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Logistics

• MP0 is due today at 11:59pm. 

• Reminder to share your name when you speak up in class.

• Feb 7 lecture was not recorded! Please see my Campuswire
post for links to last year’s videos covering the same topic. 



Today’s agenda

• Global State (contd.)
• Chapter 14.5

• Multicast
• Chapter 15.4



Today’s agenda

• Global State (contd.)
• Chapter 14.5

• Multicast
• Chapter 15.4



Global Snapshot Summary

• The ability to calculate global snapshots in a distributed 
system is very important.

• But don’t want to interrupt running distributed application.
• Chandy-Lamport algorithm calculates global snapshot.
• Obeys causality (creates a consistent cut).



Chandy-Lamport Algorithm: Properties

• Any run of the Chandy-Lamport Global Snapshot 
algorithm creates a consistent cut.

• Let ei and ej be events occurring at pi and pj, respectively 
such that 

• ei à ej (ei happens before ej)
•The snapshot algorithm ensures that 

if ej is in the cut then ei is also in the cut.
•That is: if ej à < pj records its state>, then

it must be true that ei à <pi records its state>.



Chandy-Lamport Algorithm: Properties

• If ej à < pj records its state>, then
it must be true that ei à <pi records its state>.

• By contradiction, suppose ejà < pj records its state>, and 
<pi records its state> à ei.
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Chandy-Lamport Algorithm: Properties

• If ej à < pj records its state>, then
it must be true that ei à <pi records its state>.

• By contradiction, suppose ejà < pj records its state>, and 
<pi records its state> à ei.

• Consider the path of app messages (through other 
processes) that go from ei to ej .

• Due to FIFO ordering, markers on each link in above path 
will precede regular app messages.

• Thus, since <pi records its state> à ei , it must be true that 
pj received a marker before ej. 

• Thus ej is not in the cut => contradiction. 



Why capture global snapshots?

• Checkpointing the system state.  
• Reasoning about unreferenced objects (for garbage 

collection).
• Distributed debugging.
• Can be used to detect global properties.

• Safety vs. Liveness



Revisions: notations and definitions
• For a process pi , where events ei

1, … occur:
history(pi) =  hi = <ei

1, … >
prefix history(pi

k) =  hi
k = <ei

1, …,ei
k >

si
k : pi’s state immediately after kth event.

• For a set of processes <p1, p2, p3, …., pn>:
global history: H = Èi (hi)
a cut C Í H = h1

c1 È h2
c2 È … È hn

c3

the frontier of C = {ei
ci, i = 1,2, … n}

global state S that corresponds to cut C = Èi (si
ci)



More notations and definitions

• A run is a total ordering of events in H that is consistent 
with each hi’s ordering.

• A linearization is a run consistent with happens-before 
(®) relation in H.



Example
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Run: < a, b, c, d , e, f, g>
Linearization: <a, b, c, e, f, g , d >

Order at p1: < a, b, c, d >     Order at p2: < e, f,g>
Causal order across p1 and p2: < b, e> , <g , d >
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More notations and definitions

• A run is a total ordering of events in H that is consistent 
with each hi’s ordering.

• A linearization is a run consistent with happens-before 
(®) relation in H.

• Linearizations pass through consistent global states.
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Example

Linearization: < a, b, c, e, f, g , d >

m1 m2
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e f g

Linearization: < a, b, e, c, f, g , d >
|
|



More notations and definitions

• A run is a total ordering of events in H that is consistent 
with each hi’s ordering.

• A linearization is a run consistent with happens-before (®) 
relation in H.

• Linearizations pass through consistent global states.

• A global state Sk is reachable from global state Si, if there is 
a linearization that passes through Si and then through Sk.

• The distributed system evolves as a series of transitions 
between global states S0 , S1 , ….



State Transitions: Example

m

Many linearizations: 
• < p0, p1, p2, q0, q1, q2>
• < p0, q0, p1, q1, p2, q2>
• <q0, p0, p1, q1, p2, q2 >
• <q0, p0, p1, p2, q1,q2 >
• ……

• Causal order: 
• p0 →	p1 →	p2
• q0 →	q1 →	q2
• p0 →	p1 →	q1→ q2

• Concurrent:
• p0 || q0
• p1 || q0
• p2 || q0, p2 || q1, p2 || q2

Vector	Timestamps	in	{}



State Transitions: Example

q1

q2

Execution Lattice. Each path represents a linearization. 

s{x, y} means the state includes x events at p
and y events at q. 
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State Transitions: Example

q1

q2

Execution Lattice. Each path represents a linearization. 

Not valid!
Why?
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More notations and definitions

• A run is a total ordering of events in H that is consistent 
with each hi’s ordering.

• A linearization is a run consistent with happens-before (®) 
relation in H.

• Linearizations pass through consistent global states.

• A global state Sk is reachable from global state Si, if there is 
a linearization that passes through Si and then through Sk.

• The distributed system evolves as a series of transitions 
between global states S0 , S1 , ….



Global State Predicates

• A global-state-predicate is a property that is true or false
for a global state. 

• Is there a deadlock?
• Has the distributed algorithm terminated? 

• Two ways of reasoning about predicates (or system 
properties) as global state gets transformed by events. 

• Liveness
• Safety



Liveness
• Liveness = guarantee that something good will happen, 

eventually

• Examples:
• A distributed computation will terminate.
• “Completeness” in failure detectors: the failure will be detected.
• All processes will eventually decide on a value. 

• A global state S0 satisfies a liveness property P iff:
• For all linearizations starting from S0, P is true for some state SL

reachable from S0.
• liveness(P(S0)) º "LÎ linearizations from S0,  L passes through a 

SL & P(SL) = true



Liveness Example

q1

q2

If predicate is true only in the marked states, does it satisfy liveness? 
No
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Liveness
• Liveness = guarantee that something good will happen, 

eventually

• Examples:
• A distributed computation will terminate.
• “Completeness” in failure detectors: the failure will be detected.
• All processes will eventually decide on a value. 

• A global state S0 satisfies a liveness property P iff:
• liveness(P(S0)) º "LÎ linearizations from S0,  L passes through a 

SL & P(SL) = true
• For any linearization starting from S0, P is true for some state SL

reachable from S0.



Safety

• Safety = guarantee that something bad will never happen.

• Examples:
• There is no deadlock in a distributed transaction system.
• “Accuracy” in failure detectors: an alive process is not detected as 

failed.
• No two processes decide on different values.

• A global state S0 satisfies a safety property P iff:
• For all states S reachable from S0, P(S) is true.
• safety(P(S0)) º "S reachable from S0, P(S) = true.



Safety Example
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If predicate is true only in the marked states, does it satisfy safety? 
No
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Safety

• Safety = guarantee that something bad will never happen.

• Examples:
• There is no deadlock in a distributed transaction system.
• “Accuracy” in failure detectors: an alive process is not detected as 

failed.
• No two processes decide on different values.

• A global state S0 satisfies a safety property P iff:
• safety(P(S0)) º "S reachable from S0, P(S) = true.
• For all states S reachable from S0, P(S) is true.



Liveness Example

q1

q2

Technically satisfies liveness, but difficult to capture or reason about. 



Stable Global Predicates

• once true, stays true forever afterwards (for stable liveness)



Stable Global Predicates
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No



Stable Global Predicates

q1

q2

If predicate is true only in the marked states, is it true in a stable way? 
No



Stable Global Predicates

q1

q2

If predicate is true only in the marked states, is it true in a stable way? 
Yes



Stable Global Predicates

• once true for a state S, stays true for all states reachable from 
S (for stable liveness)

• once false for a state S, stays false for all states reachable from 
S (for stable non-safety)

• Stable liveness examples (once true, always true)
• Computation has terminated.

• Stable non-safety examples (once false, always false)
• There is no deadlock.
• An object is not orphaned.

• All stable global properties can be detected using the Chandy-
Lamport algorithm.



Global Snapshot Summary

• The ability to calculate global snapshots in a distributed 
system is very important.

• But don’t want to interrupt running distributed application.
• Chandy-Lamport algorithm calculates global snapshot.
• Obeys causality (creates a consistent cut).
• Can be used to detect global properties.
• Safety vs. Liveness.



Today’s agenda

• Global State (contd.)
• Chapter 14.5

• Multicast
• Chapter 15.4
• Goal: reason about desirable properties for message 

delivery among a group of processes. 



Communication modes

• Unicast 
• Messages are sent from exactly one process to one process.

• Broadcast
• Messages are sent from exactly one process to all processes on 

the network.
• Multicast

• Messages broadcast within a group of processes. 
• A multicast message is sent from any one process to a group of 

processes on the network. 



Where is multicast used?

• Distributed storage
• Write to an object are multicast across replica servers.
• Membership information (e.g., heartbeats) is multicast across all 

servers in cluster.

• Online scoreboards (ESPN, French Open, FIFA World Cup)
• Multicast to group of clients interested in the scores.

• Stock Exchanges
• Group is the set of broker computers.

• ……



Communication modes
• Unicast 

• Messages are sent from exactly one process to one process.
• Best effort: if a message is delivered it would be intact; no reliability 

guarantees. 
• Reliable: guarantees delivery of messages.
• In order: messages will be delivered in the same order that they are sent. 

• Broadcast
• Messages are sent from exactly one process to all processes on the 

network.
• Multicast

• Messages broadcast within a group of processes. 
• A multicast message is sent from any one process to the group of 

processes on the network. 
• How do we define (and achieve) reliable or ordered multicast? 



What we are designing in this class? 

Application
(at process p)

One process p

Incoming
messages

Outgoing
messages
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Basic Multicast (B-Multicast)

• Straightforward way to implement B-multicast:
• use a reliable one-to-one send (unicast) operation:

B-multicast(group g, message m): 
for each process p in g, send (p,m).

receive(m): B-deliver(m) at p.
• Guarantees: message is eventually delivered to the group if:

• Processes are non-faulty.
• The unicast “send” is reliable. 
• Sender does not crash. 

• Can we provide reliable delivery even after sender crashes?
• What does this mean?



Reliable Multicast (R-Multicast)

• Integrity: A correct (i.e., non-faulty) process p delivers a message m at 
most once.

• Assumption: no process sends exactly the same message twice

• Validity: If a correct process multicasts (sends) message m, then it will 
eventually deliver m to itself.

• Liveness for the sender.

• Agreement: If a correct process delivers message m, then all the other 
correct processes in group(m) will eventually deliver m.

• All or nothing.

• Validity and agreement together ensure overall liveness: if some 
correct process multicasts a message m, then, all correct processes 
deliver m too.

How to achieve R-multicast? To be continued in next class…. 


