Distributed Systems

CS425/ECE428

Instructor: Radhika Mittal

Acknowledgements for some of materials: Indy Gupta and Nikita Borisov

Logistics

* MPO is due today at | [:59pm.

* Reminder to share your name when you speak up in class.

* Feb / lecture was not recorded! Please see my Campuswire
post for links to last year's videos covering the same topic.

Today’s agenda

* Global State (contd.)
* Chapter 4.5

* Multicast
* Chapter 154

Today’s agenda

* Global State (contd.)
* Chapter 4.5

Global Snapshot Summary

* The ability to calculate global snapshots in a distributed
system Is very important.

* But don't want to interrupt running distributed application.
* Chandy-Lamport algorithm calculates global snapshot.

* Obeys causality (creates a consistent cut).

Chandy-Lamport Algorithm: Properties

* Any run of the Chandy-Lamport Global Snapshot
algorithm creates a consistent cut.

* Let ; and g, be events occurring at p; and p;, respectively
such that

*e > e (ehappensbefore e)

j
* [he snapshot algorithm ensures that
if e is in the cut then e is also In the cut.

* That is:if e, = < p; records its state>, then
it must be true that e, = <p. records its state>.

Chandy-Lamport Algorithm: Properties

* If & = < p, records its state>, then
it must be true that e, = <p. records its state>.

* By contradiction, suppose e; 2 < p; records its state>, and
<p, records its state> 2> e,

<

Pj

Pk ®
\n,
[]

Chandy-Lamport Algorithm: Properties

* If & = < p, records its state>, then
it must be true that e, = <p. records its state>.

* By contradiction, suppose e; 2 < p; records its state>, and
<p, records its state> 2> e,

<

Pj

Pk ®
\n,
[]

Chandy-Lamport Algorithm: Properties

* If & = < p, records its state>, then
it must be true that e, = <p. records its state>.

* By contradiction, suppose e; 2 < p; records its state>, and
<p, records its state> 2> e,

<

Pj

Px must reach p, before m *
due to FIFO order. m’
)

Chandy-Lamport Algorithm: Properties

* If & = < p, records its state>, then
it must be true that e, = <p. records its state>.

* By contradiction, suppose e; 2 < p; records its state>, and
<p, records its state> 2> e,

<

®
xl’
must reach p; before m’ 1 P

P; due to FIFO order S

Pj

Pk

Chandy-Lamport Algorithm: Properties

* If & = < p, records its state>, then
it must be true that e, = <p. records its state>.

* By contradiction, suppose e; 2 < p; records its state>, and
<p, records its state> 2> e,

* Consider the path of app messages (through other
processes) that go from e; to e;.

* Due to FIFO ordering, markers on each link in above path
will precede regular app messages.

* Thus, since <p; records its state> =2 e, , it must be true that

p; received a marker before e;

e Thus e s not In the cut => contradiction.

Why capture global snapshots?

* Checkpointing the system state.

* Reasoning about unreferenced objects (for garbage
collection).

* Distributed debugging.

* Can be used to detect global properties.
* Safety vs. Liveness

Revisions: notations and definitions

 Fora process p;, where events e/, ... occur:
history(p,) = h,=<e/!,... >
prefix history(pX) = hk=<el,...,el >

s p/’s state immediately after k" event.
* For a set of processes <py, Pys P3» - -+ Pn:

global history: H = U, (h))
acutCcH=h9uUh,%U...UhS

the frontier of C = {e%,i = |,2, ... n}

global state S that corresponds to cut C = U, (s:%)

More notations and definitions

* A run is a total ordering of events in H that Is consistent
with each h/'s ordering.

* A linearization Is a run consistent with happens-before
(—) relation in H.

Example

a b C d
@ @ o >
P1
\ /‘”z
e
e f

-~ Physical
g time

Orderatp;:<ab,¢,d> Orderatp,<e,fg>
Causal order across p, and p,: < b, e> ,gf,—éﬂ

Run:<a,b,c,d,e fgr —
Linearization: <a, b, c, e, f,g,d>

<

Example

d
" >

P+
my m,
\. ® -~ Physical

a f g time

®a
" Yo

<ab,efcg,d>:

Example

®
" Yo
v

“o) -~ Physical
e f g time

<a,b,ef,c,g,d>: Linearization

Example

d
" >

P+
my m,
\. ® -~ Physical

a f g time

®a
" Yo

<af,e,bcg,d>:

Example

®
" Yo
v

“o) -~ Physical
e f g time

<af,e,b,c,g,d> Notevenarun

More notations and definitions

* A run is a total ordering of events in H that Is consistent
with each h/'s ordering.

* A linearization Is a run consistent with happens-before
(—) relation in H.

* Linearizations pass through consistent global states.

Example

b\c d
o o >

P+
my m,
\. ® -~ Physical

®a

Linearization: < a, b,|c, e,f,g,d >
P

Example

a b C d
@ @ @ >
P1
my m,
N :
p ® -~ Physical
2 o f g time

Linearization:< a, b, c/|e,f,g,d>

Example

a b c\
o ®
my

PSS

2 | o
e\f

d
®
/" |
-~ Physical
g

time

Linearization: < a, b, c, e,If, g,d>

Example

a b C K d
@ o ® >
P1
“o) -~ Physical
e f \ g

time

Linearization: < a, b, ¢, e, f,‘g, d>

Example

®a
" Yo

“o) -~ Physical
a f g \ time

Linearization: < a, b, ¢, e, f, g| d>

Example

a b C) d
@ o ® >
JoF .\
) -~ Physical
P2 a f g time

Linearization: < a, b, cJ e,f,g,d>
Linearization: < a, b, e, c,f,g,d>

Example

a b \c d
o o o
P1
\\ /772
“o) -~ Physical
o \ f g

time

Linearization: < a, b, c,e,f,g,d>
Linearization: < a, b, eI c,f,g,d>

Example

®a

" Yo'
(NoR

“o) -~ Physical

Linearization: < a, b, c,e,f,g|d>
Linearization: < a, b, e, c,f,g|d>

More notations and definitions

* A run is a total ordering of events in H that Is consistent
with each h/'s ordering.

* A linearization is a run consistent with happens-before (—)
relation in H.

* Linearizations pass through consistent global states.

* A global state S, Is reachable from global state S, if there Is
a linearization that passes through S. and then through §,.

* The distributed system evolves as a series of transitions
between global states Sy, S, ...

State Transitions: Example

p0 {1,0} pl{20} p2 {3.0} e (Causal order:
c o o >
* pO—pl—p2
* q0—=>ql—>qg2

m
‘ * p0—-pl—->gl—-qgl
q0 {0,1} ql‘:‘,{2,2} q2 {2.3}
© Vector 'I\'iJmestamps in {}V "~ » Concurrent:
* POl q0
Many linearizations: * pl][q0
« <p0,pl, p2q0ql g2> * p2|[q0.p2|lql.p2|| g2

* <p0,q0 pl,qgl,p2 g2>
e <g0,p0,pl,qgl,p2,qg2 >
e <q0,p0,pl,p2,ql,g2 >

State Transitions: Example

Execution Lattice. Each path represents a linearization.

p0 pl p2
start »

q0 q0 q0 q0
@ p0 @ p1 @ p2 @
. ql
C Six.yy Means the state includes x events at p gl

and y events at q. @ p2 @

p0 {1,0} pl {2,0} p2 {3,0}

€] S S > q2

q0 {0,1} ql“:,{2,2} a2 {2.3}
.\

G © S

State Transitions: Example

Execution Lattice. Each path represents a linearization.

— N S
-

- =~
- p0 pl p2 \™ ~
start » N
N\
q0 q0 q0 q0 N\
\
OxdOxdOxdON
p0 pl p2 N
1 \
1 RN
\
p2 \
(on)— (o) s
p0 {1,0} pl {20} p2 {3,0} q2\
€, S © > q2 LR |

q0 {0,1} ql“:,{2,2} q2 {2,3}
Fa\

C \J \J

State Transitions: Example

Execution Lattice. Each path represents a linearization.

p0 pl p2
start »

\ q0 q0 q0 q0
\
\
\ p0 pl p2
~ —_— —— W
~
N p2
N\
0 {1,0} 1{2,0} 2 {3,0}
C—— & ; \ q2 a2
\
\ p2
~
A} - _>
q0 {0,1} ql“:,{2,2} q2 {2,3}
Fa\ Fa\

C \J \J

State Transitions: Example

Execution Lattice. Each path represents a linearization.

(o) (o) (o) (o
start »
- oy,

\ q0 q0

~

q0 q0
-~ — oy
. p0 ' pl @ p2 @
gl
\ 1
~
— P2 -
p0 {1,0} pl {20} p2 {3,0} q2\
G S © q2 o
\
q0 {0,1} ql“:,{2,2} q2 {2,3}
FaY ya\

C \J \J

State Transitions: Example

Execution Lattice. Each path represents a linearization.

———-~

\\ Not valid!
\\Why?

PO {10} pl{20} p2 {30} \
o o o > q2 a2 Y

q0 {0,1} ql“:,{2.2} q2 {2,3}
Fa\

C \J \J

State Transitions: Example

- . gy,
_—

\
\
start »
\
C ON
\ ‘ @ @ p2
~
p0 {1 0} pl {2 0} p2 {3 0}
q0 {0 1} q1q{2 2} q2 {2,3}
Fa\

State Transitions: Example

p0 {1,0} pl {2,0} , p2 {3,0}
7\ 7\

C,

State Transitions: Example

(o)== (oo Com}—2 (o)
start »
q0 0 q0
pl

P
C q0
@ PO . @ p2 @
1

p0 {10} pl {2,0} \pz (3.0}
7\ 7\

€, \w \w >
q0 {0,1} q13{2,2} q2 {2,3}
C FaY ya\ I

\J \J \ -

State Transitions: Example

q0

P
q0
. . pl @ p2 @
1

p0 {1,0} pl {2,0} p2 {3.0}" ‘

© & o >
q0 {0,1} al¥{2,2} qzh
€, S | »

.
\J

(o)== (oo Com}—2 (o)
start »
q0 q0
p0

More notations and definitions

* A run is a total ordering of events in H that Is consistent
with each h/'s ordering.

* A linearization is a run consistent with happens-before (—)
relation in H.

* Linearizations pass through consistent global states.

* A global state S, Is reachable from global state S, if there Is
a linearization that passes through S. and then through §,.

* The distributed system evolves as a series of transitions
between global states Sy, S, ...

Global State Predicates

* A global-state-predicate Is a property that is true or false
for a global state.
* |s there a deadlock!?
* Has the distributed algorithm terminated?

* Two ways of reasoning about predicates (or system
properties) as global state gets transformed by events.
* Liveness
* Safety

Liveness

* Liveness = guarantee that something good will happen,
eventually

* Examples:
* A distributed computation will terminate.
* "Completeness” in fallure detectors: the failure will be detected.
* All processes will eventually decide on a value.

* A global state S, satisfies a liveness property P iff:
* For all linearizations starting from Sy, P Is true for some state S,
reachable from S,

* liveness(P(Sy)) = VL0Le linearizations from Sy, L passes through a
S, & P(S)) = true

Liveness Example

If predicate Is true only in the marked states, does It satisfy liveness!

p0
start » 5{1,0}
—
q0 \‘O

p0 {1,0} pl {2,0} p2 {3,0}

G S S

q0 {0,1} ql“:,{2,2} q2 {2,3}
Fa\

G © S

Liveness Example

If predicate Is true only in the marked states, does It satisfy liveness!

q0

Yes
start »
q0 q0 q0
p0 pl

1 gl

p0 {1,0} pl {2,0} p2 {3,0}

€] S S > q2

C

q0 {0,1} ql“:,{2,2} a2 {2.3}
.\

G © S

Liveness Example

If predicate Is true only in the marked states, does It satisfy liveness!

Yes
(o= (o= (o= Con)
start »
q0 q0 q0 q0

p0 {1,0} pl {2,0} p2 {3,0}

€] S S > q2

q0 {0,1} ql“:,{2,2} a2 {2.3}
.\

G © S

Liveness

* Liveness = guarantee that something good will happen,
eventually

* Examples:
* A distributed computation will terminate.
* "Completeness” in fallure detectors: the failure will be detected.

* All processes will eventually decide on a value.

* A global state S, satisfies a liveness property P iff:
* liveness(P(Sy)) = VL0Le linearizations from Sy, L passes through a
S| & P(5)) = true
* For any linearization starting from S, P Is true for some state S,
reachable from S,

Safety

* Safety = guarantee that something bad will never happen.

* Examples:
* There is no deadlock in a distributed transaction system.

* "Accuracy’ in fallure detectors: an alive process is not detected as
falled.

* No two processes decide on different values.

* A global state S, satisfies a safety property P iff:

* For all states S reachable from S, P(S) s true.
* safety(P(Sy)) = VS reachable from S, P(S) = true.

Safety Example

If predicate Is true only in the mar|<ed states, does It satisfy safety!

start »
q0 q0 q0

p0 {1,0} pl {2,0} p2 {3,0}

€] S S > q2

q0 {0,1} ql“:,{2,2} a2 {2.3}

Safety Example

If predicate Is true only in the unmarked states, does it satisfy safety?

Yes
start »
q0 q0 q0 q0

p0 {1,0} pl {2,0} p2 {3,0}

G S S > q2

q0 {0,1} ql“:,{2,2} a2 {2.3}
.\

G © S/

Safety

* Safety = guarantee that something bad will never happen.

* Examples:
* There is no deadlock in a distributed transaction system.

* "Accuracy’ in fallure detectors: an alive process is not detected as
falled.

* No two processes decide on different values.

* A global state S, satisfies a safety property P iff:
* safety(P(Sy)) = VS reachable from S, P(S) = true.
* For all states S reachable from S, P(5) I1s true.

Liveness Example

Technically satisfies liveness, but difficult to capture or reason about.

start » (0
q0 q0 q0 q0
ql gl

p0 {1,0} pl {2,0} p2 {3,0}

€] S S > q2

q0 {0,1} ql“:,{2,2} a2 {2.3}
.\

G © S

Stable Global Predicates

* once true, stays true forever afterwards (for stable liveness)

Stable Global Predicates

If predicate Is true only in the marked states, is it true in a stable way?
No

p0 pl p2
start »

q0 q0 q0 q0

ql gl
p0 {1,0} pl {2,0} p2 {3,0}

€] S S > q2

g2

q0 {0,1} ql“:,{2,2} a2 {2.3}
.\

G © S/

Stable Global Predicates

If predicate Is true only in the marked states, is it true in a stable way?

No
CadPadOmd®
start »
q0 q0 q0 q0

p0 {1,0} pl {2,0} p2 {3,0}

€] S S > q2

q0 {0,1} ql“:,{2,2} a2 {2.3}
.\

G © S/

Stable Global Predicates

If predicate Is true only in the marked states, is it true in a stable way?

Yes
CadPadOmd®
start »
q0 q0 q0 q0
ql

gl
> (o)
p0 {1,0} pl {2,0} p2 {3,0}

€] S S > q2

q0 {0,1} ql“:,{2,2} a2 {2.3}
.\

G © S

Stable Global Predicates

* once true for a state S, stays true for all states reachable from
S (for stable liveness)

* once false for a state S, stays false for all states reachable from
S (for stable non-safety)
* Stable liveness examples (once true, always true)
* Computation has terminated.

* Stable non-safety examples (once false, always false)
* There Is no deadlock.

* An object I1s not orphaned.
* All stable global properties can be detected using the Chandy-
Lamport algorithm.

Global Snapshot Summary

* The ability to calculate global snapshots in a distributed
system Is very important.

* But don't want to interrupt running distributed application.
* Chandy-Lamport algorithm calculates global snapshot.

* Obeys causality (creates a consistent cut).

* Can be used to detect global properties.

* Safety vs. Liveness.

Today’s agenda

* Multicast
* Chapter 154
* Goal: reason about desirable properties for message
delivery among a group of processes.

Communication modes

e Unicast
* Messages are sent from exactly one process to one process.

* Broadcast
* Messages are sent from exactly one process to all processes on
the network.
* Multicast
* Messages broadcast within a group of processes.

* A multicast message Is sent from any one process to a group of
processes on the network.

Where is multicast used?

* Distributed storage
* Write to an object are multicast across replica servers.

* Membership information (e.g., heartbeats) is multicast across all
servers In cluster.

* Online scoreboards (ESPN, French Open, FIFA World Cup)

* Multicast to group of clients interested in the scores.

* Stock Exchanges
* Group Is the set of broker computers.

Communication modes

e Unicast

* Messages are sent from exactly one process to one process.

* Best effort: if a message is delivered it would be intact; no reliability
guarantees.

* Reliable: guarantees delivery of messages.
* In order: messages will be delivered in the same order that they are sent.
* Broadcast
* Messages are sent from exactly one process to all processes on the
network.
* Multicast
* Messages broadcast within a group of processes.

* A multicast message is sent from any one process to the group of
processes on the network.

* How do we define (and achieve) reliable or ordered multicast?

What we are designing in this class!?

Application
(at process p)

Incoming . Outgoing
messages messages

What we are designing in this class!?

Application
(at process p)

What we are designing in this class!?

Application
(at process p)

Outgoing
messages

‘g’ is a multicast group that also includes the process ‘p’.

What we are designing in this class!?

Application
(at process p)

Incoming Outgoing
messages messages

‘g’ is a multicast group that also includes the process ‘p’.

What we are designing in this class!?

Application
(at process p)
y—
Incoming Outgoing
messages messages

‘g’ is a multicast group that also includes the process ‘p’.

What we are designing in this class!?

Application
(at process p)

MULTICAST PROTOCOL

Incoming Outgoing

messages messages

‘g’ is a multicast group that also includes the process ‘p’.

Basic Multicast (B-Multicast)

* Straightforward way to implement B-multicast:
* use a reliable one-to-one send (unicast) operation:
B-multicast(group g, message m):
for each process p in g, send (p,m).
receive(m): B-deliver(m) at p.
* Guarantees: message Is eventually delivered to the group If:
* Processes are non-faulty.
* The unicast “send” Is reliable.
* Sender does not crash.

* Can we provide reliable delivery even after sender crashes?
* What does this mean?

Reliable Multicast (R-Multicast)

* Integrity: A correct (l.e., non-faulty) process p delivers a message 1 at
mMost once.

* Assumption: no process sends exactly the same message twice
* Validity: If a correct process multicasts (sends) message 111, then it will
deliver m to itself.
* Liveness for the sender.
* Agreement: If a correct process delivers message 111, then all the other
correct processes in group(m) will deliver
* All or nothing.
* Validity and agreement together ensure overall liveness: if some
correct process multicasts a message m, then, all correct processes

deliver m too.
How to achieve R-multicast?! To be continued in next class....

