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Logistics

* MPO is due today at | [:59pm.

* Reminder to share your name when you speak up in class.

* Feb / lecture was not recorded! Please see my Campuswire
post for links to last year's videos covering the same topic.



Today’s agenda

* Global State (contd.)
* Chapter 4.5

* Multicast
* Chapter 154



Today’s agenda

* Global State (contd.)
* Chapter 4.5



Global Snapshot Summary

* The ability to calculate global snapshots in a distributed
system Is very important.

* But don't want to interrupt running distributed application.
* Chandy-Lamport algorithm calculates global snapshot.

* Obeys causality (creates a consistent cut).



Chandy-Lamport Algorithm: Properties

* Any run of the Chandy-Lamport Global Snapshot
algorithm creates a consistent cut.

* Let ; and g, be events occurring at p; and p;, respectively
such that

*e > e (ehappensbefore e)

j
* [ he snapshot algorithm ensures that
if e is in the cut then e is also In the cut.

* That is:if e, = < p; records its state>, then
it must be true that e, = <p. records its state>.
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Chandy-Lamport Algorithm: Properties

* If & = < p, records its state>, then
it must be true that e, = <p. records its state>.

* By contradiction, suppose e; 2 < p; records its state>, and
<p, records its state> 2> e,

* Consider the path of app messages (through other
processes) that go from e; to e;.

* Due to FIFO ordering, markers on each link in above path
will precede regular app messages.

* Thus, since <p; records its state> =2 e, , it must be true that

p; received a marker before e;

e Thus e s not In the cut => contradiction.



Why capture global snapshots?

* Checkpointing the system state.

* Reasoning about unreferenced objects (for garbage
collection).

* Distributed debugging.

* Can be used to detect global properties.
* Safety vs. Liveness



Revisions: notations and definitions

 Fora process p;, where events e/, ... occur:
history(p,) = h,=<e/!,... >
prefix history(pX) = hk=<el,...,el >

s p/’s state immediately after k" event.
* For a set of processes <py, Pys P3» - -+ Pn:

global history: H = U, (h))
acutCcH=h9uUh,%U...UhS

the frontier of C = {e%,i = |,2, ... n}

global state S that corresponds to cut C = U, (s:%)



More notations and definitions

* A run is a total ordering of events in H that Is consistent
with each h/'s ordering.

* A linearization Is a run consistent with happens-before
(—) relation in H.
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Linearization: <a, b, c, e, f,g,d>
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More notations and definitions

* A run is a total ordering of events in H that Is consistent
with each h/'s ordering.

* A linearization Is a run consistent with happens-before
(—) relation in H.

* Linearizations pass through consistent global states.



Example

b\c d
o o >

P+
my m,
\. ® -~ Physical

®a

Linearization: < a, b,|c, e,f,g,d >
P



Example

a b C d
@ @ @ >
P1
my m,
N :
p ® -~ Physical
2 o f g time

Linearization:< a, b, c/|e,f,g,d>



Example

a b c\
o ®
my

PSS

2 | o
e\f

d
®
/" |
-~ Physical
g

time

Linearization: < a, b, c, e,If, g,d>



Example

a b C K d
@ o ® >
P1
“o ) -~ Physical
e f \ g

time

Linearization: < a, b, ¢, e, f,‘g, d>



Example

®a
" Yo

“o ) -~ Physical
a f g \ time

Linearization: < a, b, ¢, e, f, g| d>



Example

a b C ) d
@ o ® >
JoF .\
) -~ Physical
P2 a f g time

Linearization: < a, b, cJ e,f,g,d>
Linearization: < a, b, e, c,f,g,d>



Example

a b \c d
o o o
P1
\\ /772
“o ) -~ Physical
o \ f g

time

Linearization: < a, b, c,e,f,g,d>
Linearization: < a, b, eI c,f,g,d>



Example

®a

" Yo'
( NoR

“o ) -~ Physical

Linearization: < a, b, c,e,f,g|d>
Linearization: < a, b, e, c,f,g|d>




More notations and definitions

* A run is a total ordering of events in H that Is consistent
with each h/'s ordering.

* A linearization is a run consistent with happens-before (—)
relation in H.

* Linearizations pass through consistent global states.

* A global state S, Is reachable from global state S, if there Is
a linearization that passes through S. and then through §,.

* The distributed system evolves as a series of transitions
between global states Sy, S, ...



State Transitions: Example

p0 {1,0}  pl{20}  p2 {3.0} e (Causal order:
c o o >
* pO—pl—p2
* q0—=>ql—>qg2

m
‘ * p0—-pl—->gl—-qgl
q0 {0,1} ql‘:‘,{2,2} q2 {2.3}
© Vector 'I\'iJmestamps in {}V "~ »  Concurrent:
* POl q0
Many linearizations: * pl][q0
« <p0,pl, p2q0ql g2> * p2|[q0.p2|lql.p2|| g2

* <p0,q0 pl,qgl,p2 g2>
e <g0,p0,pl,qgl,p2,qg2 >
e <q0,p0,pl,p2,ql,g2 >



State Transitions: Example

Execution Lattice. Each path represents a linearization.

p0 pl p2
start »

q0 q0 q0 q0
@ p0 @ p1 @ p2 @
. ql
C Six.yy Means the state includes x events at p gl

and y events at q. @ p2 @

p0 {1,0} pl {2,0} p2 {3,0}

€] S S > q2

q0 {0,1} ql“:,{2,2} a2 {2.3}
.\

G © S




State Transitions: Example

Execution Lattice. Each path represents a linearization.
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State Transitions: Example

Execution Lattice. Each path represents a linearization.
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start »

\ q0 q0 q0 q0
\
\
\ p0 pl p2
~ —_— —— W
~
N p2
N\
0 {1,0} 1{2,0} 2 {3,0}
C—— & ; \ q2 a2
\
\ p2
~
A} - _>
q0 {0,1} ql“:,{2,2} q2 {2,3}
Fa\ Fa\

C \J \J




State Transitions: Example

Execution Lattice. Each path represents a linearization.
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State Transitions: Example

Execution Lattice. Each path represents a linearization.

———-~

\\ Not valid!
\\Why?
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State Transitions: Example
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State Transitions: Example

p0 {1,0}  pl {2,0} , p2 {3,0}
7\ 7\
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State Transitions: Example
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State Transitions: Example

q0
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More notations and definitions

* A run is a total ordering of events in H that Is consistent
with each h/'s ordering.

* A linearization is a run consistent with happens-before (—)
relation in H.

* Linearizations pass through consistent global states.

* A global state S, Is reachable from global state S, if there Is
a linearization that passes through S. and then through §,.

* The distributed system evolves as a series of transitions
between global states Sy, S, ...



Global State Predicates

* A global-state-predicate Is a property that is true or false
for a global state.
* |s there a deadlock!?
* Has the distributed algorithm terminated?

* Two ways of reasoning about predicates (or system
properties) as global state gets transformed by events.
* Liveness
* Safety



Liveness

* Liveness = guarantee that something good will happen,
eventually

* Examples:
* A distributed computation will terminate.
* "Completeness” in fallure detectors: the failure will be detected.
* All processes will eventually decide on a value.

* A global state S, satisfies a liveness property P iff:
* For all linearizations starting from Sy, P Is true for some state S,
reachable from S,

* liveness(P(Sy)) = VL0Le linearizations from Sy, L passes through a
S, & P(S)) = true



Liveness Example

If predicate Is true only in the marked states, does It satisfy liveness!

p0
start » 5{1,0}
—
q0 \‘O

p0 {1,0} pl {2,0} p2 {3,0}

G S S

q0 {0,1} ql“:,{2,2} q2 {2,3}
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Liveness Example

If predicate Is true only in the marked states, does It satisfy liveness!

q0

Yes
start »
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1 gl

p0 {1,0} pl {2,0} p2 {3,0}

€] S S > q2
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Liveness Example

If predicate Is true only in the marked states, does It satisfy liveness!

Yes
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Liveness

* Liveness = guarantee that something good will happen,
eventually

* Examples:
* A distributed computation will terminate.
* "Completeness” in fallure detectors: the failure will be detected.

* All processes will eventually decide on a value.

* A global state S, satisfies a liveness property P iff:
* liveness(P(Sy)) = VL0Le linearizations from Sy, L passes through a
S| & P(5)) = true
* For any linearization starting from S, P Is true for some state S,
reachable from S,



Safety

* Safety = guarantee that something bad will never happen.

* Examples:
* There is no deadlock in a distributed transaction system.

* "Accuracy’ in fallure detectors: an alive process is not detected as
falled.

* No two processes decide on different values.

* A global state S, satisfies a safety property P iff:

* For all states S reachable from S, P(S) s true.
* safety(P(Sy)) = VS reachable from S, P(S) = true.



Safety Example

If predicate Is true only in the mar|<ed states, does It satisfy safety!

start »
q0 q0 q0

p0 {1,0} pl {2,0} p2 {3,0}

€] S S > q2

q0 {0,1} ql“:,{2,2} a2 {2.3}




Safety Example

If predicate Is true only in the unmarked states, does it satisfy safety?

Yes
start »
q0 q0 q0 q0

p0 {1,0} pl {2,0} p2 {3,0}

G S S > q2
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Safety

* Safety = guarantee that something bad will never happen.

* Examples:
* There is no deadlock in a distributed transaction system.

* "Accuracy’ in fallure detectors: an alive process is not detected as
falled.

* No two processes decide on different values.

* A global state S, satisfies a safety property P iff:
* safety(P(Sy)) = VS reachable from S, P(S) = true.
* For all states S reachable from S, P(5) I1s true.



Liveness Example

Technically satisfies liveness, but difficult to capture or reason about.

start » (0
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ql gl
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Stable Global Predicates

* once true, stays true forever afterwards (for stable liveness)



Stable Global Predicates

If predicate Is true only in the marked states, is it true in a stable way?
No

p0 pl p2
start »

q0 q0 q0 q0

ql gl
p0 {1,0} pl {2,0} p2 {3,0}

€] S S > q2

g2

q0 {0,1} ql“:,{2,2} a2 {2.3}
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Stable Global Predicates

If predicate Is true only in the marked states, is it true in a stable way?

No
CadPadOmd®
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Stable Global Predicates

If predicate Is true only in the marked states, is it true in a stable way?

Yes
CadPadOmd®
start »
q0 q0 q0 q0
ql
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> (o)
p0 {1,0} pl {2,0} p2 {3,0}

€] S S > q2

q0 {0,1} ql“:,{2,2} a2 {2.3}
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Stable Global Predicates

* once true for a state S, stays true for all states reachable from
S (for stable liveness)

* once false for a state S, stays false for all states reachable from
S (for stable non-safety)
* Stable liveness examples (once true, always true)
* Computation has terminated.

* Stable non-safety examples (once false, always false)
* There Is no deadlock.

* An object I1s not orphaned.
* All stable global properties can be detected using the Chandy-
Lamport algorithm.



Global Snapshot Summary

* The ability to calculate global snapshots in a distributed
system Is very important.

* But don't want to interrupt running distributed application.
* Chandy-Lamport algorithm calculates global snapshot.

* Obeys causality (creates a consistent cut).

* Can be used to detect global properties.

* Safety vs. Liveness.



Today’s agenda

* Multicast
* Chapter 154
* Goal: reason about desirable properties for message
delivery among a group of processes.



Communication modes

e Unicast
* Messages are sent from exactly one process to one process.

* Broadcast
* Messages are sent from exactly one process to all processes on
the network.
* Multicast
* Messages broadcast within a group of processes.

* A multicast message Is sent from any one process to a group of
processes on the network.




Where is multicast used?

* Distributed storage
* Write to an object are multicast across replica servers.

* Membership information (e.g., heartbeats) is multicast across all
servers In cluster.

* Online scoreboards (ESPN, French Open, FIFA World Cup)

* Multicast to group of clients interested in the scores.

* Stock Exchanges
* Group Is the set of broker computers.



Communication modes

e Unicast

* Messages are sent from exactly one process to one process.

* Best effort: if a message is delivered it would be intact; no reliability
guarantees.

* Reliable: guarantees delivery of messages.
* In order: messages will be delivered in the same order that they are sent.
* Broadcast
* Messages are sent from exactly one process to all processes on the
network.
* Multicast
* Messages broadcast within a group of processes.

* A multicast message is sent from any one process to the group of
processes on the network.

* How do we define (and achieve) reliable or ordered multicast?



What we are designing in this class!?

Application
(at process p)

Incoming . Outgoing
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What we are designing in this class!?

Application
(at process p)

Incoming Outgoing
messages messages

‘g’ is a multicast group that also includes the process ‘p’.



What we are designing in this class!?

Application
(at process p)
y—
Incoming Outgoing
messages messages

‘g’ is a multicast group that also includes the process ‘p’.



What we are designing in this class!?

Application
(at process p)

MULTICAST PROTOCOL

Incoming Outgoing

messages messages

‘g’ is a multicast group that also includes the process ‘p’.



Basic Multicast (B-Multicast)

* Straightforward way to implement B-multicast:
* use a reliable one-to-one send (unicast) operation:
B-multicast(group g, message m):
for each process p in g, send (p,m).
receive(m): B-deliver(m) at p.
* Guarantees: message Is eventually delivered to the group If:
* Processes are non-faulty.
* The unicast “send” Is reliable.
* Sender does not crash.

* Can we provide reliable delivery even after sender crashes?
* What does this mean?



Reliable Multicast (R-Multicast)

* Integrity: A correct (l.e., non-faulty) process p delivers a message 1 at
mMost once.

* Assumption: no process sends exactly the same message twice
* Validity: If a correct process multicasts (sends) message 111, then it will
deliver m to itself.
* Liveness for the sender.
* Agreement: If a correct process delivers message 111, then all the other
correct processes in group(m) will deliver
* All or nothing.
* Validity and agreement together ensure overall liveness: if some
correct process multicasts a message m, then, all correct processes

deliver m too.
How to achieve R-multicast?! To be continued in next class....



