
Distributed Systems

CS425/ECE428

Instructor : Radhika Mittal

Acknowledgements for some of materials: Indy Gupta and Nikita Borisov

Logistics

• MP0 is due today at 11:59pm.

• Reminder to share your name when you speak up in class.

• Feb 7 lecture was not recorded! Please see my Campuswire
post for links to last year’s videos covering the same topic.

Today’s agenda

• Global State (contd.)
• Chapter 14.5

• Multicast
• Chapter 15.4

Today’s agenda

• Global State (contd.)
• Chapter 14.5

• Multicast
• Chapter 15.4

Global Snapshot Summary

• The ability to calculate global snapshots in a distributed
system is very important.

• But don’t want to interrupt running distributed application.
• Chandy-Lamport algorithm calculates global snapshot.
• Obeys causality (creates a consistent cut).

Chandy-Lamport Algorithm: Properties

• Any run of the Chandy-Lamport Global Snapshot
algorithm creates a consistent cut.

• Let ei and ej be events occurring at pi and pj, respectively
such that

• ei à ej (ei happens before ej)
•The snapshot algorithm ensures that

if ej is in the cut then ei is also in the cut.
•That is: if ej à < pj records its state>, then

it must be true that ei à <pi records its state>.

Chandy-Lamport Algorithm: Properties

• If ej à < pj records its state>, then
it must be true that ei à <pi records its state>.

• By contradiction, suppose ejà < pj records its state>, and
<pi records its state> à ei.

pk

Time
pi

pj

ei

ej

m

m’

Chandy-Lamport Algorithm: Properties

• If ej à < pj records its state>, then
it must be true that ei à <pi records its state>.

• By contradiction, suppose ejà < pj records its state>, and
<pi records its state> à ei.

pk

Time
pi

pj

ei

ej

m

m’

Chandy-Lamport Algorithm: Properties

• If ej à < pj records its state>, then
it must be true that ei à <pi records its state>.

• By contradiction, suppose ejà < pj records its state>, and
<pi records its state> à ei.

pk

Time
pi

pj

ei

ej

m

m’
must reach pk before m

due to FIFO order.

Chandy-Lamport Algorithm: Properties

• If ej à < pj records its state>, then
it must be true that ei à <pi records its state>.

• By contradiction, suppose ejà < pj records its state>, and
<pi records its state> à ei.

pk

Time
pi

pj

ei

ej

m

m’
must reach pj before m’

due to FIFO order.

Chandy-Lamport Algorithm: Properties

• If ej à < pj records its state>, then
it must be true that ei à <pi records its state>.

• By contradiction, suppose ejà < pj records its state>, and
<pi records its state> à ei.

• Consider the path of app messages (through other
processes) that go from ei to ej .

• Due to FIFO ordering, markers on each link in above path
will precede regular app messages.

• Thus, since <pi records its state> à ei , it must be true that
pj received a marker before ej.

• Thus ej is not in the cut => contradiction.

Why capture global snapshots?

• Checkpointing the system state.
• Reasoning about unreferenced objects (for garbage

collection).
• Distributed debugging.
• Can be used to detect global properties.

• Safety vs. Liveness

Revisions: notations and definitions
• For a process pi , where events ei

1, … occur:
history(pi) = hi = <ei

1, … >
prefix history(pi

k) = hi
k = <ei

1, …,ei
k >

si
k : pi’s state immediately after kth event.

• For a set of processes <p1, p2, p3, …., pn>:
global history: H = Èi (hi)
a cut C Í H = h1

c1 È h2
c2 È … È hn

c3

the frontier of C = {ei
ci, i = 1,2, … n}

global state S that corresponds to cut C = Èi (si
ci)

More notations and definitions

• A run is a total ordering of events in H that is consistent
with each hi’s ordering.

• A linearization is a run consistent with happens-before
(®) relation in H.

Example

m1 m2

p1

p2
Physical

time

Run: < a, b, c, d , e, f, g>
Linearization: <a, b, c, e, f, g , d >

Order at p1: < a, b, c, d > Order at p2: < e, f,g>
Causal order across p1 and p2: < b, e> , <g , d >

a b c d

e f g

Example

m1 m2

p1

p2
Physical

time

< a, b, e, f, c, g , d >: Linearization
< e1

0, e2
1, e2

0 , e1
1, e1

2, e2
2 , e1

3 >: Not even a run

a b c d

e f g

Example

m1 m2

p1

p2
Physical

time

< a, b, e, f, c, g , d >: Linearization
ation

a b c d

e f g

Example

< a, f, e , b, c, g , d >: Not even a run

m1 m2

p1

p2
Physical

time

a b c d

e f g

Example

< a, f, e , b, c, g , d >: NNot even a runot even a
run

m1 m2

p1

p2
Physical

time

a b c d

e f g

More notations and definitions

• A run is a total ordering of events in H that is consistent
with each hi’s ordering.

• A linearization is a run consistent with happens-before
(®) relation in H.

• Linearizations pass through consistent global states.

Example

Linearization: < a, b, c, e, f, g , d >|

m1 m2

p1

p2
Physical

time

a b c d

e f g

Example

Linearization: < a, b, c, e, f, g , d >|

m1 m2

p1

p2
Physical

time

a b c d

e f g

Example

Linearization: < a, b, c, e, f, g , d >|

m1 m2

p1

p2
Physical

time

a b c d

e f g

Example

Linearization: < a, b, c, e, f, g , d >|

m1 m2

p1

p2
Physical

time

a b c d

e f g

Example

Linearization: < a, b, c, e, f, g , d >|

m1 m2

p1

p2
Physical

time

a b c d

e f g

Example

Linearization: < a, b, c, e, f, g , d >

m1 m2

p1

p2
Physical

time

a b c d

e f g

Linearization: < a, b, e, c, f, g , d >
|

Example

Linearization: < a, b, c, e, f, g , d >

m1 m2

p1

p2
Physical

time

a b c d

e f g

Linearization: < a, b, e, c, f, g , d >|

Example

Linearization: < a, b, c, e, f, g , d >

m1 m2

p1

p2
Physical

time

a b c d

e f g

Linearization: < a, b, e, c, f, g , d >
|
|

More notations and definitions

• A run is a total ordering of events in H that is consistent
with each hi’s ordering.

• A linearization is a run consistent with happens-before (®)
relation in H.

• Linearizations pass through consistent global states.

• A global state Sk is reachable from global state Si, if there is
a linearization that passes through Si and then through Sk.

• The distributed system evolves as a series of transitions
between global states S0 , S1 , ….

State Transitions: Example

m

Many linearizations:
• < p0, p1, p2, q0, q1, q2>
• < p0, q0, p1, q1, p2, q2>
• <q0, p0, p1, q1, p2, q2 >
• <q0, p0, p1, p2, q1,q2 >
• ……

• Causal order:
• p0 →	p1 →	p2
• q0 →	q1 →	q2
• p0 →	p1 →	q1→ q2

• Concurrent:
• p0 || q0
• p1 || q0
• p2 || q0, p2 || q1, p2 || q2

Vector	Timestamps	in	{}

State Transitions: Example

q1

q2

Execution Lattice. Each path represents a linearization.

s{x, y} means the state includes x events at p
and y events at q.

State Transitions: Example

q1

q2

Execution Lattice. Each path represents a linearization.

State Transitions: Example

q1

q2

Execution Lattice. Each path represents a linearization.

State Transitions: Example

q1

q2

Execution Lattice. Each path represents a linearization.

State Transitions: Example

q1

q2

Execution Lattice. Each path represents a linearization.

Not valid!
Why?

State Transitions: Example

q1

q2

State Transitions: Example

q1

q2

State Transitions: Example

q1

q2

State Transitions: Example

q1

q2

More notations and definitions

• A run is a total ordering of events in H that is consistent
with each hi’s ordering.

• A linearization is a run consistent with happens-before (®)
relation in H.

• Linearizations pass through consistent global states.

• A global state Sk is reachable from global state Si, if there is
a linearization that passes through Si and then through Sk.

• The distributed system evolves as a series of transitions
between global states S0 , S1 , ….

Global State Predicates

• A global-state-predicate is a property that is true or false
for a global state.

• Is there a deadlock?
• Has the distributed algorithm terminated?

• Two ways of reasoning about predicates (or system
properties) as global state gets transformed by events.

• Liveness
• Safety

Liveness
• Liveness = guarantee that something good will happen,

eventually

• Examples:
• A distributed computation will terminate.
• “Completeness” in failure detectors: the failure will be detected.
• All processes will eventually decide on a value.

• A global state S0 satisfies a liveness property P iff:
• For all linearizations starting from S0, P is true for some state SL

reachable from S0.
• liveness(P(S0)) º "LÎ linearizations from S0, L passes through a

SL & P(SL) = true

Liveness Example

q1

q2

If predicate is true only in the marked states, does it satisfy liveness?
No

Liveness Example

q1

q2

If predicate is true only in the marked states, does it satisfy liveness?
Yes

Liveness Example

q1

q2

If predicate is true only in the marked states, does it satisfy liveness?
Yes

Liveness
• Liveness = guarantee that something good will happen,

eventually

• Examples:
• A distributed computation will terminate.
• “Completeness” in failure detectors: the failure will be detected.
• All processes will eventually decide on a value.

• A global state S0 satisfies a liveness property P iff:
• liveness(P(S0)) º "LÎ linearizations from S0, L passes through a

SL & P(SL) = true
• For any linearization starting from S0, P is true for some state SL

reachable from S0.

Safety

• Safety = guarantee that something bad will never happen.

• Examples:
• There is no deadlock in a distributed transaction system.
• “Accuracy” in failure detectors: an alive process is not detected as

failed.
• No two processes decide on different values.

• A global state S0 satisfies a safety property P iff:
• For all states S reachable from S0, P(S) is true.
• safety(P(S0)) º "S reachable from S0, P(S) = true.

Safety Example

q1

q2

If predicate is true only in the marked states, does it satisfy safety?
No

Safety Example

q1

q2

If predicate is true only in the unmarked states, does it satisfy safety?
Yes

Safety

• Safety = guarantee that something bad will never happen.

• Examples:
• There is no deadlock in a distributed transaction system.
• “Accuracy” in failure detectors: an alive process is not detected as

failed.
• No two processes decide on different values.

• A global state S0 satisfies a safety property P iff:
• safety(P(S0)) º "S reachable from S0, P(S) = true.
• For all states S reachable from S0, P(S) is true.

Liveness Example

q1

q2

Technically satisfies liveness, but difficult to capture or reason about.

Stable Global Predicates

• once true, stays true forever afterwards (for stable liveness)

Stable Global Predicates

q1

q2

If predicate is true only in the marked states, is it true in a stable way?
No

Stable Global Predicates

q1

q2

If predicate is true only in the marked states, is it true in a stable way?
No

Stable Global Predicates

q1

q2

If predicate is true only in the marked states, is it true in a stable way?
Yes

Stable Global Predicates

• once true for a state S, stays true for all states reachable from
S (for stable liveness)

• once false for a state S, stays false for all states reachable from
S (for stable non-safety)

• Stable liveness examples (once true, always true)
• Computation has terminated.

• Stable non-safety examples (once false, always false)
• There is no deadlock.
• An object is not orphaned.

• All stable global properties can be detected using the Chandy-
Lamport algorithm.

Global Snapshot Summary

• The ability to calculate global snapshots in a distributed
system is very important.

• But don’t want to interrupt running distributed application.
• Chandy-Lamport algorithm calculates global snapshot.
• Obeys causality (creates a consistent cut).
• Can be used to detect global properties.
• Safety vs. Liveness.

Today’s agenda

• Global State (contd.)
• Chapter 14.5

• Multicast
• Chapter 15.4
• Goal: reason about desirable properties for message

delivery among a group of processes.

Communication modes

• Unicast
• Messages are sent from exactly one process to one process.

• Broadcast
• Messages are sent from exactly one process to all processes on

the network.
• Multicast

• Messages broadcast within a group of processes.
• A multicast message is sent from any one process to a group of

processes on the network.

Where is multicast used?

• Distributed storage
• Write to an object are multicast across replica servers.
• Membership information (e.g., heartbeats) is multicast across all

servers in cluster.

• Online scoreboards (ESPN, French Open, FIFA World Cup)
• Multicast to group of clients interested in the scores.

• Stock Exchanges
• Group is the set of broker computers.

• ……

Communication modes
• Unicast

• Messages are sent from exactly one process to one process.
• Best effort: if a message is delivered it would be intact; no reliability

guarantees.
• Reliable: guarantees delivery of messages.
• In order: messages will be delivered in the same order that they are sent.

• Broadcast
• Messages are sent from exactly one process to all processes on the

network.
• Multicast

• Messages broadcast within a group of processes.
• A multicast message is sent from any one process to the group of

processes on the network.
• How do we define (and achieve) reliable or ordered multicast?

What we are designing in this class?

Application
(at process p)

One process p

Incoming
messages

Outgoing
messages

What we are designing in this class?

Application
(at process p)

MULTICAST PROTOCOL

One process p

What we are designing in this class?

Application
(at process p)

MULTICAST PROTOCOL

multicast(g,m)

One process p

‘g’ is a multicast group that also includes the process ‘p’.

Outgoing
messages

What we are designing in this class?

Application
(at process p)

MULTICAST PROTOCOL

multicast(g,m)

One process p

‘g’ is a multicast group that also includes the process ‘p’.

Outgoing
messages

Incoming
messages

What we are designing in this class?

Application
(at process p)

MULTICAST PROTOCOL

multicast(g,m)

One process p

‘g’ is a multicast group that also includes the process ‘p’.

Outgoing
messages

Incoming
messages

deliver(m)

What we are designing in this class?

Application
(at process p)

MULTICAST PROTOCOL

multicast(g,m)

One process p

‘g’ is a multicast group that also includes the process ‘p’.

Outgoing
messages

Incoming
messages

deliver(m)

Basic Multicast (B-Multicast)

• Straightforward way to implement B-multicast:
• use a reliable one-to-one send (unicast) operation:

B-multicast(group g, message m):
for each process p in g, send (p,m).

receive(m): B-deliver(m) at p.
• Guarantees: message is eventually delivered to the group if:

• Processes are non-faulty.
• The unicast “send” is reliable.
• Sender does not crash.

• Can we provide reliable delivery even after sender crashes?
• What does this mean?

Reliable Multicast (R-Multicast)

• Integrity: A correct (i.e., non-faulty) process p delivers a message m at
most once.

• Assumption: no process sends exactly the same message twice

• Validity: If a correct process multicasts (sends) message m, then it will
eventually deliver m to itself.

• Liveness for the sender.

• Agreement: If a correct process delivers message m, then all the other
correct processes in group(m) will eventually deliver m.

• All or nothing.

• Validity and agreement together ensure overall liveness: if some
correct process multicasts a message m, then, all correct processes
deliver m too.

How to achieve R-multicast? To be continued in next class….

