Distributed Systems

CS425/ECE428

Instructor: Radhika Mittal

While we wait.....

Two generals must agree on a time to attack the enemy base. They can communicate with each-other by sending messengers. But, a messenger may get killed by the enemy along the way. Thankfully, they have unlimited no. of messengers at their disposals. **How can the two generals agree on a time to attack?**

Logistics Related

- OHs information is up on website (with maybe a couple of TBDs that will be resolved soon).
 - We will start from next week.
- Sign-up forms for VM clusters is available on CampusWire.
 - Please fill it up by Wednesday, Jan 29th, 11:59pm.
- Reach out to <u>sie2@illinois.edu</u> if you need access to Campuswire.
- MP0 will be released on Wednesday.
- Lecture recordings on MediaSpace should be accessible to all registered students.

Today's agenda

- System Model
 - Chapter 2.4 (except 2.4.3), parts of Chapter 2.3
- Failure Detection
 - Chapter 15.1

What is a distributed system?

Independent components that are connected by a network and communicate by passing messages to achieve a common goal, appearing as a single coherent system.

- Two main categories:
 - Client-server
 - Peer-to-peer

• Client-server

• Client-server

- Two broad categories:
 - Client-server
 - Peer-to-peer

Distributed algorithm

- Algorithm on a single process
 - Sequence of steps taken to perform a computation.
 - Steps are strictly sequential.
- Distributed algorithm
 - Steps taken by each of the processes in the system (including transmission of messages).
 - Different processes may execute their steps concurrently.

Key aspects of a distributed system

• Processes must communicate with one another to coordinate actions. Communication time is variable.

• Different processes (on different computers) have different clocks!

• Processes and communication channels may fail.

Key aspects of a distributed system

• Processes must communicate with one another to coordinate actions. Communication time is variable.

• Different processes (on different computers) have different clocks!

• Processes and communication channels may fail.

How processes communicate

- Directly using network sockets.
- Abstractions such as remote procedure calls, publish-subscribe systems, or distributed share memory.
- Differ with respect to how the message, the sender or the receiver is specified.

How processes communicate

Communication channel properties

- Latency (L): Delay between the start of **m**'s transmission at **p** and the beginning of its receipt at **q**.
 - Time taken for a bit to propagate through network links.
 - Queuing that happens at intermediate hops.
 - Overheads in the operating systems in sending and receiving messages.

•

Communication channel properties

- Latency (L): Delay between the start of **m**'s transmission at **p** and the beginning of its receipt at **q**.
- Bandwidth (B): Total amount of information that can be transmitted over the channel per unit time.

Communication channel properties

- Total time taken to pass a message is governed by latency and bandwidth of the channel.
 - Both latency and available bandwidth may vary over time.
- Sometimes useful to measure "bandwidth usage" of a system as amount of data being sent between processes per unit time.

Key aspects of a distributed system

• Processes must communicate with one another to coordinate actions. Communication time is variable.

• Different processes (on different computers) have different clocks!

• Processes and communication channels may fail.

Differing clocks

- Each computer in a distributed system has its own internal clock.
- Local clock of different processes show different time values.
- Clocks *drift* from perfect times at different rates.

Key aspects of a distributed system

• Processes must communicate with one another to coordinate actions. Communication time is variable.

• Different processes (on different computers) have different clocks!

• Processes and communication channels may fail.

Two ways to model

- Synchronous distributed systems:
 - Known upper and lower bounds on time taken by each step in a process.
 - Known bounds on message passing delays.
 - Known bounds on clock drift rates.
- Asynchronous distributed systems:
 - No bounds on process execution speeds.
 - No bounds on message passing delays.
 - No bounds on clock drift rates.

Synchronous and Asynchronous

- Most real-world systems are asynchronous.
 - Bounds can be estimated, but hard to guarantee.
 - Assuming system is synchronous can still be useful.
- Possible to build a synchronous system.

Key aspects of a distributed system

• Processes must communicate with one another to coordinate actions. Communication time is variable.

• Different processes (on different computers) have different clocks!

• Processes and communication channels may fail.

Today's agenda

- System Model
 - Chapter 2.4 (except 2.4.3), parts of Chapter 2.3
- Failure Detection
 - Chapter 15.1

Types of failure

- Omission: when a process or a channel fails to perform actions that it is supposed to do.
 - Process may crash.

If synchronous, $\Delta_1 = 2$ (max network delay) If asynchronous, $\Delta_1 = k$ (max observed round trip time); $k \ge 1$

q sends heartbeats to p every T seconds. $(T + \Delta_2)$ is the *timeout* value at p. If $(T + \Delta_2)$ time elapsed since last heartbeat, report q crashed.

If synchronous, $\Delta_2 = \max$ network delay – min network delay

q sends heartbeats to p every T seconds. $(T + \Delta_2)$ is the *timeout* value at p.

If $(T + \Delta_2)$ time elapsed since last heartbeat, report q crashed.

q sends heartbeats to p every T seconds. $(T + \Delta_2)$ is the *timeout* value at p. If $(T + \Delta_2)$ time elapsed since last heartbeat, report q crashed.

If synchronous, $\Delta_2 = \max$ network delay – min network delay If asynchronous, $\Delta_2 = k$ (observed delay); k >= 1

Correctness of failure detection

- Completeness
 - Every failed process is eventually detected.
- Accuracy
 - Every detected failure corresponds to a crashed process (no mistakes).

Correctness of failure detection

- Characterized by **completeness** and **accuracy**.
- Synchronous system
 - Failure detection via ping-ack and heartbeat is both complete and accurate.
- Asynchronous system
 - Our strategy for ping-ack and heartbeat is
 - Impossible to achieve both completeness and accuracy.
 - Can we have an accurate but incomplete algorithm?
 - Never report failure.

- Worst case failure detection time
 - After a process crashes, how long does it take for the other process to detect the crash in the worst case?

- Worst case failure detection time
 - Ping-ack: $T + \Delta_1 \Delta$ where Δ is time taken for the last ping from p to reach q before q crashed. T is the time period for pings, and Δ_1 is timeout value.

Try deriving this!

- Worst case failure detection time
 - Ping-ack: $T + \Delta_1 \Delta$ where Δ is time taken for the last ping from p to reach q before q crashed. T is the time period for pings,

Worst case failure detection time: $t + T + \Delta_1 - (t + \Delta)$ $= T + \Delta_1 - \Delta$

Q: What is worst case value of **∆** for a synchronous system? A: min network delay

- Worst case failure detection time
 - Heartbeat: $T + \Delta_2 + \Delta$ where Δ is time taken for last heartbeat from q to reach p T is the time period for heartbeats, and $T + \Delta_2$ is the timeout.

Try deriving this!

To be continued next class