m) à multicast(g,m’) then any correct process that 

delivers m’ will have already delivered m.
• Note that à counts messages delivered to the application, rather 

than all network messages.
• Total ordering

• If a correct process delivers message m before m’ (independent of 
the senders), then any other correct process that delivers m’ will 
have already delivered m.



Implementing FIFO order multicast

Application
(at process p)

FO-multicast(g,m)

Incoming
messages

FO-deliver(m)

B-multicast(g,m) 
??

Outgoing
messages

B-deliver(m)



Implementing FIFO order multicast

• Each receiver maintains a per-sender sequence number 
• Processes P1 through PN
• Pi maintains a vector of sequence numbers Pi[1…N] (initially all 

zeroes)
• Pi[j] is the latest sequence number Pi has received from Pj



Implementing FIFO order multicast

• On FO-multicast(g,m) at process Pj:
set Pj[j] = Pj[j] + 1
piggyback Pj[j] with m as its sequence number.
B-multicast(g,{m, Pj[j]})

• On B-deliver({m, S}) at Pi from Pj: If Pi receives a multicast from Pj
with sequence number S in message

if (S == Pi[j] + 1) then 
FO-deliver(m) to application
set Pi[j] = Pi[j] + 1

else buffer this multicast until above condition is true



FIFO order multicast execution

P2

Time
P1

P3

P4

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]



FIFO order multicast execution

P2

Time
P1

P3

P4

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

Sequence Vector
Do not confuse with vector timestamps!

Pi[i], is the no. of messages Pi multicast (and 
delivered to itself). 

Pi[j] ∀j ≠ i is no. of messages delivered at Pi 
from Pj.



FIFO order multicast execution

P2

Time
P1

P3

P4

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]



FIFO order multicast execution

P2

Time
P1

P3

P4

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

Self-deliveries omitted for simplicity. 



FIFO order multicast execution

P2

Time
P1

P3

P4

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[1,0,0,0]
Deliver!

P1, seq: 1

[1,0,0,0]
Deliver!

[1,0,0,0]



FIFO order multicast execution

P2

Time
P1

P3

P4

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[1,0,0,0]
Deliver!

P1, seq: 1

[1,0,0,0]
Deliver!

[0,0,0,0]
Buffer!

P1, seq: 2

[1,0,0,0] [2,0,0,0]



FIFO order multicast execution

P2

P1

P3

P4

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[1,0,0,0]
Deliver!

P1, seq: 1

[1,0,0,0]
Deliver!

[0,0,0,0]
Buffer!

P1, seq: 2

[1,0,0,0] [2,0,0,0]

[2,0,0,0]
Deliver!

[1,0,0,0]
Deliver this!
Deliver buffered <P1, seq:2>
Update [2,0,0,0]

Time



FIFO order multicast execution

P2

P1

P3

P4

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[1,0,0,0]
Deliver!

P1, seq: 1

[1,0,0,0]
Deliver!

[0,0,0,0]
Buffer!

P1, seq: 2

[1,0,0,0] [2,0,0,0]

[2,0,0,0]
Deliver!

[1,0,0,0]
Deliver this!
Deliver buffered <P1, seq:2>
Update [2,0,0,0]

P3, seq: 1
[2,0,1,0]

[2,0,1,0]
Deliver!

[2,0,1,0]
Deliver!

Time



FIFO order multicast execution

P2

Time
P1

P3

P4

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[1,0,0,0]
Deliver!

P1, seq: 1

[1,0,0,0]
Deliver!

[0,0,0,0]
Buffer!

P1, seq: 2

[1,0,0,0] [2,0,0,0]

[2,0,0,0]
Deliver!

[1,0,0,0]
Deliver this!
Deliver buffered <P1, seq:2>
Update [2,0,0,0]

P3, seq: 1
[2,0,1,0]

[2,0,1,0]
Deliver!

[2,0,1,0]
Deliver!
[1,0,1,0]
Deliver!

[2,0,1,0]
Deliver!



Implementing FIFO order multicast

• On FO-multicast(g,m) at process Pj:
set Pj[j] = Pj[j] + 1
piggyback Pj[j] with m as its sequence number.
B-multicast(g, {m, Pj[j]})

• On B-deliver({m, S}) at Pi from Pj: If Pi receives a multicast from Pj
with sequence number S in message

if (S == Pi[j] + 1) then 
FO-deliver(m) to application
set Pi[j] = Pi[j] + 1

else buffer this multicast until above condition is true



Implementing FIFO reliable multicast

• On FO-multicast(g,m) at process Pj:
set Pj[j] = Pj[j] + 1
piggyback Pj[j] with m as its sequence number.
R-multicast(g,{m, Pj[j]})

• On R-deliver({m, S}) at Pi from Pj: If Pi receives a multicast from Pj
with sequence number S in message

if (S == Pi[j] + 1) then 
FO-deliver(m) to application
set Pi[j] = Pi[j] + 1

else buffer this multicast until above condition is true



Ordered Multicast

• FIFO ordering: If a correct process issues multicast(g,m) and 
then multicast(g,m’), then every correct process that delivers 
m’ will have already delivered m.

• Causal ordering: If multicast(g,m) à multicast(g,m’) then any 
correct process that delivers m’ will have already delivered m.

• Note that à counts messages delivered to the application, rather 
than all network messages.

• Total ordering: If a correct process delivers message m before 
m’ (independent of the senders), then any other correct 
process that delivers m’ will have already delivered m.



Implementing total order multicast

• Basic idea: 
• Same sequence number counter across different processes.
• Instead of different sequence number counter for each process.  

• Two types of approach
• Using a centralized sequencer
• A decentralized mechanism (ISIS) 



Implementing total order multicast

• Basic idea: 
• Same sequence number counter across different processes.
• Instead of different sequence number counter for each process.  

• Two types of approach
• Using a centralized sequencer
• A decentralized mechanism (ISIS) 



Sequencer based total ordering
• Special process elected as leader or sequencer.
• TO-multicast(g,m) at Pi:

• Send multicast message m to group g and the sequencer

• Sequencer:
• Maintains a global sequence number S (initially 0)
• When a multicast message m is B-delivered to it: 

• sets S = S + 1, and B-multicast(g,{“order”, m, S})

• Receive multicast at process Pi: 
• Pi maintains a local received global sequence number Si (initially 0)
• On B-deliver(m) at Pi from Pj, it buffers it until both conditions satisfied

1. B-deliver({“order”, m, S}) at Pi from sequencer, and 
2. Si + 1 = S
• Then TO-deliver(m) to application and set Si = Si + 1



Implementing total order multicast

• Basic idea: 
• Same sequence number counter across different processes.
• Instead of different sequence number counter for each process.  

• Two types of approach
• Using a centralized sequencer
• A decentralized mechanism (ISIS) 



ISIS algorithm for total ordering

2

1

1

2

2

1 Message
P2

P3

P1

P4

3 Agreed Seq

3

3



ISIS algorithm for total ordering

2

1

1

2

2

1 Message
P2

P3

P1

P4

3 Agreed Seq

3

3

• Sender multicasts message to everyone.
• Receiving processes:

• reply with proposed priority (sequence no.)
• larger than all observed agreed priorities
• larger than any previously proposed (by self) priority

• store message in priority queue
• ordered by priority (proposed or agreed)

• mark message as undeliverable
• Sender chooses agreed priority, re-multicasts message id with agreed priority

• maximum of all proposed priorities
• Upon receiving agreed (final) priority for a message ‘m’

• Update m’s priority to final, and accordingly reorder messages in queue.
• mark the message m as deliverable.
• deliver any deliverable messages at front of priority queue.



• Will continue ISIS in next class. 

• Additional slides provided for early reference. 



A:2

Example: ISIS algorithm
A

B

C

A:1

B:1

B:1

A:2 C:3

C:2

C:3

B:3P1

P2

P3

A:2



How do we break ties? 

• Problem: priority queue requires unique priorities.

• Solution: add process # to suggested priority.
• priority.(id of the process that proposed the priority)
• i.e., 3.2 == process 2 proposed priority 3

• Compare on priority first, use process # to break ties.
• 2.1 > 1.3
• 3.2 > 3.1



B:1.2

C:2.1

A:2.3

C:3.2

B:1.3

A:1.1

B:3.1

C:3.3B:3.1

C:3.3A:2.3

Example: ISIS algorithm
A

B

C
A:2.2

C:3.3

B:3.1P1

P2

P3

✔

✔ ✔ ✔

✔ ✔

✔ ✔

A:2.3
✔



Proof of total order with ISIS
• Consider two messages, m1 and m2, and two processes, p and p’.
• Suppose that p delivers m1 before m2.
• When p delivers m1, it is at the head of the queue. m2 is either :

• Already in p’s queue, and deliverable, so
• finalpriority(m1) < finalpriority(m2)

• Already in p’s queue, and not deliverable, so
• finalpriority(m1) < proposedpriority(m2) <= finalpriority(m2)

• Not yet in p’s queue: 
• same as above, since proposed priority > priority of any 

delivered message
• Suppose p’ delivers m2 before m1, by the same argument:

• finalpriority(m2) < finalpriority(m1)
• Contradiction!



Ordered Multicast

• FIFO ordering
• If a correct process issues multicast(g,m) and then multicast(g,m’), 

then every correct process that delivers m’ will have already 
delivered m.

• Causal ordering
• If multicast(g,m) à multicast(g,m’) then any correct process that 

delivers m’ will have already delivered m.
• Note that à counts messages delivered to the application, rather 

than all network messages.
• Total ordering

• If a correct process delivers message m before m’ (independent of 
the senders), then any other correct process that delivers m’ will 
have already delivered m.



Implementing causal order multicast

Next class!



MP1: Event Ordering

• https://courses.grainger.illinois.edu/ece428/sp2025/mps/mp1.html
• Lead TA: Neel Dani

• Task:
• Collect transaction events on distributed nodes. 
• Multicast transactions to all nodes while maintaining total order. 
• Ensure transaction validity. 
• Handle failure of arbitrary nodes. 

• Objective:
• Build a decentralized multicast protocol to ensure total ordering 

and handle node failures. 



MP1 Architecture Setup

node ID
config_file

node ID
config_file

node ID
config_file

• Example input arguments for first node:
./mp1_node node1 config.txt

• config.txt looks like this:



MP1 Architecture Setup

node ID
config_file

node ID
config_file

node ID
config_file



MP1 Architecture



Transaction Validity



Transaction Validity: ordering matters



Graph

• Compute the “processing time” for each transaction:
• Time difference between when it was generated (read) at a node, 

and when it was processed by the last (alive) node. 

• Plot the CDF (cumulative distribution function) of the 
transaction processing time for each evaluation scenario. 



MP1: Logistics

• Due on March 14th.
• Late policy: Can use part of your 168hours of grace period 

accounted per student over the entire semester.  

• You are allowed to reuse code from MP0. 
• Note: MP1 requires all nodes to connect to each other, as opposed 

to each node connecting to a central logger.   

• Read the specification carefully. Start early!!


