Distributed Systems

CS425/ECE428

Instructor: Radhika Mittal

Acknowledgements for some of the materials: Indy Gupta and Nikita Borisov

Logistics
* HW I Is due on Monday. HW2 will be released on Monday.

* Please see CampusWire post # 126 on Midterm |

* Feb 27-29. Make reservations on PrairieTest (starting Feb [5%).

* Syllabus includes everything upto and including Multicast.

* We will release some practice questions over PrairieLearn by next
week.

* CBTF does not allow cheatsheets — we will provide an abridged
version of slides on Prairiel.earn.

* CBTF will provide scratch papers and calculator.

* Please checkout CBTF rules — new rule on bathroom usage!

Today’s agenda

 Mutual Exclusion
* Chapter 5.2

* Leader Election (if time)
* Chapter 15.3

Recap: Problem Statement for mutual exclusion

® Critical Section Problem:

* Piece of code (at all processes) for which we
need to ensure there is at most one process
executing It at any point of time.

* Fach process can call three functions
* enter() to enter the critical section (CS)
* AccessResource() to run the critical section code
* exit() to exit the critical section

Recap: Mutual exclusion in distributed systems

* Processes communicating by passing messages.
* Cannot share variables like semaphores!

* How do we support mutual exclusion in a distributed
system?

Recap: Mutual exclusion in distributed systems

* Our focus today: Classical algorithms for mutual
exclusion in distributed systems.

* Central server algorithm

* Ring-based algorithm

* Ricart-Agrawala Algorithm
* Maekawa Algorithm

Recap: System Model

* Each pair of processes Is connected by reliable
channels (such as TCP).

* Messages sent on a channel are eventually delivered
to recipient, and in FIFO (First In First Out) order.

* Processes do not fall.
e Fault-tolerant variants exist in literature.

Mutual exclusion in distributed systems

* Our focus today: Classical algorithms for mutual
exclusion in distributed systems.

* Central server algorithm
* Ring-based algorithm

Mutual exclusion in distributed systems

* Our focus today: Classical algorithms for mutual
exclusion in distributed systems.

* Ricart-Agrawala Algorithm

Ricart-Agrawala’s Algorithm

* Classical algorithm from 1981

* Invented by Glenn Ricart (NIH) and Ashok Agrawala
(U. Maryland)

* No token.
* Uses the notion of causality and multicast.

* Has lower waiting time to enter CS than Ring-Based
approach.

Key ldea: Ricart-Agrawala Algorithm

* enter() at process Pi
* multicast a request to all processes

* Request: <T, Pi>, where T = current Lamport timestamp at Pi

* Wait until all other processes have responded positively to request

* Requests are granted in order of causality.

* <1, Pi>1s used lexicographically: Pi in request <T, Pi> Is used to break
ties (since Lamport timestamps are not unique for concurrent events).

Messages in RA Algorithm

* enter() at process P
* set state to VWanted

* multicast “Request” <Ti, Pi> to all other processes, where Ti = current
Lamport timestamp at Pi

* wait until all other processes send back “Reply”
* change state to Held and enter the CS
* On receipt of a Request <Tj,j> at Pi (i #)):
* if (state = Held) or (state = Wanted & (T1,1) < (T},]))
/I lexicographic ordering in (T},), Ti is Lamport timestamp of Pi's request
add request to local queue (of waiting requests)

else send "Reply” to Pj

* exit() at process Pi

* change state to Released and “Reply” to all requests queued at Pi.

Example: Ricart-Agrawala Algorithm

Request message
<T, Pi>=<102, 32>

|

Example: Ricart-Agrawala Algorithm

\Reply messages

— 0

‘ N32 state: Held.
Can now access CS

Example: Ricart-Agrawala Algorithm

N12 state:
Wanted Mage
5,12>

V N32 state: Held.
Can now access CS

questmessage
<110, 80>

N8O state:
Wanted

Example: Ricart-Agrawala Algorithm

N12 state:
Wanted Request message
S5, 12> Reply messages

V N32 state: Held.
Can now access CS
LRequ message

<110, 80>

N8O state:
Wanted

Example: Ricart-Agrawala Algorithm

N12 state:
Wanted Request message
S5, 12> Reply messages
| N32 state: Held.
Can now access CS
Reguest message Queue requests:
<110, 80> <115, 12>, <110, 80>
N8O state:

Wanted

Example: Ricart-Agrawala Algorithm

NI12 state:
Wanted Request message
<115, 12> Reply messages
N32 state: Held.
Can now access CS
Request message Queue requests:
| <110, 80> <115, 12>, <110, 80>
N&O state:
Wanted

Queue requests: <115, 12> (since > (110, 80))

Example: Ricart-Agrawala Algorithm

N12 state:
Wanted L Request message
/ <115, 12> / Reply messages

N32 state: Held.
Can now access CS
Request message Queue requests:
<110, 80> <115, 12>, <110, 80>

N8O state:
Wanted

Queue requests: <115, 12> (since > (110, 80))

Example: Ricart-Agrawala Algorithm

N12 state:

Wanted ' Request message
/ <115, 12>
Reply

~

N32 state: Held.
Can now access CS
Request message Queue requests:
<110, 80> <115, 12>, <110, 80>

N8O state:
Wanted
Queue requests: <115, 12>

Example: Ricart-Agrawala Algorithm

N12 state:

Wanted ' Request message
/ <115, 12>
Reply

~

N32 state: Released.

Request message
<110, 80>

N8O state:
Wanted
Queue requests: <115, 12>

Example: Ricart-Agrawala Algorithm

~

NI12 state:
Wanted r+——Request message
/ \
Reply
N32 state: Released.
Multicast Reply to

equest message <115, 12>, <110, 80>
<110, 80>

N8O state:
Wanted
Queue requests: <115, 12>

Example: Ricart-Agrawala Algorithm

N12 state:

Wanted Hw—Request message

(waiting V , 12>

N80’s Reply messages

reply)
N32 state: Released.
Multicast Reply to

equest message <115, 12>, <110, 80>
. <110, 80>
N&O state:

Held. Can now access CS.
Queue requests: <115, 12>

Analysis: Ricart-Agrawala’s Algorithm

* Safety
* Two processes Pi and Pj cannot both have access to CS
* |f they did, then both would have sent Reply to each other.
* Thus, (Ti,1) < (Tj,)) and (Tj,j) < (Ti, i), which are together not
possible.
* What if (Ti,i) < (Tj,j) and Pi replied to Pj's request before it
created its own request!

* But then, causality and Lamport timestamps at Pi implies that Ti
> Tj, which is a contradiction.

e So this situation cannot arise.

Analysis: Ricart-Agrawala’s Algorithm

* Safety

* Two processes Pi and Pj cannot both have access to CS.

* Liveness
* Worst-case: wait for all other (N-1) processes to send
Reply.
* Ordering

* Requests with lower Lamport timestamps are granted
earlier.

Analysis: Ricart-Agrawala’s Algorithm

* Safety

* Two processes Pi and Pj cannot both have access to CS.

* Liveness
* Worst-case: wait for all other (N-1) processes to send
Reply.
* Ordering

* Requests with lower Lamport timestamps are granted
earlier.

Analysis: Ricart-Agrawala’s Algorithm

* Bandwidth:

* 2*(N-1) messages per enter operation
* N-/ unicasts for the multicast request + N-/ replies
* Maybe fewer depending on the multicast mechanism.
* N-I unicasts for the multicast release per exit operation
* Maybe fewer depending on the multicast mechanism.

* Client delay:

® one round-trip time
* Synchronization delay:
® one message transmission time
* Client and synchronization delays have gone down to O(1).

* Bandwidth usage is still high. Can we bring it down further?

Mutual exclusion in distributed systems

* Our focus today: Classical algorithms for mutual
exclusion in distributed systems.

* Maekawa Algorithm

Maekawa’s Algorithm: Key Idea

* Ricart-Agrawala requires replies from all processes In
group.

* Instead, get replies from only some processes in group.

* But ensure that only one process is given access to CS
(Critical Section) at a time.

Maekawa’s Voting Sets

* Fach process Pi is associated with a voting set Vi (subset

of processes).
* Fach process belongs to its own voting set.

* The intersection of any two voting sets must be non-empty.

A way to construct voting sets

One way of doing this is to put N processes in a YN by YN matrix and for
each Pi, its voting setVi = row containing Pi + column containing Pi.

Size of voting set = 2¥VN-1.

p1|p2

p3‘ p4

Maekawa: Key Differences From
Ricart-Agrawala

* Each process requests permission from only its voting
set members.

 Not from all

* Each process (in a voting set) gives permission to at
most one process at a time.

 Not to all

Actions

e state = Released, voted = false

* enter() at process Pr:
* state = VWanted
* Multicast Request message to all processes inVi

* Wait for Reply (vote) messages from all processes inVi
(including vote from self)

e state = Held

* exit() at process Pi
* state = Released
* Multicast Release to all processes InVi

Actions (contd.)

* When Pi receives a Request from P:
if (state == Held OR = true)
queue Request
else
send Reply to Pj and set = true

* When Pi receives a Release from Pj:
if (queue empty)
= false
else
dequeue head of queue, say Pk
Send Reply only to Pk
= true

Size of Voting Sets

* Each voting set is of size K
* Each process belongs to M other voting sets.

* Maekawa showed that K=M=approx. VN works best.

Optional self-study:Why VN ?

Let each voting set be of size K and each process belongs to M other voting sets.

Total number of voting set members (processes may be repeated) = K*N

But since each process is in M voting sets

o KIN=MN=>K=M (I

Consider a process Pi
* Total number of voting sets = members present in Pi's voting set and all their voting sets
= (M-1)*K + |
* All processes in group must be in above

* To minimize the overhead at each process (K), need each of the above members to be

unique, i.€.,
* N=M-1)*K+ |
* N=(K-1)*+ | (dueto (I))
* K~3N

Size of Voting Sets

* Each voting set is of size K
* Each process belongs to M other voting sets.
* Maekawa showed that K=M=approx. VN works best.

* Matrix technique gives a voting set size of 2*VN-1 = O(VN).

Performance: Maekawa Algorithm

e Bandwidth

« 2K =24N messages per enter

e K=1N messages per exit

* Better than Ricart and Agrawala’s (2*(N-1) and N-| messages)
» VN quite small. N ~ | million => VN = IK

* Client delay:

* One round trip time

* Synchronization delay:
*) message transmission times

Safety

* When a process Pi receives replies from all its voting
set Vi members, no other process Pj could have
received replies from all its voting set members V.

* ViandVj intersect In at least one process say Pk

* But Pk sends only one Reply (vote) at a time, so it
could not have voted for both Pi and Pj.

Liveness

* Does not guarantee liveness, since can have a deadlock.

* System of 6 processes {0,1,2,3,4,5}. 0, 1,2 want to enter critical section:

* V=10, I, 2}

* 0,2 send reply to O, but | sends reply to I;
 V,={l, 3,5k

* |, 3 send reply to |,but 5 sends reply to 2;
* V,=1{2,4, 5}

* 4,5 send reply to 2, but 2 sends reply to 0;

* Now, O warts for |'s reply, | waits for 5's reply, 5 walits for 2 to send a

release, and 2 waits for O to send a release. Hence, deadlock!

Analysis: Maekawa Algorithm

* Safety:

* When a process Pi receives replies from all its voting set Vi
members, no other process Pj could have received replies
from all its voting set membersVj.

e | lveness
 Not satisfied. Can have deadlock!

* Ordering:
e Not satisfied.

Breaking deadlocks

* Maekawa algorithm can be extended to break deadlocks.

¢ Compare Lamport timestamps before replying (like Ricart-Agrawala).

* But is that enough!?
* System of 6 processes {0,1,2,3,4,5}. 0,1,2 want to enter critical section:

* Vo=1{0 1,2}:0,2 send reply to O, but | sends reply to I;
 V,={l,3,5} 1,3 send reply to |, but 5 sends reply to 2;

* V,={2,4,5}: 4,5 send reply to 2, but 2 sends reply to 0;

* Suppose (LI, Pl) < (LO,PO) < (L2, P2).
* Deadlock can still happen based on when messages are received.
* P5 receives P2's request before Pl’s, and replies back to P2 first.

* We need a way to take back the reply.

Breaking deadlocks

Say Pi's request has a smaller timestamp than P;.
f Pk receives Pj's request after replying to Pi, send fail to P
f Pk receives Pi's request after replying to Pj, send inquire to P).

It Pj receives an inquire and at least one falil, it sends a relinquish to release
locks, and deadlock breaks.

Breaking deadlocks

* System of 6 processes {0, 1,2,3,4,5}. 0,1,2 want to enter critical section:
* V=10, 1,2}:0,2 send reply to 0, but | sends reply to I;
 V,={l,3,5} 1,3 send reply to |, but 5 sends reply to 2;

* V,={2,4,5}:4,5 send reply to 2, but 2 sends reply to 0;

Suppose (LI, Pl) < (LO, PO) < (L2, P2).

P2 will send fall to itself when it receives its own request after PO.

P5 will send inquire to P2 when it receives Pl's request.

P2 will send relinquish to V,. P5 and P4 will set “voted = false”. P5 will reply
to PI.

Pl can now enter CS, followed by PO, and then P2.

Mutual exclusion in distributed systems

* Classical algorithms for mutual exclusion in distributed systems.
* Central server algorithm
* Satisfies safety, liveness, but not ordering.
* O(l) bandwidth, and O(1) client and synchronization delay.
* Central server is scalability bottleneck.
* Ring-based algorithm
* Satisfies safety, liveness, but not ordering.
* Constant bandwidth usage, O(N) client and synchronization delay
* Ricart-Agrawala algorithm
* Satisfies safety, liveness, and ordering.
* O(N) bandwidth, O(I) client and synchronization delay.
* Maekawa algorithm
* Satisfies safety, but not liveness and ordering.
¢ O(WN) bandwidth, O(1) client and synchronization delay.

