
Distributed Systems

CS425/ECE428

Instructor : Radhika Mittal

Acknowledgements for some of materials: Indy Gupta and Nikita Borisov

Logistics
• MP0 is due today at 11:59pm.

• Please make sure you are on CampusWire
• Reach out to Sarthak (sm106) if you need access.

• Reminder to share your name when you speak up in class.

• Note about exams on CampusWire:
• Midterm 1 (Feb 27-29), Midterm 2 (April 2-4), Finals (May 2-6).
• Reservation via PrairieTest.

• You can reserve a slot for Midterm 1 starting Feb 15.
• If you need DRES accommodations, please upload your Letter of

Accommodations on the CBTF website.

Today’s agenda

• Multicast
• Chapter 15.4

• Goal: reason about desirable properties for
message delivery among a group of processes.

What we are designing in this class?

Application
(at process p)

MULTICAST PROTOCOL

multicast(g,m)

Incoming
messages

deliver(m)

One process p

‘g’ is a multicast group that also includes the process ‘p’.

Basic Multicast (B-Multicast)

• Straightforward way to implement B-multicast:
• use a reliable one-to-one send (unicast) operation:

B-multicast(group g, message m):
for each process p in g, send (p,m).

receive(m): B-deliver(m) at p.
• Guarantees: message is eventually delivered to the group if:

• Processes are non-faulty.
• The unicast “send” is reliable.
• Sender does not crash.

• Can we provide reliable delivery even after sender crashes?
• What does this mean?

Reliable Multicast (R-Multicast)

• Integrity: A correct (i.e., non-faulty) process p delivers a message m at
most once.

• Assumption: no process sends exactly the same message twice

• Validity: If a correct process multicasts (sends) message m, then it will
eventually deliver m itself.

• Liveness for the sender.

• Agreement: If a correct process delivers message m, then all the other
correct processes in group(m) will eventually deliver m.

• All or nothing.

• Validity and agreement together ensure overall liveness: if some
correct process multicasts a message m, then, all correct processes
deliver m too.

Implementing R-Multicast

Application
(at process p)

R-multicast(g,m)

Incoming
messages

R-deliver(m)

B-multicast(g,m)

B-deliver(m)

Implementing R-Multicast

On initialization
Received := {};

For process p to R-multicast message m to group g
B-multicast(g,m); (p∈ g is included as destination)

On B-deliver(m) at process q in g = group(m)
if (m ∉ Received):

Received := Received ∪ {m};
if (q ≠ p): B-multicast(g,m);
R-deliver(m)

Ordered Multicast

• FIFO ordering: If a correct process issues multicast(g,m) and
then multicast(g,m’), then every correct process that delivers
m’ will have already delivered m.

• Causal ordering: If multicast(g,m) à multicast(g,m’) then any
correct process that delivers m’ will have already delivered m.

• Note that à counts messages delivered to the application, rather
than all network messages.

• Total ordering: If a correct process delivers message m before
m’ (independent of the senders), then any other correct
process that delivers m’ will have already delivered m.

3. Total Order

• Ensures all processes deliver all multicasts in the same
order.

• Unlike FIFO and causal, this does not pay attention to
order of multicast sending.

• Formally
• If a correct process delivers message m before m’

(independent of the senders), then any other correct
process that delivers m’ will have already delivered m.

• A reliable totally ordered multicast is also known as
“atomic multicast”.

Total Order: Example

The order of receipt of multicasts is the same at all processes.
M1:1, then M2:1, then M3:1, then M3:2
May need to delay delivery of some messages.

P2

Time
P1

P3

M1:1

P4

M3:1 M3:2

M2:1

Causal vs Total

• Total ordering does not imply causal ordering.

• Causal ordering does not imply total ordering.

Hybrid variants

• We can have hybrid ordering protocols:
• Causal-total hybrid protocol satisfies both Causal and

total orders.

Example

P2

Time
P1

P3

M1:1 M1:2

P4

M3:1

Does this satisfy causal (and FIFO) order?
Yes

Example

P2

Time
P1

P3

M1:1 M1:2

P4

M3:1

Does this satisfy total order?
No

Example

P2

Time
P1

P3

M1:1 M1:2

P4

M3:1

Does this satisfy total order?
Yes

Ordered Multicast

• FIFO ordering: If a correct process issues multicast(g,m) and
then multicast(g,m’), then every correct process that delivers
m’ will have already delivered m.

• Causal ordering: If multicast(g,m) à multicast(g,m’) then any
correct process that delivers m’ will have already delivered m.

• Note that à counts messages delivered to the application, rather
than all network messages.

• Total ordering: If a correct process delivers message m before
m’ (independent of the senders), then any other correct
process that delivers m’ will have already delivered m.

Next Question

How do we implement ordered multicast?

Ordered Multicast

• FIFO ordering
• If a correct process issues multicast(g,m) and then multicast(g,m’),

then every correct process that delivers m’ will have already
delivered m.

• Causal ordering
• If multicast(g,m) à multicast(g,m’) then any correct process that

delivers m’ will have already delivered m.
• Note that à counts messages delivered to the application, rather

than all network messages.
• Total ordering

• If a correct process delivers message m before m’ (independent of
the senders), then any other correct process that delivers m’ will
have already delivered m.

Implementing FIFO order multicast

Application
(at process p)

FO-multicast(g,m)

Incoming
messages

FO-deliver(m)

B-multicast(g,m)

B-deliver(m)

??

Implementing FIFO order multicast

• Each receiver maintains a per-sender sequence number
• Processes P1 through PN
• Pi maintains a vector of sequence numbers Pi[1…N] (initially all

zeroes)
• Pi[j] is the latest sequence number Pi has received from Pj

Implementing FIFO order multicast

• On FO-multicast(g,m) at process Pj:
set Pj[j] = Pj[j] + 1
piggyback Pj[j] with m as its sequence number.
B-multicast(g,{m, Pj[j]})

• On B-deliver({m, S}) at Pi from Pj: If Pi receives a multicast from Pj
with sequence number S in message

if (S == Pi[j] + 1) then
FO-deliver(m) to application
set Pi[j] = Pi[j] + 1

else buffer this multicast until above condition is true

FIFO order multicast execution

P2

Time
P1

P3

P4

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

FIFO order multicast execution

P2

Time
P1

P3

P4

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

Sequence Vector
Do not confuse with vector timestamps!

Pi[i], is the no. of messages Pi multicast (and
delivered to itself).

Pi[j] ∀j ≠ i is no. of messages delivered at Pi
from Pj.

FIFO order multicast execution

P2

Time
P1

P3

P4

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

FIFO order multicast execution

P2

Time
P1

P3

P4

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

Self-deliveries omitted for simplicity.

FIFO order multicast execution

P2

Time
P1

P3

P4

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[1,0,0,0]
Deliver!

P1, seq: 1

[1,0,0,0]
Deliver!

[1,0,0,0]

FIFO order multicast execution

P2

Time
P1

P3

P4

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[1,0,0,0]
Deliver!

P1, seq: 1

[1,0,0,0]
Deliver!

[0,0,0,0]
Buffer!

P1, seq: 2

[1,0,0,0] [2,0,0,0]

FIFO order multicast execution

P2

P1

P3

P4

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[1,0,0,0]
Deliver!

P1, seq: 1

[1,0,0,0]
Deliver!

[0,0,0,0]
Buffer!

P1, seq: 2

[1,0,0,0] [2,0,0,0]

[2,0,0,0]
Deliver!

[1,0,0,0]
Deliver this!
Deliver buffered <P1, seq:2>
Update [2,0,0,0]

Time

FIFO order multicast execution

P2

P1

P3

P4

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[1,0,0,0]
Deliver!

P1, seq: 1

[1,0,0,0]
Deliver!

[0,0,0,0]
Buffer!

P1, seq: 2

[1,0,0,0] [2,0,0,0]

[2,0,0,0]
Deliver!

[1,0,0,0]
Deliver this!
Deliver buffered <P1, seq:2>
Update [2,0,0,0]

P3, seq: 1
[2,0,1,0]

[2,0,1,0]
Deliver!

[2,0,1,0]
Deliver!

Time

FIFO order multicast execution

P2

Time
P1

P3

P4

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[1,0,0,0]
Deliver!

P1, seq: 1

[1,0,0,0]
Deliver!

[0,0,0,0]
Buffer!

P1, seq: 2

[1,0,0,0] [2,0,0,0]

[2,0,0,0]
Deliver!

[1,0,0,0]
Deliver this!
Deliver buffered <P1, seq:2>
Update [2,0,0,0]

P3, seq: 1
[2,0,1,0]

[2,0,1,0]
Deliver!

[2,0,1,0]
Deliver!
[1,0,1,0]
Deliver!

[2,0,1,0]
Deliver!

Implementing FIFO order multicast

• On FO-multicast(g,m) at process Pj:
set Pj[j] = Pj[j] + 1
piggyback Pj[j] with m as its sequence number.
B-multicast(g, {m, Pj[j]})

• On B-deliver({m, S}) at Pi from Pj: If Pi receives a multicast from Pj
with sequence number S in message

if (S == Pi[j] + 1) then
FO-deliver(m) to application
set Pi[j] = Pi[j] + 1

else buffer this multicast until above condition is true

Implementing FIFO reliable multicast

• On FO-multicast(g,m) at process Pj:
set Pj[j] = Pj[j] + 1
piggyback Pj[j] with m as its sequence number.
R-multicast(g,{m, Pj[j]})

• On R-deliver({m, S}) at Pi from Pj: If Pi receives a multicast from Pj
with sequence number S in message

if (S == Pi[j] + 1) then
FO-deliver(m) to application
set Pi[j] = Pi[j] + 1

else buffer this multicast until above condition is true

Ordered Multicast

• FIFO ordering
• If a correct process issues multicast(g,m) and then multicast(g,m’),

then every correct process that delivers m’ will have already
delivered m.

• Causal ordering
• If multicast(g,m) à multicast(g,m’) then any correct process that

delivers m’ will have already delivered m.
• Note that à counts messages delivered to the application, rather

than all network messages.
• Total ordering

• If a correct process delivers message m before m’ (independent of
the senders), then any other correct process that delivers m’ will
have already delivered m.

Implementing causal order multicast

• Similar to FIFO Multicast
• What you send with a message differs.
• Updating rules differ.

• Each receiver maintains a vector of per-sender sequence
numbers (integers)

• Processes P1 through PN.
• Pi maintains a vector of sequence numbers Pi[1…N] (initially all

zeroes).
• Pi[j] is the latest sequence number Pi has received from Pj.

• Ignores other network messages. Only looks at multicast messages
delivered to the application.

Implementing causal order multicast
• CO-multicast(g,m) at Pj:

set Pj[j] = Pj[j] + 1
piggyback entire vector Pj[1…N] with m as its sequence no.
B-multicast(g,{m, Pj[1…N]})

• On B-deliver({m, V[1..N]}) at Pi from Pj: If Pi receives a multicast from
Pj with sequence vector V[1…N], buffer it until both:

1.This message is the next one Pi is expecting from Pj, i.e.,
V[j] = Pi[j] + 1

2.All multicasts, anywhere in the group, which happened-before
m have been received at Pi, i.e.,

For all k ≠ j: V[k] ≤ Pi[k]
When above two conditions satisfied,

CO-deliver(m) and set Pi[j] = V[j]

Time

P2

P1

P3

P4

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[1,0,0,0]

[1,0,0,0]

Causal order multicast execution

Self-deliveries omitted for simplicity.

Time

P2

P1

P3

P4

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[1,0,0,0]

[1,0,0,0]
Deliver!

[1,0,0,0]
Deliver!

[1,1,0,0]

Causal order multicast execution

Time

P2

P1

P3

P4

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[1,0,0,0]

[1,0,0,0]
Deliver!

[1,1,0,0]
Deliver!

Missing 1 from P1
Buffer!

Causal order multicast execution

[1,0,0,0]
Deliver!

[1,1,0,0]

Time

P2

P1

P3

P4

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[1,0,0,0]

[1,0,0,0]
Deliver!

[1,0,0,0]
Deliver!

[1,1,0,0]

[1,1,0,0]
Deliver!

Missing 1 from P1
Buffer!

[1,0,0,1]

Deliver!
[1,1,0,1]

Deliver!
[1,1,0,1]

Causal order multicast execution

Time

P2

P1

P3

P4

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[1,0,0,0]

[1,0,0,0]
Deliver!

[1,0,0,0]
Deliver!

[1,1,0,0]

[1,1,0,0]
Deliver!

Missing 1 from P1
Buffer!

[1,0,0,1]

Causal order multicast execution

Deliver!
[1,1,0,1]

Deliver!
[1,1,0,1]

Missing 1 from P1
Buffer!

Time

P2

P1

P3

P4

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[1,0,0,0]

[1,0,0,0]
Deliver!

[1,0,0,0]
Deliver!

[1,1,0,0]

[1,1,0,0]
Deliver!

Missing 1 from P1
Buffer!

[1,0,0,1]

Missing 1 from P1
Buffer!

Deliver P1’s multicast, [1,0,0,0]
Causality condition true for buffered multicasts

Deliver P2’s buffered multicast, [1,1,0,0]
Deliver P4’s buffered multicast, [1,1,0,1]

Causal order multicast execution

Deliver!
[1,1,0,1]

Deliver!
[1,1,0,1]

Deliver!
[1,1,0,1]

Ordered Multicast

• FIFO ordering: If a correct process issues multicast(g,m) and
then multicast(g,m’), then every correct process that delivers
m’ will have already delivered m.

• Causal ordering: If multicast(g,m) à multicast(g,m’) then any
correct process that delivers m’ will have already delivered m.

• Note that à counts messages delivered to the application, rather
than all network messages.

• Total ordering: If a correct process delivers message m before
m’ (independent of the senders), then any other correct
process that delivers m’ will have already delivered m.

Implementing total order multicast

• Basic idea:
• Same sequence number counter across different processes.
• Instead of different sequence number counter for each process.

• Two types of approach
• Using a centralized sequencer
• A decentralized mechanism (ISIS)

Implementing total order multicast

• Basic idea:
• Same sequence number counter across different processes.
• Instead of different sequence number counter for each process.

• Two types of approach
• Using a centralized sequencer
• A decentralized mechanism (ISIS)

Sequencer based total ordering
• Special process elected as leader or sequencer.
• TO-multicast(g,m) at Pi:

• Send multicast message m to group g and the sequencer

• Sequencer:
• Maintains a global sequence number S (initially 0)
• When a multicast message m is B-delivered to it:

• sets S = S + 1, and B-multicast(g,{“order”, m, S})

• Receive multicast at process Pi:
• Pi maintains a local received global sequence number Si (initially 0)
• On B-deliver(m) at Pi from Pj, it buffers it until both conditions satisfied

1. B-deliver({“order”, m, S}) at Pi from sequencer, and
2. Si + 1 = S
• Then TO-deliver(m) to application and set Si = Si + 1

Implementing total order multicast

• Basic idea:
• Same sequence number counter across different processes.
• Instead of different sequence number counter for each process.

• Two types of approach
• Using a centralized sequencer
• A decentralized mechanism (ISIS)

ISIS algorithm for total ordering

2

1

1

2

2

1 Message
P2

P3

P1

P4

3 Agreed Seq

3

3

ISIS algorithm for total ordering

2

1

1

2

2

1 Message
P2

P3

P1

P4

3 Agreed Seq

3

3

• Sender multicasts message to everyone.
• Receiving processes:

• reply with proposed priority (sequence no.)
• larger than all observed agreed priorities
• larger than any previously proposed (by self) priority

• store message in priority queue
• ordered by priority (proposed or agreed)

• mark message as undeliverable
• Sender chooses agreed priority, re-multicasts message with agreed priority

• maximum of all proposed priorities
• Upon receiving agreed (final) priority

• reorder messages based on final priority.
• mark the message as deliverable.
• deliver any deliverable messages at front of priority queue.

To be continued in next class

• Example of ISIS, and why it works.

Summary

• Multicast is an important communication mode in
distributed systems.

• Applications may have different requirements:
• Reliability
• Ordering: FIFO, Causal, Total
• Combinations of the above.

