
Distributed Systems

CS425/ECE428

Instructor : Radhika Mittal

Acknowledgements for some of materials: Indy Gupta and Nikita Borisov

Logistics
• Note about exams on CampusWire:

• Midterm 1 (Mar 4-6), Midterm 2 (April 8-10), Finals (May 8-16).
• Reservation via PrairieTest.

• You can reserve a slot for Midterm 1 starting Feb 20.
• If you need DRES accommodations, please upload your Letter of Accommodations

on the CBTF website.

• MP1 has been (will be?) released today.
• Due on March 14th, 11:59pm.

• HW1 is due next week Friday.
• You should be able to solve all questions by now.

Today’s agenda

• Multicast
• Chapter 15.4

What we are designing in this class?

Application
(at process p)

MULTICAST PROTOCOL

multicast(g,m)

One process p

‘g’ is a multicast group that also includes the process ‘p’.

Outgoing
messages

Incoming
messages

deliver(m)

Basic Multicast (B-Multicast)

• Straightforward way to implement B-multicast:
• use a reliable one-to-one send (unicast) operation:

B-multicast(group g, message m):
for each process p in g, send (p,m).

receive(m): B-deliver(m) at p.
• Guarantees: message is eventually delivered to the group if:

• Processes are non-faulty.
• The unicast “send” is reliable.
• Sender does not crash.

• Can we provide reliable delivery even after sender crashes?
• What does this mean?

Reliable Multicast (R-Multicast)

• Integrity: A correct (i.e., non-faulty) process p delivers a message m at
most once.

• Assumption: no process sends exactly the same message twice

• Validity: If a correct process multicasts (sends) message m, then it will
eventually deliver m to itself.

• Liveness for the sender.

• Agreement: If a correct process delivers message m, then all the other
correct processes in group(m) will eventually deliver m.

• All or nothing.

• Validity and agreement together ensure overall liveness: if some
correct process multicasts a message m, then, all correct processes
deliver m too.

Reliable Multicast (R-Multicast)

• Integrity: A correct (i.e., non-faulty) process p delivers a message m at
most once.

• Assumption: no process sends exactly the same message twice

• Validity: If a correct process multicasts (sends) message m, then it will
eventually deliver m itself.

• Liveness for the sender.

• Agreement: If a correct process delivers message m, then all the other
correct processes in group(m) will eventually deliver m.

• All or nothing.

• Validity and agreement together ensure overall liveness: if some
correct process multicasts a message m, then, all correct processes
deliver m too.

What happens if a process initiates B-multicasts
of a message but fails after unicasting to a

subset of processes in the group?

Agreement is violated! R-multicast not satisfied.

Implementing R-Multicast

Application
(at process p)

MULTICAST PROTOCOL

multicast(g,m)

Incoming
messages

deliver(m)

Outgoing
messages

Implementing R-Multicast

Application
(at process p)

R-multicast(g,m)

Incoming
messages

R-deliver(m)

B-multicast(g,m)

Outgoing
messages

B-deliver(m)

Implementing R-Multicast

On initialization
Received := {};

For process p to R-multicast message m to group g
B-multicast(g,m); (p∈ g is included as destination)

On B-deliver(m) at process q in g = group(m)
if (m ∉ Received):

Received := Received ∪ {m};
if (q ≠ p): B-multicast(g,m);
R-deliver(m)

Reliable Multicast (R-Multicast)

• Integrity: A correct (i.e., non-faulty) process p delivers a message m at
most once.

• Assumption: no process sends exactly the same message twice

• Validity: If a correct process multicasts (sends) message m, then it will
eventually deliver m to itself.

• Liveness for the sender.

• Agreement: If a correct process delivers message m, then all the other
correct processes in group(m) will eventually deliver m.

• All or nothing.

• Validity and agreement together ensure overall liveness: if some
correct process multicasts a message m, then, all correct processes
deliver m too.

Ordered Multicast

• Three popular flavors implemented by several multicast
protocols:

1. FIFO ordering
2. Causal ordering
3. Total ordering

1. FIFO Order

• Multicasts from each sender are delivered in the order
they are sent, at all receivers.

• Don’t care about multicasts from different senders.

• More formally
• If a correct process issues multicast(g,m) and then

multicast(g,m’), then every correct process that delivers
m’ will have already delivered m.

FIFO Order: Example

M1:1 and M1:2 should be delivered in that order at each receiver.
Order of delivery of M3:1 and M1:2 could be different at different receivers.

P2

Time
P1

P3

M1:1 M1:2

P4

M3:1

2. Causal Order

• Multicasts whose send events are causally related, must
be delivered in the same causality-obeying order at all
receivers.

• More formally
• If multicast(g,m) à multicast(g,m’) then any correct

process that delivers m’ will have already delivered m.

Where is causal ordering useful?

• Group = set of your friends on a social network.

• A friend sees your message m, and she posts a response
(comment) m’ to it.

• If friends receive m’ before m, it wouldn’t make sense
• But if two friends post messages m” and n” concurrently,

then they can be seen in any order at receivers.

• A variety of systems implement causal ordering:
• social networks, bulletin boards, comments on websites,

etc.

2. Causal Order

• Multicasts whose send events are causally related, must
be delivered in the same causality-obeying order at all
receivers.

• More formally
• If multicast(g,m) à multicast(g,m’) then any correct

process that delivers m’ will have already delivered m.
• à is Lamport’s happens-before
• à is induced only by multicast messages in group g,

and when they are delivered to the application, rather
than all network messages.

What we are designing in this class?

Application
(at process p)

MULTICAST PROTOCOL

multicast(g,m)

One process p

‘g’ is a multicast group that also includes the process ‘p’.

Outgoing
messages

Incoming
messages

deliver(m)

HB Relationship for Causal Ordering

• HB rules in causal ordered multicast:
• If ∃ pi , e →i e’ then e → e’.

• If ∃ pi , multicast(g,m) →i multicast(g,m’), then multicast(g,m) → multicast(g,m’)
• If ∃ pi , delivery(m) →i multicast(g,m’), then delivery(m) → multicast(g,m’)
• …

• For any message m, send(m) → receive(m)

HB Relationship for Causal Ordering

• HB rules in causal ordered multicast:
• If ∃ pi , e →i e’ then e → e’.

• If ∃ pi , multicast(g,m) →i multicast(g,m’), then multicast(g,m) → multicast(g,m’)
• If ∃ pi , delivery(m) →i multicast(g,m’), then delivery(m) → multicast(g,m’)
• …

• For any message m, send(m) → receive(m)
• For any multicast message m, multicast(g,m) → delivery(m)

• If e → e’ and e’ → e” then e → e’’
• multicast(g,m) at pi → delivery(m) at pj
• delivery(m) at pj → multicast(g,m’) at pj
• multicast(g,m) at pi → multicast(g,m’) at pj

• Application can only see when messages are “multicast” by the application
and “delivered” to the application, and not when they are sent or received by
the protocol.

Causal Order: Example

M3:1 à M3:2, M1:1 à M2:1, M1:1 à M3:1 and so should be delivered in that order
at each receiver.
M3:1 and M2:1 are concurrent and thus ok to be delivered in any (and even
different) orders at different receivers.

P2

Time
P1

P3

M1:1

P4

M3:1 M3:2

M2:1

Message	delivery	indicated	by	arrow	endings.
Self-delivery	happens	when	multicast	is	issued.		

Causal vs FIFO

• Does Causal Ordering imply FIFO Ordering?
• Yes

• Does FIFO Order imply Causal Order?
• No

Example

P2

Time
P1

P3

M1:1 M1:2

P4

M3:1

Does this satisfy FIFO order?
No

Message	delivery	indicated	by	arrow	endings.
Self-delivery	happens	when	multicast	is	issued.		

Example

P2

Time
P1

P3

M1:1 M1:2

P4

M3:1

Does this satisfy FIFO order?
No Yes

Message	delivery	indicated	by	arrow	endings.
Self-delivery	happens	when	multicast	is	issued.		

Example

P2

Time
P1

P3

M1:1 M1:2

P4

M3:1

Does this satisfy causal order?
No

Message	delivery	indicated	by	arrow	endings.
Self-delivery	happens	when	multicast	is	issued.		

Example

P2

Time
P1

P3

M1:1 M1:2

P4

M3:1

Does this satisfy causal order?
No

Message	delivery	indicated	by	arrow	endings.
Self-delivery	happens	when	multicast	is	issued.		

Example

P2

Time
P1

P3

M1:1 M1:2

P4

M3:1

M1:1 is delivered at P3 after M3:1’s multicast.
Does this satisfy causal order?

Yes

Message	delivery	indicated	by	(extended)	arrow	endings.
Self-delivery	happens	when	multicast	is	issued.		

Example

P2

Time
P1

P3

M1:1 M1:2

P4
Does this satisfy causal order?

No

Message	delivery	indicated	by	(extended)	arrow	endings.
Self-delivery	happens	when	multicast	is	issued	when	no	extra	arrow.		

Example

P2

Time
P1

P3

M1:1 M1:2

P4
Does this satisfy FIFO order?

No

Message	delivery	indicated	by	(extended)	arrow	endings.
Self-delivery	happens	when	multicast	is	issued	when	no	extra	arrow.		

3. Total Order

• Ensures all processes deliver all multicasts in the same
order.

• Unlike FIFO and causal, this does not pay attention to
order of multicast sending.

• Formally
• If a correct process delivers message m before m’

(independent of the senders), then any other correct
process that delivers m’ will have already delivered m.

• A reliable totally ordered multicast is also known as
“atomic multicast”.

Total Order: Example

The order of receipt of multicasts is the same at all processes.
M1:1, then M2:1, then M3:1, then M3:2
May need to delay delivery of some messages.

P2

Time
P1

P3

M1:1

P4

M3:1 M3:2

M2:1

Message	delivery	indicated	by	(extended)	arrow	endings.
Self-delivery	happens	when	multicast	is	issued	(when	no	extra	arrow).		

Causal vs Total

• Total ordering does not imply causal ordering.

• Causal ordering does not imply total ordering.

Hybrid variants

• We can have hybrid ordering protocols:
• Causal-total hybrid protocol satisfies both Causal and

total orders.

Example

P2

Time
P1

P3

M1:1 M1:2

P4

M3:1

Does this satisfy causal (and FIFO) order?
Yes

Message	delivery	indicated	by	(extended)	arrow	endings.
Self-delivery	happens	when	multicast	is	issued	(when	no	extra	arrow).		

Example

P2

Time
P1

P3

M1:1 M1:2

P4

M3:1

Does this satisfy total order?
No

Message	delivery	indicated	by	(extended)	arrow	endings.
Self-delivery	happens	when	multicast	is	issued	(when	no	extra	arrow).		

Example

P2

Time
P1

P3

M1:1 M1:2

P4

M3:1

Does this satisfy total order?
Yes

Message	delivery	indicated	by	(extended)	arrow	endings.
Self-delivery	happens	when	multicast	is	issued	(when	no	extra	arrow).		

Ordered Multicast

• FIFO ordering: If a correct process issues multicast(g,m) and
then multicast(g,m’), then every correct process that delivers
m’ will have already delivered m.

• Causal ordering: If multicast(g,m) à multicast(g,m’) then any
correct process that delivers m’ will have already delivered m.

• Note that à counts messages delivered to the application, rather
than all network messages.

• Total ordering: If a correct process delivers message m before
m’ (independent of the senders), then any other correct
process that delivers m’ will have already delivered m.

Next Question

How do we implement ordered multicast?

Ordered Multicast

• FIFO ordering
• If a correct process issues multicast(g,m) and then multicast(g,m’),

then every correct process that delivers m’ will have already
delivered m.

• Causal ordering
• If multicast(g,m) à multicast(g,m’) then any correct process that

delivers m’ will have already delivered m.
• Note that à counts messages delivered to the application, rather

than all network messages.
• Total ordering

• If a correct process delivers message m before m’ (independent of
the senders), then any other correct process that delivers m’ will
have already delivered m.

Implementing FIFO order multicast

Application
(at process p)

FO-multicast(g,m)

Incoming
messages

FO-deliver(m)

B-multicast(g,m)
??

Outgoing
messages

B-deliver(m)

Implementing FIFO order multicast

• Each receiver maintains a per-sender sequence number
• Processes P1 through PN
• Pi maintains a vector of sequence numbers Pi[1…N] (initially all

zeroes)
• Pi[j] is the latest sequence number Pi has received from Pj

Implementing FIFO order multicast

• On FO-multicast(g,m) at process Pj:
set Pj[j] = Pj[j] + 1
piggyback Pj[j] with m as its sequence number.
B-multicast(g,{m, Pj[j]})

• On B-deliver({m, S}) at Pi from Pj: If Pi receives a multicast from Pj
with sequence number S in message

if (S == Pi[j] + 1) then
FO-deliver(m) to application
set Pi[j] = Pi[j] + 1

else buffer this multicast until above condition is true

FIFO order multicast execution

P2

Time
P1

P3

P4

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

FIFO order multicast execution

P2

Time
P1

P3

P4

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

Sequence Vector
Do not confuse with vector timestamps!

Pi[i], is the no. of messages Pi multicast (and
delivered to itself).

Pi[j] ∀j ≠ i is no. of messages delivered at Pi
from Pj.

FIFO order multicast execution

P2

Time
P1

P3

P4

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

FIFO order multicast execution

P2

Time
P1

P3

P4

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

Self-deliveries omitted for simplicity.

FIFO order multicast execution

P2

Time
P1

P3

P4

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[1,0,0,0]
Deliver!

P1, seq: 1

[1,0,0,0]
Deliver!

[1,0,0,0]

FIFO order multicast execution

P2

Time
P1

P3

P4

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[1,0,0,0]
Deliver!

P1, seq: 1

[1,0,0,0]
Deliver!

[0,0,0,0]
Buffer!

P1, seq: 2

[1,0,0,0] [2,0,0,0]

FIFO order multicast execution

P2

P1

P3

P4

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[1,0,0,0]
Deliver!

P1, seq: 1

[1,0,0,0]
Deliver!

[0,0,0,0]
Buffer!

P1, seq: 2

[1,0,0,0] [2,0,0,0]

[2,0,0,0]
Deliver!

[1,0,0,0]
Deliver this!
Deliver buffered <P1, seq:2>
Update [2,0,0,0]

Time

FIFO order multicast execution

P2

P1

P3

P4

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[1,0,0,0]
Deliver!

P1, seq: 1

[1,0,0,0]
Deliver!

[0,0,0,0]
Buffer!

P1, seq: 2

[1,0,0,0] [2,0,0,0]

[2,0,0,0]
Deliver!

[1,0,0,0]
Deliver this!
Deliver buffered <P1, seq:2>
Update [2,0,0,0]

P3, seq: 1
[2,0,1,0]

[2,0,1,0]
Deliver!

[2,0,1,0]
Deliver!

Time

FIFO order multicast execution

P2

Time
P1

P3

P4

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[1,0,0,0]
Deliver!

P1, seq: 1

[1,0,0,0]
Deliver!

[0,0,0,0]
Buffer!

P1, seq: 2

[1,0,0,0] [2,0,0,0]

[2,0,0,0]
Deliver!

[1,0,0,0]
Deliver this!
Deliver buffered <P1, seq:2>
Update [2,0,0,0]

P3, seq: 1
[2,0,1,0]

[2,0,1,0]
Deliver!

[2,0,1,0]
Deliver!
[1,0,1,0]
Deliver!

[2,0,1,0]
Deliver!

Implementing FIFO order multicast

• On FO-multicast(g,m) at process Pj:
set Pj[j] = Pj[j] + 1
piggyback Pj[j] with m as its sequence number.
B-multicast(g, {m, Pj[j]})

• On B-deliver({m, S}) at Pi from Pj: If Pi receives a multicast from Pj
with sequence number S in message

if (S == Pi[j] + 1) then
FO-deliver(m) to application
set Pi[j] = Pi[j] + 1

else buffer this multicast until above condition is true

Implementing FIFO reliable multicast

• On FO-multicast(g,m) at process Pj:
set Pj[j] = Pj[j] + 1
piggyback Pj[j] with m as its sequence number.
R-multicast(g,{m, Pj[j]})

• On R-deliver({m, S}) at Pi from Pj: If Pi receives a multicast from Pj
with sequence number S in message

if (S == Pi[j] + 1) then
FO-deliver(m) to application
set Pi[j] = Pi[j] + 1

else buffer this multicast until above condition is true

Ordered Multicast

• FIFO ordering: If a correct process issues multicast(g,m) and
then multicast(g,m’), then every correct process that delivers
m’ will have already delivered m.

• Causal ordering: If multicast(g,m) à multicast(g,m’) then any
correct process that delivers m’ will have already delivered m.

• Note that à counts messages delivered to the application, rather
than all network messages.

• Total ordering: If a correct process delivers message m before
m’ (independent of the senders), then any other correct
process that delivers m’ will have already delivered m.

Implementing total order multicast

• Basic idea:
• Same sequence number counter across different processes.
• Instead of different sequence number counter for each process.

• Two types of approach
• Using a centralized sequencer
• A decentralized mechanism (ISIS)

Implementing total order multicast

• Basic idea:
• Same sequence number counter across different processes.
• Instead of different sequence number counter for each process.

• Two types of approach
• Using a centralized sequencer
• A decentralized mechanism (ISIS)

Sequencer based total ordering
• Special process elected as leader or sequencer.
• TO-multicast(g,m) at Pi:

• Send multicast message m to group g and the sequencer

• Sequencer:
• Maintains a global sequence number S (initially 0)
• When a multicast message m is B-delivered to it:

• sets S = S + 1, and B-multicast(g,{“order”, m, S})

• Receive multicast at process Pi:
• Pi maintains a local received global sequence number Si (initially 0)
• On B-deliver(m) at Pi from Pj, it buffers it until both conditions satisfied

1. B-deliver({“order”, m, S}) at Pi from sequencer, and
2. Si + 1 = S
• Then TO-deliver(m) to application and set Si = Si + 1

Implementing total order multicast

• Basic idea:
• Same sequence number counter across different processes.
• Instead of different sequence number counter for each process.

• Two types of approach
• Using a centralized sequencer
• A decentralized mechanism (ISIS)

ISIS algorithm for total ordering

2

1

1

2

2

1 Message
P2

P3

P1

P4

3 Agreed Seq

3

3

ISIS algorithm for total ordering

2

1

1

2

2

1 Message
P2

P3

P1

P4

3 Agreed Seq

3

3

• Sender multicasts message to everyone.
• Receiving processes:

• reply with proposed priority (sequence no.)
• larger than all observed agreed priorities
• larger than any previously proposed (by self) priority

• store message in priority queue
• ordered by priority (proposed or agreed)

• mark message as undeliverable
• Sender chooses agreed priority, re-multicasts message id with agreed priority

• maximum of all proposed priorities
• Upon receiving agreed (final) priority for a message ‘m’

• Update m’s priority to final, and accordingly reorder messages in queue.
• mark the message m as deliverable.
• deliver any deliverable messages at front of priority queue.

• Will continue ISIS in next class.

• Additional slides provided for early reference.

A:2

Example: ISIS algorithm
A

B

C

A:1

B:1

B:1

A:2 C:3

C:2

C:3

B:3P1

P2

P3

A:2

How do we break ties?

• Problem: priority queue requires unique priorities.

• Solution: add process # to suggested priority.
• priority.(id of the process that proposed the priority)
• i.e., 3.2 == process 2 proposed priority 3

• Compare on priority first, use process # to break ties.
• 2.1 > 1.3
• 3.2 > 3.1

B:1.2

C:2.1

A:2.3

C:3.2

B:1.3

A:1.1

B:3.1

C:3.3B:3.1

C:3.3A:2.3

Example: ISIS algorithm
A

B

C
A:2.2

C:3.3

B:3.1P1

P2

P3

✔

✔ ✔ ✔

✔ ✔

✔ ✔

A:2.3
✔

Proof of total order with ISIS
• Consider two messages, m1 and m2, and two processes, p and p’.
• Suppose that p delivers m1 before m2.
• When p delivers m1, it is at the head of the queue. m2 is either :

• Already in p’s queue, and deliverable, so
• finalpriority(m1) < finalpriority(m2)

• Already in p’s queue, and not deliverable, so
• finalpriority(m1) < proposedpriority(m2) <= finalpriority(m2)

• Not yet in p’s queue:
• same as above, since proposed priority > priority of any

delivered message
• Suppose p’ delivers m2 before m1, by the same argument:

• finalpriority(m2) < finalpriority(m1)
• Contradiction!

Ordered Multicast

• FIFO ordering
• If a correct process issues multicast(g,m) and then multicast(g,m’),

then every correct process that delivers m’ will have already
delivered m.

• Causal ordering
• If multicast(g,m) à multicast(g,m’) then any correct process that

delivers m’ will have already delivered m.
• Note that à counts messages delivered to the application, rather

than all network messages.
• Total ordering

• If a correct process delivers message m before m’ (independent of
the senders), then any other correct process that delivers m’ will
have already delivered m.

Implementing causal order multicast

Next class!

MP1: Event Ordering

• https://courses.grainger.illinois.edu/ece428/sp2025/mps/mp1.html
• Lead TA: Neel Dani

• Task:
• Collect transaction events on distributed nodes.
• Multicast transactions to all nodes while maintaining total order.
• Ensure transaction validity.
• Handle failure of arbitrary nodes.

• Objective:
• Build a decentralized multicast protocol to ensure total ordering

and handle node failures.

MP1 Architecture Setup

node ID
config_file

node ID
config_file

node ID
config_file

• Example input arguments for first node:
./mp1_node node1 config.txt

• config.txt looks like this:

MP1 Architecture Setup

node ID
config_file

node ID
config_file

node ID
config_file

MP1 Architecture

Transaction Validity

Transaction Validity: ordering matters

Graph

• Compute the “processing time” for each transaction:
• Time difference between when it was generated (read) at a node,

and when it was processed by the last (alive) node.

• Plot the CDF (cumulative distribution function) of the
transaction processing time for each evaluation scenario.

MP1: Logistics

• Due on March 14th.
• Late policy: Can use part of your 168hours of grace period

accounted per student over the entire semester.

• You are allowed to reuse code from MP0.
• Note: MP1 requires all nodes to connect to each other, as opposed

to each node connecting to a central logger.

• Read the specification carefully. Start early!!

