
Distributed Systems

CS425/ECE428

Instructor : Radhika Mittal



Logistics Related

• HW1 has been released. 
• You can solve first 5 questions right away
• You can solve last two questions hopefully by end of this week. 

• MP0 due on Wednesday. 



Today’s agenda

• Global State

• Chapter 14.5

• Goal: reason about how to capture the state across all processes of 
a distributed system without requiring time synchronization.

• Multicast



Recap
• State of each process (and each channel) in the system at a 

given instant of time. 
• Difficult to capture -- requires precisely synchronized time. 

• Relax the problem: find a consistent global state.

• Chandy-Lamport algorithm to calculate global state. 
• Obeys causality (creates a consistent cut).
• Does not interrupt the running distributed application.
• Can be used to detect global properties.



State Transitions: Example

q1

q2



More notations and definitions
• H = set of all events across all processes.
• A run is a total ordering of events in H that is consistent 

with each hi’s ordering.

• A linearization is a run consistent with happens-before (®) 
relation in H.

• Linearizations pass through consistent global states.

• A global state Sk is reachable from global state Si, if there is 
a linearization that passes through Si and then through Sk.

• The distributed system evolves as a series of transitions 
between global states S0 , S1 , ….



Global State Predicates

• A global-state-predicate is a property that is true or false
for a global state. 

• Is there a deadlock?
• Has the distributed algorithm terminated? 

• Two ways of reasoning about predicates (or system 
properties) as global state gets transformed by events. 

• Liveness
• Safety



Liveness
• Liveness = guarantee that something good will happen, 

eventually

• Examples:
• A distributed computation will terminate.
• “Completeness” in failure detectors: the failure will be detected.
• All processes will eventually decide on a value. 

• A global state S0 satisfies a liveness property P iff:
• For all linearizations starting from S0, P is true for some state SL

reachable from S0.
• liveness(P(S0)) º "LÎ linearizations from S0,  L passes through a 

SL & P(SL) = true



Liveness Example

q1

q2

If predicate is true only in the marked states, does it satisfy liveness? 
No



Liveness Example

q1

q2

If predicate is true only in the marked states, does it satisfy liveness? 
Yes



Liveness
• Liveness = guarantee that something good will happen, 

eventually

• Examples:
• A distributed computation will terminate.
• “Completeness” in failure detectors: the failure will be detected.
• All processes will eventually decide on a value. 

• A global state S0 satisfies a liveness property P iff:
• liveness(P(S0)) º "LÎ linearizations from S0,  L passes through a 

SL & P(SL) = true
• For any linearization starting from S0, P is true for some state SL

reachable from S0.



Safety

• Safety = guarantee that something bad will never happen.

• Examples:
• There is no deadlock in a distributed transaction system.
• “Accuracy” in failure detectors: an alive process is not detected as 

failed.
• No two processes decide on different values.

• A global state S0 satisfies a safety property P iff:
• For all states S reachable from S0, P(S) is true.
• safety(P(S0)) º "S reachable from S0, P(S) = true.



Safety Example

q1

q2

If predicate is true only in the marked states, does it satisfy safety? 
No



Safety Example

q1

q2

If predicate is true only in the unmarked states, does it satisfy safety? 
Yes



Safety

• Safety = guarantee that something bad will never happen.

• Examples:
• There is no deadlock in a distributed transaction system.
• “Accuracy” in failure detectors: an alive process is not detected as 

failed.
• No two processes decide on different values.

• A global state S0 satisfies a safety property P iff:
• safety(P(S0)) º "S reachable from S0, P(S) = true.
• For all states S reachable from S0, P(S) is true.



Liveness Example

q1

q2

Technically satisfies liveness, but difficult to capture or reason about. 



Stable Global Predicates

• once true, stays true forever afterwards (for stable liveness)



Stable Global Predicates

q1

q2

If predicate is true only in the marked states, is it stable? 
No



Stable Global Predicates

q1

q2

If predicate is true only in the marked states, is it stable? 
No



Stable Global Predicates

q1

q2

If predicate is true only in the marked states, is it stable? 
Yes



Stable Global Predicates

• once true for a state S, stays true for all states reachable from 
S (for stable liveness)

• once false for a state S, stays false for all states reachable from 
S (for stable non-safety)

• Stable liveness examples (once true, always true)
• Computation has terminated.

• Stable non-safety examples (once false, always false)
• There is no deadlock.
• An object is not orphaned.

• All stable global properties can be detected using the Chandy-
Lamport algorithm.



Global Snapshot Summary

• The ability to calculate global snapshots in a distributed 
system is very important.

• But don’t want to interrupt running distributed application.
• Chandy-Lamport algorithm calculates global snapshot.
• Obeys causality (creates a consistent cut).
• Can be used to detect global properties.
• Safety vs. Liveness.



Rest of today’s agenda

• Multicast
• Chapter 15.4

• Goal: reason about desirable properties for 
message delivery among a group of processes. 



Communication modes

• Unicast 
• Messages are sent from exactly one process to one process.

• Broadcast
• Messages are sent from exactly one process to all processes on 

the network.
• Multicast

• Messages broadcast within a group of processes. 
• A multicast message is sent from any one process to a group of 

processes on the network. 



Where is multicast used?

• Distributed storage
• Write to an object are multicast across replica servers.
• Membership information (e.g., heartbeats) is multicast across all 

servers in cluster.

• Online scoreboards (ESPN, French Open, FIFA World Cup)
• Multicast to group of clients interested in the scores.

• Stock Exchanges
• Group is the set of broker computers.

• ……



Communication modes
• Unicast 

• Messages are sent from exactly one process to one process.
• Best effort: if a message is delivered it would be intact; no reliability 

guarantees. 
• Reliable: guarantees delivery of messages.
• In order: messages will be delivered in the same order that they are sent. 

• Broadcast
• Messages are sent from exactly one process to all processes on the 

network.
• Multicast

• Messages broadcast within a group of processes. 
• A multicast message is sent from any one process to the group of 

processes on the network. 
• How do we define (and achieve) reliable or ordered multicast? 



What we are designing in this class? 

Application
(at process p)

MULTICAST PROTOCOL

multicast(g,m)

Incoming
messages

deliver(m)

One process p

‘g’ is a multicast group that also includes the process ‘p’. 



What we are designing in this class? 

Application
(at process p)

MULTICAST PROTOCOL

multicast(g,m)

Incoming
messages

deliver(m)

One process p

‘g’ is a multicast group that also includes the process ‘p’. 



Basic Multicast (B-Multicast)

• Straightforward way to implement B-multicast:
• use a reliable one-to-one send (unicast) operation:

B-multicast(group g, message m): 
for each process p in g, send (p,m).

receive(m): B-deliver(m) at p.
• Guarantees: message is eventually delivered to the group if:

• Processes are non-faulty.
• The unicast “send” is reliable. 
• Sender does not crash. 

• Can we provide reliable delivery even after sender crashes?
• What does this mean?



Reliable Multicast (R-Multicast)

• Integrity: A correct (i.e., non-faulty) process p delivers a message m at 
most once.

• Assumption: no process sends exactly the same message twice

• Validity: If a correct process multicasts (sends) message m, then it will 
eventually deliver m to itself.

• Liveness for the sender.

• Agreement: If a correct process delivers message m, then all the other 
correct processes in group(m) will eventually deliver m.

• All or nothing.

• Validity and agreement together ensure overall liveness: if some 
correct process multicasts a message m, then, all correct processes 
deliver m too.



Reliable Multicast (R-Multicast)

• Integrity: A correct (i.e., non-faulty) process p delivers a message m at 
most once.

• Assumption: no process sends exactly the same message twice

• Validity: If a correct process multicasts (sends) message m, then it will 
eventually deliver m itself.

• Liveness for the sender.

• Agreement: If a correct process delivers message m, then all the other 
correct processes in group(m) will eventually deliver m.

• All or nothing.

• Validity and agreement together ensure overall liveness: if some 
correct process multicasts a message m, then, all correct processes 
deliver m too.

What happens if a process initiates B-multicasts 
of a message but fails after unicasting to a 

subset of processes in the group?

Agreement is violated! R-multicast not satisfied. 



Implementing R-Multicast

Application
(at process p)

MULTICAST PROTOCOL

multicast(g,m)

Incoming
messages

deliver(m)



Implementing R-Multicast

Application
(at process p)

R-multicast(g,m)

Incoming
messages

R-deliver(m)

B-multicast(g,m) 

B-deliver(m)



Implementing R-Multicast

On initialization
Received := {};

For process p to R-multicast message m to group g
B-multicast(g,m);  (p∈ g is included as destination)

On B-deliver(m) at process q in g = group(m)
if (m ∉ Received):

Received := Received ∪ {m};
if (q ≠ p): B-multicast(g,m); 
R-deliver(m)



Reliable Multicast (R-Multicast)

• Integrity: A correct (i.e., non-faulty) process p delivers a message m at 
most once.

• Assumption: no process sends exactly the same message twice

• Validity: If a correct process multicasts (sends) message m, then it will 
eventually deliver m to itself.

• Liveness for the sender.

• Agreement: If a correct process delivers message m, then all the other 
correct processes in group(m) will eventually deliver m.

• All or nothing.

• Validity and agreement together ensure overall liveness: if some 
correct process multicasts a message m, then, all correct processes 
deliver m too.



Ordered Multicast

• Three popular flavors implemented by several multicast 
protocols:

1. FIFO ordering
2. Causal ordering
3. Total ordering



1. FIFO Order

• Multicasts from each sender are delivered in the order 
they are sent, at all receivers.

• Don’t care about multicasts from different senders.

• More formally
• If a correct process issues multicast(g,m) and then 

multicast(g,m’), then every correct process that delivers 
m’ will have already delivered m.



FIFO Order: Example

M1:1 and M1:2 should be delivered in that order at each receiver.
Order of delivery of M3:1 and M1:2 could be different at different receivers.

P2

Time
P1

P3

M1:1 M1:2

P4

M3:1



2. Causal Order

• Multicasts whose send events are causally related, must 
be delivered in the same causality-obeying order at all 
receivers.

• More formally
• If multicast(g,m) à multicast(g,m’) then any correct 

process that delivers m’ will have already delivered m.
• à is Lamport’s happens-before
• à is induced only by multicast messages in group g, 

and when they are delivered to the application, rather 
than all network messages.



Where is causal ordering useful?

• Group = set of your friends on a social network.

• A friend sees your message m, and she posts a response 
(comment) m’ to it.

• If friends receive m’ before m, it wouldn’t make sense
• But if two friends post messages m” and n” concurrently, 

then they can be seen in any order at receivers.

• A variety of systems implement causal ordering: 
• social networks, bulletin boards, comments on websites, 

etc.



HB Relationship for Causal Ordering

• HB rules in causal ordered multicast:
• If ∃ pi , e →i e’ then e → e’.

• If ∃ pi , multicast(g,m) →i multicast(g,m’), then multicast(g,m) → multicast(g,m’)
• If ∃ pi , delivery(m) →i multicast(g,m’),  then delivery(m) → multicast(g,m’)
• …

• For any message m, send(m) → receive(m)



HB Relationship for Causal Ordering

• HB rules in causal ordered multicast:
• If ∃ pi , e →i e’ then e → e’.

• If ∃ pi , multicast(g,m) →i multicast(g,m’), then multicast(g,m) → multicast(g,m’)
• If ∃ pi , delivery(m) →i multicast(g,m’),  then delivery(m) → multicast(g,m’)
• …

• For any message m, send(m) → receive(m)
• For any multicast message m, multicast(g,m) → delivery(m)

• If e → e’ and e’ → e” then e → e’’
• multicast(g,m) at pi → delivery(m) at pj
• delivery(m) at pj → multicast(g,m’) at pj
• multicast(g,m) at pi → multicast(g,m’) at pj

• Application can only see when messages are “multicast” by the application 
and “delivered” to the application, and not when they are sent or received by 
the protocol. 



Causal Order: Example

M3:1 à M3:2, M1:1 à M2:1, M1:1 à M3:1 and so should be delivered in that order 
at each receiver.
M3:1 and M2:1 are concurrent and thus ok to be delivered in any (and even 
different) orders at different receivers.

P2

Time
P1

P3

M1:1

P4

M3:1 M3:2

M2:1



Causal vs FIFO

• Does Causal Ordering imply FIFO Ordering?
• Yes

• Does FIFO Order imply Causal Order?
• No



Example

P2

Time
P1

P3

M1:1 M1:2

P4

M3:1

Does this satisfy FIFO order?
No 



Example

P2

Time
P1

P3

M1:1 M1:2

P4

M3:1

Does this satisfy FIFO order?
No Yes 



Example

P2

Time
P1

P3

M1:1 M1:2

P4

M3:1

Does this satisfy causal order?
No 



Example

P2

Time
P1

P3

M1:1 M1:2

P4

M3:1

Does this satisfy causal order?
No 



Example

P2

Time
P1

P3

M1:1 M1:2

P4

M3:1

M1:1 is delivered at P3 after M3:1’s multicast.
Does this satisfy causal order?

Yes 



Example

P2

Time
P1

P3

M1:1 M1:2

P4
Does this satisfy causal order?

No



Example

P2

Time
P1

P3

M1:1 M1:2

P4
Does this satisfy FIFO order?

No



3. Total Order

• Ensures all processes deliver all multicasts in the same 
order.

• Unlike FIFO and causal, this does not pay attention to 
order of multicast sending.

• Formally
• If a correct process delivers message m before m’ 

(independent of the senders), then any other correct 
process that delivers m’ will have already delivered m.

• A reliable totally ordered multicast is also known as 
“atomic multicast”.



Total Order: Example

The order of receipt of multicasts is the same at all processes.
M1:1, then M2:1, then M3:1, then M3:2
May need to delay delivery of some messages.

P2

Time
P1

P3

M1:1

P4

M3:1 M3:2

M2:1



Causal vs Total

• Total ordering does not imply causal ordering.

• Causal ordering does not imply total ordering.  



Hybrid variants

• We can have hybrid ordering protocols:
• Causal-total hybrid protocol satisfies both Causal and 

total orders.



Example

P2

Time
P1

P3

M1:1 M1:2

P4

M3:1

Does this satisfy causal (and FIFO) order?
Yes 



Example

P2

Time
P1

P3

M1:1 M1:2

P4

M3:1

Does this satisfy total order?
No



Example

P2

Time
P1

P3

M1:1 M1:2

P4

M3:1

Does this satisfy total order?
Yes 



Ordered Multicast

• FIFO ordering: If a correct process issues multicast(g,m) and 
then multicast(g,m’), then every correct process that delivers 
m’ will have already delivered m.

• Causal ordering: If multicast(g,m) à multicast(g,m’) then any 
correct process that delivers m’ will have already delivered m.

• Note that à counts messages delivered to the application, rather 
than all network messages.

• Total ordering: If a correct process delivers message m before 
m’ (independent of the senders), then any other correct 
process that delivers m’ will have already delivered m.



Next Question

How do we implement ordered multicast? 



Ordered Multicast

• FIFO ordering
• If a correct process issues multicast(g,m) and then multicast(g,m’), 

then every correct process that delivers m’ will have already 
delivered m.

• Causal ordering
• If multicast(g,m) à multicast(g,m’) then any correct process that 

delivers m’ will have already delivered m.
• Note that à counts messages delivered to the application, rather 

than all network messages.
• Total ordering

• If a correct process delivers message m before m’ (independent of 
the senders), then any other correct process that delivers m’ will 
have already delivered m.



Implementing FIFO order multicast

Application
(at process p)

FO-multicast(g,m)

Incoming
messages

FO-deliver(m)

B-multicast(g,m) 

B-deliver(m)

??



Implementing FIFO order multicast

• Each receiver maintains a per-sender sequence number 
• Processes P1 through PN
• Pi maintains a vector of sequence numbers Pi[1…N] (initially all 

zeroes)
• Pi[j] is the latest sequence number Pi has received from Pj



Implementing FIFO order multicast

• On FO-multicast(g,m) at process Pj:
set Pj[j] = Pj[j] + 1
piggyback Pj[j] with m as its sequence number.
B-multicast(g,{m, Pj[j]})

• On B-deliver({m, S}) at Pi from Pj: If Pi receives a multicast from Pj
with sequence number S in message

if (S == Pi[j] + 1) then 
FO-deliver(m) to application
set Pi[j] = Pi[j] + 1

else buffer this multicast until above condition is true



FIFO order multicast execution

P2

Time
P1

P3

P4

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]



FIFO order multicast execution

P2

Time
P1

P3

P4

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

Sequence Vector
Do not confuse with vector timestamps!

Pi[i], is the no. of messages Pi multicast (and 
delivered to itself). 

Pi[j] ∀j ≠ i is no. of messages delivered at Pi 
from Pj.



FIFO order multicast execution

P2

Time
P1

P3

P4

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]



FIFO order multicast execution

P2

Time
P1

P3

P4

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

Self-deliveries omitted for simplicity. 



FIFO order multicast execution

P2

Time
P1

P3

P4

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[1,0,0,0]
Deliver!

P1, seq: 1

[1,0,0,0]
Deliver!

[1,0,0,0]



FIFO order multicast execution

P2

Time
P1

P3

P4

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[1,0,0,0]
Deliver!

P1, seq: 1

[1,0,0,0]
Deliver!

[0,0,0,0]
Buffer!

P1, seq: 2

[1,0,0,0] [2,0,0,0]



FIFO order multicast execution

P2

P1

P3

P4

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[1,0,0,0]
Deliver!

P1, seq: 1

[1,0,0,0]
Deliver!

[0,0,0,0]
Buffer!

P1, seq: 2

[1,0,0,0] [2,0,0,0]

[2,0,0,0]
Deliver!

[1,0,0,0]
Deliver this!
Deliver buffered <P1, seq:2>
Update [2,0,0,0]

Time



FIFO order multicast execution

P2

P1

P3

P4

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[1,0,0,0]
Deliver!

P1, seq: 1

[1,0,0,0]
Deliver!

[0,0,0,0]
Buffer!

P1, seq: 2

[1,0,0,0] [2,0,0,0]

[2,0,0,0]
Deliver!

[1,0,0,0]
Deliver this!
Deliver buffered <P1, seq:2>
Update [2,0,0,0]

P3, seq: 1
[2,0,1,0]

[2,0,1,0]
Deliver!

[2,0,1,0]
Deliver!

Time



FIFO order multicast execution

P2

Time
P1

P3

P4

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[1,0,0,0]
Deliver!

P1, seq: 1

[1,0,0,0]
Deliver!

[0,0,0,0]
Buffer!

P1, seq: 2

[1,0,0,0] [2,0,0,0]

[2,0,0,0]
Deliver!

[1,0,0,0]
Deliver this!
Deliver buffered <P1, seq:2>
Update [2,0,0,0]

P3, seq: 1
[2,0,1,0]

[2,0,1,0]
Deliver!

[2,0,1,0]
Deliver!
[1,0,1,0]
Deliver!

[2,0,1,0]
Deliver!



Implementing FIFO order multicast

• On FO-multicast(g,m) at process Pj:
set Pj[j] = Pj[j] + 1
piggyback Pj[j] with m as its sequence number.
B-multicast(g, {m, Pj[j]})

• On B-deliver({m, S}) at Pi from Pj: If Pi receives a multicast from Pj
with sequence number S in message

if (S == Pi[j] + 1) then 
FO-deliver(m) to application
set Pi[j] = Pi[j] + 1

else buffer this multicast until above condition is true



Implementing FIFO reliable multicast

• On FO-multicast(g,m) at process Pj:
set Pj[j] = Pj[j] + 1
piggyback Pj[j] with m as its sequence number.
R-multicast(g,{m, Pj[j]})

• On R-deliver({m, S}) at Pi from Pj: If Pi receives a multicast from Pj
with sequence number S in message

if (S == Pi[j] + 1) then 
FO-deliver(m) to application
set Pi[j] = Pi[j] + 1

else buffer this multicast until above condition is true



Ordered Multicast

• FIFO ordering
• If a correct process issues multicast(g,m) and then multicast(g,m’), 

then every correct process that delivers m’ will have already 
delivered m.

• Causal ordering
• If multicast(g,m) à multicast(g,m’) then any correct process that 

delivers m’ will have already delivered m.
• Note that à counts messages delivered to the application, rather 

than all network messages.
• Total ordering

• If a correct process delivers message m before m’ (independent of 
the senders), then any other correct process that delivers m’ will 
have already delivered m.



Implementing causal order multicast

• Similar to FIFO Multicast
• What you send with a message differs.
• Updating rules differ. 

• Each receiver maintains a vector of per-sender sequence 
numbers (integers)

• Processes P1 through PN.
• Pi maintains a vector of sequence numbers Pi[1…N] (initially all 

zeroes).
• Pi[j] is the latest sequence number Pi has received from Pj.

• Ignores other network messages. Only looks at multicast messages 
delivered to the application.



Implementing causal order multicast
• CO-multicast(g,m) at Pj:

set Pj[j] = Pj[j] + 1
piggyback entire vector Pj[1…N] with m as its sequence no.
B-multicast(g,{m, Pj[1…N]})

• On B-deliver({m, V[1..N]}) at Pi from Pj: If Pi receives a multicast from 
Pj with sequence vector V[1…N], buffer it until both:

1.This message is the next one Pi is expecting from Pj, i.e., 
V[j] = Pi[j] + 1

2.All multicasts, anywhere in the group, which happened-before 
m have been received at Pi, i.e., 

For all k ≠ j: V[k] ≤ Pi[k]
When above two conditions satisfied, 

CO-deliver(m) and set Pi[j]  = V[j]



Time

P2

P1

P3

P4

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[1,0,0,0]

[1,0,0,0]

Causal order multicast execution

Self-deliveries omitted for simplicity. 



Time

P2

P1

P3

P4

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[1,0,0,0]

[1,0,0,0]
Deliver!

[1,0,0,0]
Deliver!

[1,1,0,0]

Causal order multicast execution



Time

P2

P1

P3

P4

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[1,0,0,0]

[1,0,0,0]
Deliver!

[1,1,0,0]
Deliver!

Missing 1 from P1
Buffer!

Causal order multicast execution

[1,0,0,0]
Deliver!

[1,1,0,0]



Time

P2

P1

P3

P4

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[1,0,0,0]

[1,0,0,0]
Deliver!

[1,0,0,0]
Deliver!

[1,1,0,0]

[1,1,0,0]
Deliver!

Missing 1 from P1
Buffer!

[1,0,0,1]

Deliver!
[1,1,0,1]

Deliver!
[1,1,0,1]

Causal order multicast execution



Time

P2

P1

P3

P4

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[1,0,0,0]

[1,0,0,0]
Deliver!

[1,0,0,0]
Deliver!

[1,1,0,0]

[1,1,0,0]
Deliver!

Missing 1 from P1
Buffer!

[1,0,0,1]

Causal order multicast execution

Deliver!
[1,1,0,1]

Deliver!
[1,1,0,1]

Missing 1 from P1
Buffer!



Time

P2

P1

P3

P4

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[1,0,0,0]

[1,0,0,0]
Deliver!

[1,0,0,0]
Deliver!

[1,1,0,0]

[1,1,0,0]
Deliver!

Missing 1 from P1
Buffer!

[1,0,0,1]

Missing 1 from P1
Buffer!

Deliver P1’s multicast, [1,0,0,0]
Causality condition true for buffered multicasts

Deliver P2’s buffered multicast, [1,1,0,0]
Deliver P4’s buffered multicast, [1,1,0,1]

Causal order multicast execution

Deliver!
[1,1,0,1]

Deliver!
[1,1,0,1]

Deliver!
[1,1,0,1]



Ordered Multicast

• FIFO ordering: If a correct process issues multicast(g,m) and 
then multicast(g,m’), then every correct process that delivers 
m’ will have already delivered m.

• Causal ordering: If multicast(g,m) à multicast(g,m’) then any 
correct process that delivers m’ will have already delivered m.

• Note that à counts messages delivered to the application, rather 
than all network messages.

• Total ordering: If a correct process delivers message m before 
m’ (independent of the senders), then any other correct 
process that delivers m’ will have already delivered m.



Implementing total order multicast

• Basic idea: 
• Same sequence number counter across different processes.
• Instead of different sequence number counter for each process.  

• Two types of approach
• Using a centralized sequencer
• A decentralized mechanism (ISIS) 



Implementing total order multicast

• Basic idea: 
• Same sequence number counter across different processes.
• Instead of different sequence number counter for each process.  

• Two types of approach
• Using a centralized sequencer
• A decentralized mechanism (ISIS) 



Sequencer based total ordering
• Special process elected as leader or sequencer.
• TO-multicast(g,m) at Pi:

• Send multicast message m to group g and the sequencer

• Sequencer:
• Maintains a global sequence number S (initially 0)
• When a multicast message m is B-delivered to it: 

• sets S = S + 1, and B-multicast(g,{“order”, m, S})

• Receive multicast at process Pi: 
• Pi maintains a local received global sequence number Si (initially 0)
• On B-deliver(m) at Pi from Pj, it buffers it until both conditions satisfied

1. B-deliver({“order”, m, S}) at Pi from sequencer, and 
2. Si + 1 = S
• Then TO-deliver(m) to application and set Si = Si + 1



Implementing total order multicast

• Basic idea: 
• Same sequence number counter across different processes.
• Instead of different sequence number counter for each process.  

• Two types of approach
• Using a centralized sequencer
• A decentralized mechanism (ISIS) 



ISIS algorithm for total ordering
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ISIS algorithm for total ordering

2

1

1

2

2

1 Message
P2

P3

P1

P4

3 Agreed Seq

3

3

• Sender multicasts message to everyone.
• Receiving processes:

• reply with proposed priority (sequence no.)
• larger than all observed agreed priorities
• larger than any previously proposed (by self) priority

• store message in priority queue
• ordered by priority (proposed or agreed)

• mark message as undeliverable
• Sender chooses agreed priority, re-multicasts message with agreed priority

• maximum of all proposed priorities
• Upon receiving agreed (final) priority

• reorder messages based on final priority.
• mark the message as deliverable.
• deliver any deliverable messages at front of priority queue.



A:2

Example: ISIS algorithm
A

B

C

A:1

B:1

B:1

A:2 C:3

C:2

C:3

B:3P1

P2

P3

A:2



How do we break ties? 

• Problem: priority queue requires unique priorities.

• Solution: add process # to suggested priority.
• priority.(id of the process that proposed the priority)
• i.e., 3.2 == process 2 proposed priority 3

• Compare on priority first, use process # to break ties.
• 2.1 > 1.3
• 3.2 > 3.1



B:1.2

C:2.1

A:2.3

C:3.2

B:1.3

A:1.1

B:3.1

C:3.3B:3.1

C:3.3A:2.3

Example: ISIS algorithm
A

B

C
A:2.2

C:3.3

B:3.1P1

P2

P3

✔

✔ ✔ ✔

✔ ✔

✔ ✔

A:2.3
✔



Proof of total order with ISIS
• Consider two messages, m1 and m2, and two processes, p and p’.
• Suppose that p delivers m1 before m2.
• When p delivers m1, it is at the head of the queue. m2 is either :

• Already in p’s queue, and deliverable, so
• finalpriority(m1) < finalpriority(m2)

• Already in p’s queue, and not deliverable, so
• finalpriority(m1) < proposedpriority(m2) <= finalpriority(m2)

• Not yet in p’s queue: 
• same as above, since proposed priority > priority of any 

delivered message
• Suppose p’ delivers m2 before m1, by the same argument:

• finalpriority(m2) < finalpriority(m1)
• Contradiction!



Ordered Multicast

• FIFO ordering
• If a correct process issues multicast(g,m) and then multicast(g,m’), 

then every correct process that delivers m’ will have already 
delivered m.

• Causal ordering
• If multicast(g,m) à multicast(g,m’) then any correct process that 

delivers m’ will have already delivered m.
• Note that à counts messages delivered to the application, rather 

than all network messages.
• Total ordering

• If a correct process delivers message m before m’ (independent of 
the senders), then any other correct process that delivers m’ will 
have already delivered m.



Summary

• Multicast is an important communication mode in 
distributed systems.

• Applications may have different requirements:
• Reliability 
• Ordering: FIFO, Causal, Total
• Combinations of the above.
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Time
P1

P3

M1:1 M1:2

P4

M3:1

Does this satisfy FIFO order?
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Example

P2

Time
P1

P3

M1:1 M1:2

P4

M3:1

Does this satisfy causal order?
No 
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P2

Time
P1

P3

M1:1 M1:2

P4

M3:1

Does this satisfy causal order?
No 



Example

P2

Time
P1

P3

M1:1 M1:2

P4

M3:1

M1:1 is delivered at P3 after M3:1’s multicast.
Does this satisfy causal order?

Yes 



Example

P2

Time
P1

P3

M1:1 M1:2

P4
Does this satisfy causal order?

No



Example

P2

Time
P1

P3

M1:1 M1:2

P4
Does this satisfy FIFO order?

No



3. Total Order

Next class!A reliable totally ordered multicast is also known 
as “atomic multicast”.



Also in next class,

How do we implement ordered multicast?


