Distributed Systems

CS425/ECE428

Instructor: Radhika Mittal

While we wait...

Local processing event E Message Delivery

e (Can we conclude that event A occurred before event C?
e (Can we conclude that event B occurred before event C?

The clocks of blue and green processes cannot be perfectly synchronized.
Can we simply compare timestamps of these events!

Logistics Related

* VM clusters have been assigned!

* Newly registered students:
* Please make sure you have access to Campuswire and Gradescope
* If you are in 4 credits, make sure you have been allocated a VM

cluster for the MPs.
* Email Neel (netid: neeld?) to get the required access.

* Can you please say your name before speaking up in class’

Today’s agenda

* Logical Clocks and Timestamps
* Chapter 144

* Global State (if time)
* Chapter 4.5

Event Ordering

* A usecase of synchronized clocks:
* Reasoning about order of events.

* Why Is It useful?
* Debugging distributed applications
* Reconciling updates made to an object in a distributed datastore.

Rollback recovery during failures:

I. Checkpoint state of the system; 2. Log events (with timestamps);
3. Rollback to checkpoint and replay events in order if system
crashes.

e Can we reason about order of events without
synchronized clocks?

Process, state, events

* Consider a system with n processes: <py, Ps P3s -« -+ P,

* Fach process p; Is described by its state s; that gets

transformed over time.
e State includes values of all local variables, affected files, etc.

* s, gets transformed when an event occurs.

* Three types of events:
* Local computation.
* Sending a message.
* Recelving a message.

Event Ordering

* Fasy to order events within a single process p;, based on
their time of occurrence.

* How do we reason about events across processes!
* A message must be sent before it gets received at
another process.

* These two notions help define happened-before (HB)
relationship denoted by —.
* e = e means e happened before ¢€’.

Happened-Before Relationship

* Happened-before (HB) relationship denoted by —.
* e = € means e happened before €.
* e >. e means e happened before €', as observed by p;.

* HB rules:

*|f3p,e—> e thene—> e’ (- 2R
~ ¢ Forany message m, send(m) — receive(m) -
*lfe—>eande > e’ thene - ¢”

* Also called “causal” or “potentially causal” ordering.

Event Ordering: Example

P4 bo e
p2 A & @ - Ph yS|Ca|
time
C d\
p3 8 >

Which event happened first!
a—>bandb—->candc—>dandd - f
a—>banda—>canda—>danda—f

Event Ordering: Example

P4 e e
p2 A & @ - Ph yS|Ca|
time
C d\
P3 . E >
. A

What can we say about e!
e > f

el elle , ¢ L[&

a~e ande P a
alle
a and e are concurrent.

Event Ordering: Example

P+ e e

p2 A & @ > Ph yS|Ca |

time
C d\

P3 . . >

What can we say about e and d!
elld

Logical Timestamps: Example

P4 e e
N
A h Physi
P2 ’ o . ysical
time
C d\
p3 v 8 >
e 8 f

What can we say about e and d!
e > d

Lamport’s Logical Clock

* Logical timestamp for each event that captures the
happened-before relationship.

* Algorithm: Each process p.
| inttializes local clock L, = 0.
2. Increments L, before timestamping each event.

3. piggybacks L, when sending a message.
* (le.sends L, along with the message)

4. upon recelving a message with clock value t
* sets L, = max(t, L)

* increments L, before timestamping the receive event (as per
step 2).

Logical Timestamps: Example

P4

P2

P3

.. Physical

0 1 2
¢ ¢
a b\\\\\\i:\jZ)
0 \?>0) .4
3
0 f Ja>1)

time

f5

Lamport’s Logical Clock

* Logical timestamp for each event that captures the
happened-before relationship.

* Algorithm: Each process p.
| inttializes local clock L, = 0.
2. increments L. before timestamping each event.
3. piggybacks L, when sending a message.

* (le.sends L, along with the message)
4. upon recelving a message with clock value t
* sets L, = max(t,L) &

* increments L, before timestamping the receive event (as per
step 2).

Logical Timestamps: Example

P4

P2

P3

. Physical

’ e -
3 .
C d m, (5) time
(2)

Lamport’s Logical Clock

* Logical timestamp for each event that captures the
happened-before relationship.

e |[f e »> e’ then
* L(e) < L(e)

* What can we conclude if L(e) < L(e’)!
* We cannot say that e — €’
* We can say: e’ » e
* Eithere - e’ orel| €

P4

P2

P3

< o L "L o
(e
Loglcal Timestamps: Example 7,),
e &
el[e
0o 1 2
a b\MZ)
° 270 - _ Physical
c 3 dwi‘” time
’ } _(4>1).
e f5

L(e) < L(d), e || d L(e) < L(f),e > f

Vector Clocks

* Fach event associated with a vector timestamp.
* Fach process p; maintains vector of clocks V,

* The size of this vector Is the same as the no. of processes.
* Vi[j] is the clock for process p;as maintained by p,
* Algorithm: each process p;:

Vector Clocks
* Fach event associated with a vector timestamp.
* Fach process p; maintains vector of clocks V,

* The size of this vector Is the same as the no. of processes.
* Vi[j] is the clock for process p;as maintained by p,

* Algorithm: each process p;:
| inttializes local clock Vi[j] =0

Vector Clocks

* Fach event associated with a vector timestamp.

* Fach process p; maintains vector of clocks V,

* The size of this vector Is the same as the no. of processes.
* Vi[j] is the clock for process p;as maintained by p,

* Algorithm: each process p;:
| inttializes local clock Vi[j] =0
2. increments V[i] before timestamping each event.

Vector Clocks

* Fach event associated with a vector timestamp.
* Fach process p; maintains vector of clocks V,

* The size of this vector Is the same as the no. of processes.
* Vi[j] is the clock for process p;as maintained by p,

* Algorithm: each process p;:
| inttializes local clock Vi[j] =0

2. increments V[i] before timestamping each event.
3. piggybacks V. when sending a message.

Vector Clocks

* Fach event associated with a vector timestamp.
* Fach process p; maintains vector of clocks V,

* The size of this vector Is the same as the no. of processes.
* Vi[j] is the clock for process p;as maintained by p,
* Algorithm: each process p;:
| inttializes local clock Vi[j] =0
2. increments V[i] before timestamping each event.
3. piggybacks V. when sending a message.
4. upon recelving a message with vector clock value v
* setsV,[j] = max(V/[j], v[j]) forall j=1...n.

* increments V[i] before timestamping receive event
(as per step 2).

Vector Timestamps: Example

23
[0,0,0] [1,0,0] [2,0,0]
p1 ¢ P
a b\M[Z,0,0])
0,0,0
[Pz] <, [2.20] .
240 time
C[] d m2 ([212;0])
[0} D;O] [0’0’1]
P3 s

8 >
© f [2}2;2]

Vector Timestamps: Example

[0,0,0] [1,0,0] [2,0,0]
p1 @ P

. b my ([2,0,0])
0,9,0 [Lﬁﬂ
[p2’ = o e 12,3,2] . Physical
2,1,0 |
|]C d mo ([2,3,2]) time
[0,p,0] [0,0,1] ([0,0,2])
P3 s

8 >
e g [0,0,2] ¢ [2,33]

Comparing Vector Timestamps
* et V(e) =V and V(¢e’) =V’

V=V, iff V[i]=V[i]foralli=1 ... n
-V <V, iff V[i]<VIi]foralli=1,...,n
c V<V, iff VSV &V %V

ff V<V &3 jsuch that (V] < V[i])

ce—elff V<V
* (V< V implese > ¢€’)and (e » € implies V <V’)

ce||eiff (V<£V and V <V)

Vector Timestamps: Example

[0,0,

P4

P2

[0,
P3

0] [1,0,0] [21010]
@ @

a b\M[Z,0,0])
[0,9,0] . [2,2,0]

’ ° .. Physical

c[2,1,0] d m, ([2,2,0]) time

D,0] [0,0,1]

8 >
e f [2}2;2]

What can we say about e & f based on their vector timestamps!?

Vector Timestamps: Example

[0,0,0] [1,0,0] [2,0,0]

P1 e o
a b\M[Z,0,0])
[poz,o,ol <, 122,01 pysial
c[2,1,0] d . (2200 g
[0,p,0]1 10,0,1]
P3 s

8 >
© f [2}2;2]

V(e) <V(f),e = f

Vector Timestamps: Example

[0,0,0] [1,0,0] [2,0,0]
p1 @ P

a b\H[Z,0,0])
0,0,0
[p2 : <, o 1220 _ Physical
2,1,0 time
c[2L0l 4 m, (12,2,0])
[0,0,0] [0,0,1]
P3 »

8 >
e f [2}2;2]

What can we say about e & d based on their vector timestamps!?

Vector Timestamps: Example

[0,0,0] [1,0,0] [2,0,0]

P4 @ e
a b\”[Z,0,0])
0,0,0
[p2 : <, o 1220 _ Physical

-

c[2,1,0] d m, ([2,2,0]) time
00,01 [0,0,1]

P3 8 >
f [2}2;2]

e

V(e) < V(d) andV(d) < V(e), e || d

Vector Timestamps: Example

[0,0,0] [1,0,0] [2,0,0]
p1 @ P

a b\”[Z,0,0])
0’),0 [212;2]
[pz‘I] 2o LI [2,3,2] . Physical
[2,1,0] . q m, ((2,3,2]) time
[0,p,0] [0,0,1] ([0,0,2])
P3 8 . >
e g [0,0,2] f [213;3]

How about now!?

Vector Timestamps: Example

[0,0,0] [1,0,0] [2,0,0]

P1 ® e
a b\”[Z,0,0])
0’),0 [212;2]
[pz‘I] 2o LI [2,3,2] . Physical
[2,1,0] . q m, ((2,3,2]) time

[0,p,0] [0,0,1] ([0,0,2])
P3 8 2 >

e g [0,0,2] f [213;3]

V(e) <V(f)e - f
V(e) <V(d), e > d

Timestamps Summary

* Comparing timestamps across events is useful.
* Reconciling updates made to an object in a distributed datastore.

* Rollback recovery during failures:

|. Checkpoint state of the system; 2. Log events (with timestamps);
3. Rollback to checkpoint and replay events in order if system crashes.

* How to compare timestamps across different processes!?
* Physical timestamp: requires clock synchronization.
* Google's Spanner Distributed Database uses “TrueTime”.

* Lamport’s timestamps: cannot fully differentiate between causal
and concurrent ordering of events.

* Oracle uses “System Change Numbers” based on Lamport’s clock.

* Vector timestamps: larger message sizes.
* Amazon's DynamoDB uses vector clocks.

Timestamps Summary

* Comparing timestamps across events is useful.
* Reconciling updates made to an object in a distributed datastore.

* Rollback recovery during failures:

|. Checkpoint state of the system; 2. Log events (with timestamps);
3. Rollback to checkpoint and replay events in order if system crashes.

* How to compare timestamps across different processes!?
* Physical timestamp: requires clock synchronization.
* Google's Spanner Distributed Database uses “TrueTime”.

* Lamport’s timestamps: cannot fully differentiate between causal
and concurrent ordering of events.

* Oracle uses “System Change Numbers” based on Lamport’s clock.

* Vector timestamps: larger message sizes.
* Amazon's DynamoDB uses vector clocks.

Today’s agenda

* Global State
* Chapter 14.5

Process, state, events

* Consider a system with n processes: <py, P P3s - - -+ Pp>>

n

* Fach process p; Is associated with state s..
e State includes values of all local variables, affected files, etc.

* Each channel can also be associated with a state.
* Which messages are currently pending on the channel.
* Can be computed from process’ state:
* Record when a process sends and receives messages.
* if p; sends a message that p; has not yet received, it is pending
on the channel.

* State of a process (or a channel) gets transformed when an event
occurs. 3 types of events:
* local computation, sending a message, receiving a message.

Global State (or Global Snapshot)

* State of each process (and each channel) in the system at a
given instant of time.

* Example:

Col

Two processes: p, and p,
C|,: channel from p, to p, C,,: channel from p, to p;.

Global State (or Global Snapshot)

* State of each process (and each channel) in the system at a
given instant of time.

* Example:
Cjy: [empty]
X,:0
Y,:0
Z,.0
Cyi: [empty]

Process state for p; and p,
No pending messages on the channels.

Global State (or Global Snapshot)

* State of each process (and each channel) in the system at a
given instant of time.

* Example:
C iyt [X; = 4]
X,:0
Y,:0
Z,0
Cyi: [empty]

event |:p, sends a message to p, asking it to set X, =4

Global State (or Global Snapshot)

* State of each process (and each channel) in the system at a
given instant of time.

* Example:
Cjy: [empty]
X,:0
Y,:0
Z,.0
Cyi: [empty]

event 2: p, receives the message.

Global State (or Global Snapshot)

* State of each process (and each channel) in the system at a
given instant of time.

* Example:
Cjy: [empty]
X,:0
Y,:0
Z,.0
Cyi: [empty]

event 3: p, changes the value of X,

Capturing a global snapshot

* Useful to capture a global snapshot of the system:
* Checkpointing the system state.
* Reasoning about unreferenced objects (for garbage
collection).
* Deadlock detection.
* Distributed debugging.

To be continued in next class.. ..

