
Distributed Systems

CS425/ECE428

Instructor : Radhika Mittal

Acknowledgements for some of the materials: Indy Gupta and Nikita Borisov

Logistics

• HW1 is due on Monday. HW2 will be released on Monday.

• Please see CampusWire post #126 on Midterm 1:
• Feb 27-29. Make reservations on PrairieTest (starting Feb 15th).
• Syllabus includes everything upto and including Multicast.
• We will release some practice questions over PrairieLearn by next

week.
• CBTF does not allow cheatsheets – we will provide an abridged

version of slides on PrairieLearn.
• CBTF will provide scratch papers and calculator.
• Please checkout CBTF rules – new rule on bathroom usage!

Today’s agenda

•Mutual Exclusion
• Chapter 15.2

• Leader Election (if time)
• Chapter 15.3

Recap: Problem Statement for mutual exclusion

• Critical Section Problem:
• Piece of code (at all processes) for which we

need to ensure there is at most one process
executing it at any point of time.

• Each process can call three functions
• enter() to enter the critical section (CS)
• AccessResource() to run the critical section code
• exit() to exit the critical section

Recap: Mutual exclusion in distributed systems

• Processes communicating by passing messages.

• Cannot share variables like semaphores!

• How do we support mutual exclusion in a distributed
system?

Recap: Mutual exclusion in distributed systems

•Our focus today: Classical algorithms for mutual
exclusion in distributed systems.
• Central server algorithm
• Ring-based algorithm
• Ricart-Agrawala Algorithm
•Maekawa Algorithm

Recap: System Model

• Each pair of processes is connected by reliable
channels (such as TCP).

• Messages sent on a channel are eventually delivered
to recipient, and in FIFO (First In First Out) order.

• Processes do not fail.
• Fault-tolerant variants exist in literature.

Mutual exclusion in distributed systems

•Our focus today: Classical algorithms for mutual
exclusion in distributed systems.
• Central server algorithm
• Ring-based algorithm
• Ricart-Agrawala Algorithm
•Maekawa Algorithm

Mutual exclusion in distributed systems

•Our focus today: Classical algorithms for mutual
exclusion in distributed systems.
• Central server algorithm
• Ring-based algorithm
• Ricart-Agrawala Algorithm
•Maekawa Algorithm

Ricart-Agrawala’s Algorithm

• Classical algorithm from 1981
• Invented by Glenn Ricart (NIH) and Ashok Agrawala

(U. Maryland)

• No token.
• Uses the notion of causality and multicast.
• Has lower waiting time to enter CS than Ring-Based

approach.

Key Idea: Ricart-Agrawala Algorithm

• enter() at process Pi

• multicast a request to all processes
• Request: <T, Pi>, where T = current Lamport timestamp at Pi

• Wait until all other processes have responded positively to request

• Requests are granted in order of causality.

• <T, Pi> is used lexicographically: Pi in request <T, Pi> is used to break
ties (since Lamport timestamps are not unique for concurrent events).

Messages in RA Algorithm
• enter() at process Pi
• set state to Wanted
• multicast “Request” <Ti, Pi> to all other processes, where Ti = current

Lamport timestamp at Pi
• wait until all other processes send back “Reply”
• change state to Held and enter the CS

• On receipt of a Request <Tj, j> at Pi (i ≠ j):
• if (state = Held) or (state = Wanted & (Ti, i) < (Tj, j))

// lexicographic ordering in (Tj, j), Ti is Lamport timestamp of Pi’s request

add request to local queue (of waiting requests)
else send “Reply” to Pj

• exit() at process Pi
• change state to Released and “Reply” to all requests queued at Pi.

Example: Ricart-Agrawala Algorithm

N80

N32

N5

N12

N6

N3

Request message
<T, Pi> = <102, 32>

Example: Ricart-Agrawala Algorithm

N80

N32

N5

N12

N6

N3

Reply messages

N32 state: Held.
Can now access CS

Example: Ricart-Agrawala Algorithm

N80

N32

N5

N12

N6

N3

N32 state: Held.
Can now access CS

N12 state:
Wanted

N80 state:
Wanted

Request message
<115, 12>

Request message
<110, 80>

Example: Ricart-Agrawala Algorithm

N80

N32

N5

N12

N6

N3

N32 state: Held.
Can now access CS

N12 state:
Wanted

N80 state:
Wanted

Reply messages
Request message

<115, 12>

Request message
<110, 80>

Example: Ricart-Agrawala Algorithm

N80

N32

N5

N12

N6

N3

N32 state: Held.
Can now access CS
Queue requests:
<115, 12>, <110, 80>

N12 state:
Wanted

N80 state:
Wanted

Reply messages
Request message

<115, 12>

Request message
<110, 80>

Example: Ricart-Agrawala Algorithm

N80

N32

N5

N12

N6

N3

N32 state: Held.
Can now access CS
Queue requests:
<115, 12>, <110, 80>

N12 state:
Wanted

N80 state:
Wanted
Queue requests: <115, 12> (since > (110, 80))

Reply messages
Request message

<115, 12>

Request message
<110, 80>

Example: Ricart-Agrawala Algorithm

N80

N32

N5

N12

N6

N3

N32 state: Held.
Can now access CS
Queue requests:
<115, 12>, <110, 80>

N12 state:
Wanted

N80 state:
Wanted
Queue requests: <115, 12> (since > (110, 80))

Reply messages
Request message

<115, 12>

Request message
<110, 80>

Example: Ricart-Agrawala Algorithm

N80

N32

N5

N12

N6

N3

N32 state: Held.
Can now access CS
Queue requests:
<115, 12>, <110, 80>

N12 state:
Wanted

N80 state:
Wanted
Queue requests: <115, 12>

Reply

Request message
<115, 12>

Request message
<110, 80>

Example: Ricart-Agrawala Algorithm

N80

N32

N5

N12

N6

N3

N32 state: Released.

N12 state:
Wanted

N80 state:
Wanted
Queue requests: <115, 12>

Reply

Request message
<115, 12>

Request message
<110, 80>

Example: Ricart-Agrawala Algorithm

N80

N32

N5

N12

N6

N3

N32 state: Released.
Multicast Reply to
<115, 12>, <110, 80>

N80 state:
Wanted
Queue requests: <115, 12>

Reply

Request message
<115, 12>

Request message
<110, 80>

N12 state:
Wanted

Example: Ricart-Agrawala Algorithm

N80

N32

N5

N12

N6

N3

N32 state: Released.
Multicast Reply to
<115, 12>, <110, 80>

N12 state:
Wanted
(waiting for
N80’s
reply)

N80 state:
Held. Can now access CS.
Queue requests: <115, 12>

Reply messages

Request message
<115, 12>

Request message
<110, 80>

Analysis: Ricart-Agrawala’s Algorithm

• Safety
• Two processes Pi and Pj cannot both have access to CS

• If they did, then both would have sent Reply to each other.
• Thus, (Ti, i) < (Tj, j) and (Tj, j) < (Ti, i), which are together not

possible.
• What if (Ti, i) < (Tj, j) and Pi replied to Pj’s request before it

created its own request?
• But then, causality and Lamport timestamps at Pi implies that Ti

> Tj , which is a contradiction.
• So this situation cannot arise.

Analysis: Ricart-Agrawala’s Algorithm

• Safety
• Two processes Pi and Pj cannot both have access to CS.

• Liveness
• Worst-case: wait for all other (N-1) processes to send

Reply.
• Ordering
• Requests with lower Lamport timestamps are granted

earlier.

Analysis: Ricart-Agrawala’s Algorithm

• Safety
• Two processes Pi and Pj cannot both have access to CS.

• Liveness
• Worst-case: wait for all other (N-1) processes to send

Reply.
• Ordering
• Requests with lower Lamport timestamps are granted

earlier.

Analysis: Ricart-Agrawala’s Algorithm

• Bandwidth:
• 2*(N-1) messages per enter operation
• N-1 unicasts for the multicast request + N-1 replies
• Maybe fewer depending on the multicast mechanism.

• N-1 unicasts for the multicast release per exit operation
• Maybe fewer depending on the multicast mechanism.

• Client delay:
• one round-trip time

• Synchronization delay:
• one message transmission time

• Client and synchronization delays have gone down to O(1).

• Bandwidth usage is still high. Can we bring it down further?

Mutual exclusion in distributed systems

•Our focus today: Classical algorithms for mutual
exclusion in distributed systems.
• Central server algorithm
• Ring-based algorithm
• Ricart-Agrawala Algorithm
•Maekawa Algorithm

Maekawa’s Algorithm: Key Idea

• Ricart-Agrawala requires replies from all processes in
group.

• Instead, get replies from only some processes in group.

• But ensure that only one process is given access to CS
(Critical Section) at a time.

Maekawa’sVoting Sets

• Each process Pi is associated with a voting set Vi (subset
of processes).

• Each process belongs to its own voting set.

• The intersection of any two voting sets must be non-empty.

A way to construct voting sets

p1 p2

p3 p4

P1’s voting set = V1
V2

V3 V4

p1 p2
p3 p4

One way of doing this is to put N processes in a ÖN by ÖN matrix and for
each Pi, its voting set Vi = row containing Pi + column containing Pi.

Size of voting set = 2*ÖN-1.

Maekawa: Key Differences From
Ricart-Agrawala

• Each process requests permission from only its voting
set members.
• Not from all

• Each process (in a voting set) gives permission to at
most one process at a time.
• Not to all

Actions

• state = Released, voted = false
• enter() at process Pi:
• state = Wanted
• Multicast Request message to all processes in Vi
• Wait for Reply (vote) messages from all processes in Vi

(including vote from self)
• state = Held

• exit() at process Pi:
• state = Released
• Multicast Release to all processes in Vi

Actions (contd.)
• When Pi receives a Request from Pj:

if (state == Held OR voted = true)
queue Request

else
send Reply to Pj and set voted = true

• When Pi receives a Release from Pj:
if (queue empty)

voted = false
else

dequeue head of queue, say Pk
Send Reply only to Pk
voted = true

Size of Voting Sets

• Each voting set is of size K.

• Each process belongs to M other voting sets.

• Maekawa showed that K=M=approx. ÖN works best.

Optional self-study: Why ÖN ?
• Let each voting set be of size K and each process belongs to M other voting sets.

• Total number of voting set members (processes may be repeated) = K*N

• But since each process is in M voting sets

• K*N = M*N => K = M (1)

• Consider a process Pi

• Total number of voting sets = members present in Pi’s voting set and all their voting sets
= (M-1)*K + 1

• All processes in group must be in above
• To minimize the overhead at each process (K), need each of the above members to be

unique, i.e.,

• N = (M-1)*K + 1

• N = (K-1)*K + 1 (due to (1))
• K ~ ÖN

Size of Voting Sets

• Each voting set is of size K.

• Each process belongs to M other voting sets.

• Maekawa showed that K=M=approx. ÖN works best.

• Matrix technique gives a voting set size of 2*ÖN-1 = O(ÖN).

Performance: Maekawa Algorithm

• Bandwidth
• 2K = 2ÖN messages per enter
• K = ÖN messages per exit
• Better than Ricart and Agrawala’s (2*(N-1) and N-1 messages)
• ÖN quite small. N ~ 1 million => ÖN = 1K

• Client delay:
• One round trip time

• Synchronization delay:
• 2 message transmission times

Safety

• When a process Pi receives replies from all its voting
set Vi members, no other process Pj could have
received replies from all its voting set members Vj.
• Vi and Vj intersect in at least one process say Pk.
• But Pk sends only one Reply (vote) at a time, so it

could not have voted for both Pi and Pj.

Liveness
• Does not guarantee liveness, since can have a deadlock.

• System of 6 processes {0,1,2,3,4,5}. 0,1,2 want to enter critical section:

• V0= {0, 1, 2}:

• 0, 2 send reply to 0, but 1 sends reply to 1;

• V1= {1, 3, 5}:

• 1, 3 send reply to 1, but 5 sends reply to 2;

• V2= {2, 4, 5}:

• 4, 5 send reply to 2, but 2 sends reply to 0;

• Now, 0 waits for 1’s reply, 1 waits for 5’s reply, 5 waits for 2 to send a
release, and 2 waits for 0 to send a release. Hence, deadlock!

Analysis: Maekawa Algorithm

• Safety:
• When a process Pi receives replies from all its voting set Vi

members, no other process Pj could have received replies
from all its voting set members Vj.

• Liveness
• Not satisfied. Can have deadlock!

• Ordering:
• Not satisfied.

Breaking deadlocks
• Maekawa algorithm can be extended to break deadlocks.
• Compare Lamport timestamps before replying (like Ricart-Agrawala).
• But is that enough?

• System of 6 processes {0,1,2,3,4,5}. 0,1,2 want to enter critical section:

• V0= {0, 1, 2}: 0, 2 send reply to 0, but 1 sends reply to 1;

• V1= {1, 3, 5}: 1, 3 send reply to 1, but 5 sends reply to 2;

• V2= {2, 4, 5}: 4, 5 send reply to 2, but 2 sends reply to 0;
• Suppose (L1, P1) < (L0, P0) < (L2, P2).
• Deadlock can still happen based on when messages are received.

• P5 receives P2’s request before P1’s, and replies back to P2 first.

• We need a way to take back the reply.

Breaking deadlocks

• Say Pi’s request has a smaller timestamp than Pj.
• If Pk receives Pj’s request after replying to Pi, send fail to Pj.
• If Pk receives Pi’s request after replying to Pj, send inquire to Pj.
• If Pj receives an inquire and at least one fail, it sends a relinquish to release

locks, and deadlock breaks.

Breaking deadlocks
• System of 6 processes {0,1,2,3,4,5}. 0,1,2 want to enter critical section:

• V0= {0, 1, 2}: 0, 2 send reply to 0, but 1 sends reply to 1;

• V1= {1, 3, 5}: 1, 3 send reply to 1, but 5 sends reply to 2;

• V2= {2, 4, 5}: 4, 5 send reply to 2, but 2 sends reply to 0;

• Suppose (L1, P1) < (L0, P0) < (L2, P2).
• P2 will send fail to itself when it receives its own request after P0.
• P5 will send inquire to P2 when it receives P1’s request.
• P2 will send relinquish to V2. P5 and P4 will set “voted = false”. P5 will reply

to P1.
• P1 can now enter CS, followed by P0, and then P2.

Mutual exclusion in distributed systems
• Classical algorithms for mutual exclusion in distributed systems.
• Central server algorithm
• Satisfies safety, liveness, but not ordering.
• O(1) bandwidth, and O(1) client and synchronization delay.
• Central server is scalability bottleneck.

• Ring-based algorithm
• Satisfies safety, liveness, but not ordering.
• Constant bandwidth usage, O(N) client and synchronization delay

• Ricart-Agrawala algorithm
• Satisfies safety, liveness, and ordering.
• O(N) bandwidth, O(1) client and synchronization delay.

• Maekawa algorithm
• Satisfies safety, but not liveness and ordering.
• O(ÖN) bandwidth, O(1) client and synchronization delay.

