
Distributed Systems

CS425/ECE428

Instructor : Radhika Mittal

Logistics Related

• HW1 will be released in the next 30mins or so.
• You can solve first 4 questions right away
• You can solve last two questions hopefully by end of today’s class.

• MP0 due on Wednesday.

Today’s agenda

• Global State

• Chapter 14.5

• Goal: reason about how to capture the state across all
processes of a distributed system without requiring time
synchronization.

Process, state, events
• Consider a system with n processes: <p1, p2, p3, …., pn>.
• Each process pi is associated with state si.

• State includes values of all local variables, affected files, etc.
• Each channel can also be associated with a state.

• Which messages are currently pending on the channel.
• Can be computed from process’ state:

• Record when a process sends and receives messages.
• if pi sends a message that pj has not yet received, it is pending

on the channel.
• State of a process (or a channel) gets transformed when an event

occurs. 3 types of events:
• local computation, sending a message, receiving a message.

Capturing a global snapshot

• Useful to capture a global snapshot of the system:
• Checkpointing the system state.
• Reasoning about unreferenced objects (for garbage

collection).
• Deadlock detection.
• Distributed debugging.

Capturing a global snapshot
• Global state or global snapshot is state of each process

(and each channel) in the system at a given instant of time.
• Difficult to capture a global snapshot of the system.
• Strawman:

• Each process records its state at 2:05pm.
• We get the global state of the system at 2:05pm.
• But precise clock synchronization is difficult to achieve.

• How do we capture global snapshots without
precise time synchronization across processes?

• State of a process (or a channel) gets transformed when an event
occurs.

• 3 types of events:
• local computation, sending a message, receiving a message.

• ei
n is the nth event at pi.

Some more notations and definitions

Some more notations and definitions
• For a process pi , where events ei

0, ei
1, … occur:

history(pi) = hi = <ei
0, ei

1, … >
prefix history(pi

k) = hi
k = <ei

0, ei
1, …,ei

k >
si

k : pi’s state immediately after kth event.
• For a set of processes <p1, p2, p3, …., pn>:

global history: H = Èi (hi)
global state: S = Èi (si)

Some more notations and definitions
• For a process pi , where events ei

0, ei
1, … occur:

history(pi) = hi = <ei
0, ei

1, … >
prefix history(pi

k) = hi
k = <ei

0, ei
1, …,ei

k >
si

k : pi’s state immediately after kth event.
• For a set of processes <p1, p2, p3, …., pn>:

global history: H = Èi (hi)
global state: S = Èi (si)
But state at what time instant?

Some more notations and definitions
• For a process pi , where events ei

0, ei
1, … occur:

history(pi) = hi = <ei
0, ei

1, … >
prefix history(pi

k) = hi
k = <ei

0, ei
1, …,ei

k >
si

k : pi’s state immediately after kth event.
• For a set of processes <p1, p2, p3, …., pn>:

global history: H = Èi (hi)
global state: S = Èi (si

ci)
a cut C Í H = h1

c1 È h2
c2 È … È hn

cn

the frontier of C = {ei
ci, i = 1,2, … n}

global state S that corresponds to cut C = Èi (si
ci)

Example: Cut

m1 m2

p1

p2
Physical

time

C2
C1

C1: < a, e>
Frontier of C1: {a, e}

C2: <a, b, c, e, f, g >
Frontier of C2: {c,g}

a b c d

e f g

Some more notations and definitions
• For a process pi , where events ei

0, ei
1, … occur:

history(pi) = hi = <ei
0, ei

1, … >
prefix history(pi

k) = hi
k = <ei

0, ei
1, …,ei

k >
si

k : pi’s state immediately after kth event.
• For a set of processes <p1, p2, p3, …., pn>:

global history: H = Èi (hi)
a cut C Í H = h1

c1 È h2
c2 È … È hn

cn

the frontier of C = {ei
ci, i = 1,2, … n}

global state S that corresponds to cut C = Èi (si
ci)

Consistent cuts and snapshots

• A cut C is consistent if and only if
"e Î C (if f ® e then f Î C)

Example: Cut

m1 m2

p1

p2
Physical

time

C2
C1

C1: < a, e>
Frontier of C1: {a, e}

C2: <a, b, c, e, f, g >
Frontier of C2: {c,g}

a b c d

e f g

Inconsistent cut. Consistent cut.

Consistent cuts and snapshots

• A cut C is consistent if and only if
"e Î C (if f ® e then f Î C)

• A global state S is consistent if and only if it corresponds
to a consistent cut.

Consistent cuts and snapshots

• A cut C is consistent if and only if
"e Î C (if f ® e then f Î C)

• A global state S is consistent if and only if it corresponds
to a consistent cut.

How to capture global state?
• Ideally: state of each process (and each channel) in the system at a given

instant of time.
• Difficult to capture -- requires precisely synchronized time.

• Relax the problem: find a consistent global state.
• For a system with n processes <p1, p2, p3, …., pn>, capture the state

of the system after the ci
th event at process pi.

• State corresponding to the cut defined by frontier events
{ei

ci, for i = 1,2, … n}.
• We want the state to be consistent.

• Must correspond to a consistent cut.

How to find a consistent global state that corresponds to a
consistent cut ?

Chandy-Lamport Algorithm

• Goal:
• Record a global snapshot

• Process state (and channel state) for a set of processes.
• The recorded global state is consistent.

• Identifies a consistent cut.

• Records corresponding state locally at each process.

Chandy-Lamport Algorithm

• System model and assumptions:
• System of n processes: <p1, p2, p3, …., pn>.
• There are two uni-directional communication channels between

each ordered process pair : pj to pi and pi to pj.
• Communication channels are FIFO-ordered (first in first out).

• if pi sends m before m’ to pj , then pj receives m before m’.
• All messages arrive intact, and are not duplicated.
• No failures: neither channel nor processes fail.

Chandy-Lamport Algorithm

• Requirements:
• Snapshot should not interfere with normal application actions,

and it should not require application to stop sending messages.
• Any process may initiate algorithm.

Chandy-Lamport Algorithm Intuition

• First, initiator pi:
• records its own state.
• creates a special marker message.
• sends the marker to all other process.

• When a process receives a marker.
• records its own state.

Chandy-Lamport Algorithm Intuition

• First, initiator pi:
• records its own state.
• creates a special marker message.
• sends the marker to all other process.
• start recording messages received on other channels

• until a marker is received on that channel.
• When a process receives a marker.

• records its own state.

Chandy-Lamport Algorithm Intuition

m1 m2

p1

p2
Physical

time

s1

s2

Cut frontier: {c, g}

a b c d

e f g

Chandy-Lamport Algorithm Intuition

• First, initiator pi:
• records its own state.
• creates a special marker message.
• sends the marker to all other process.
• start recording messages received on other channels

• until a marker is received on that channel.
• When a process receives a marker.

• records its own state.

This captures the local state at each process.
How do we ensure the state is consistent?

Chandy-Lamport Algorithm Intuition

• First, initiator pi:
• records its own state.
• creates a special marker message.
• sends the marker to all other process.
• start recording messages received on other channels.

• until a marker is received on a channel.
• When a process receives a marker.

• If marker is received for the first time.
• records its own state.
• sends marker on all other channels.

Leads to a consistent cut (we’ll get back to it)
What about the channel state?

Chandy-Lamport Algorithm Intuition

m1 m2

p1

p2
Physical

time

s1

s2

Cut frontier: {c, g}

a b c d

e f g

Chandy-Lamport Algorithm Intuition

m1 m2

p1

p2
Physical

time

s1

s2

Cut frontier: {c, g}

a b c d

e f g

Chandy-Lamport Algorithm Intuition

m1 m2

p1

p2
Physical

time

s1

s2

Cut frontier: {c, g}

a b c d

e f g

Chandy-Lamport Algorithm Intuition

• First, initiator pi:
• records its own state.
• creates a special marker message.
• sends the marker to all other process.
• start recording messages received on other channels.

• until a marker is received on a channel.
• When a process receives a marker.

• If marker is received for the first time.
• records its own state.
• sends marker on all other channels.
• start recording messages received on other channels.

• until a marker is received on a channel.

Chandy-Lamport Algorithm

• First, initiator pi:
• records its own state.
• creates a special marker message.
• for j=1 to n except i

• pi sends a marker message on outgoing channel cij
• starts recording the incoming messages on each of the

incoming channels at pi : cji (for j=1 to n except i).

Chandy-Lamport Algorithm
Whenever a process pi receives a marker message on an incoming
channel cki

• if (this is the first marker pi is seeing)
• pi records its own state first
• marks the state of channel cki as “empty”
• for j=1 to n except i

• pi sends out a marker message on outgoing channel cij
• starts recording the incoming messages on each of the incoming

channels at pi : cji (for j=1 to n except i and k).
• else // already seen a marker message

• mark the state of channel cki as all the messages that have arrived
on it since recording was turned on for cki

Chandy-Lamport Algorithm

The algorithm terminates when
• All processes have received a marker

• To record their own state
• All processes have received a marker on all the (n-1) incoming

channels
• To record the state of all channels

P2

Time
P1

P3

A B C D E

E F G

H I J

Message
Instruction or Step

Example

p1 is initiator:
• Record local state s1,
• Send out markers
• Start recording on channels c21, c31

P2

Time
P1

P3

A B C D E

E F G

H I J

Example

s1, Record c21, c31

• First marker!
• Record own state as s3

• Mark c13 state as empty
• Start recording on other incoming c23

• Send out markers

P2

Time
P1

P3

A B C D E

E F G

H I J

Example

s1, Record c21, c31

s3
c13 = < >
Record c23

P2

Time
P1

P3

A B C D E

E F G

H I J

Example

s1, Record c21, c31

s3
c13 = < >
Record c23

Duplicate marker!
State of channel c31 = < >

P2

Time
P1

P3

A B C D E

E F G

H I J

Example

P2

Time
P1

P3

A B C D E

E F G

H I J

s1, Record c21, c31

s3
c13 = < >
Record c23

c31 = < >

• First marker
• Record own state as s2

• Mark c32 state as empty
• Turn on recording on c12
• Send out markers

Example

P2

Time
P1

P3

A B C D E

E F G

H I J

s1, Record c21, c31

s3
c13 = < >
Record c23

c31 = < >

• s2

• c32 = < >
• Record c12

Example

P2

Time
P1

P3

A B C D E

E F G

H I J

s1, Record c21, c31

s3
c13 = < >
Record c23

c31 = < >

s2

c32 = < >
Record c12

• Duplicate!
• c12 = < >

Example

P2

Time
P1

P3

A B C D E

E F G

H I J

s1, Record c21, c31

s3
c13 = < >
Record c23

c31 = < >

s2

c32 = < >
Record c12

c12 = < >

• Duplicate!
• c21 = <message G to D >

Example

P2

Time
P1

P3

A B C D E

E F G

H I J

s1, Record c21, c31

s3
c13 = < >
Record c23

c31 = < >

s2

c32 = < >
Record c12

c12 = < >

c21 = <message G to D >

• Duplicate!
• c23 = < >

Example

P2

Time
P1

P3

A B C D E

E F G

H I J

s1, Record c21, c31

s3
c13 = < >
Record c23

c31 = < >

s2

c32 = < >
Record c12

c12 = < >

c21 = <message G to D >

• Duplicate!
• c23 = < >

Example

Algorithm has terminated!

P2

Time
P1

P3

A B C D E

E F G

H I J

s1

s3 c13 =	<	>

c31 = < >

s2 c32 = < >

c12 = < >

c21 = <message G to D >

c23 = < >

Example

Frontier for the resulting cut:
{B, G, H}

Channel state for the cut:
Only c21 has a pending message.

P2

Time
P1

P3

A B C D E

E F G

H I J

s1

s3 c13 =	<	>

c31 = < >

s2 c32 = < >

c12 = < >

c21 = <message G to D >

c23 = < >

Global snapshots pieces can be
collected at a central location.

Example

