Distributed Systems

CS425/ECE428

Instructor: Radhika Mittal

Logistics Related

- VM clusters have been assigned!
- Newly registered students:
 - Please make sure you have access to Campuswire and Gradescope
 - If you are in 4 credits, make sure you have been allocated a VM cluster for the MPs.
 - Email Sarthak (netid: sm I 06) to get the required access.
- Please say your name before speaking up in class @

Recap: Logical timestamps

 How to reason about ordering of events across processes without synchronized clocks?

Happened-before Relationship

Lamport Logical Clock

Vector Clock

Today's agenda

Global State

- Chapter 14.5
- Goal: reason about how to capture the state across all processes of a distributed system without requiring time synchronization.

Process, state, events

- Consider a system with **n** processes: $\langle p_1, p_2, p_3,, p_n \rangle$.
- Each process p_i is associated with state **s**_i.
 - State includes values of all local variables, affected files, etc.
- Each channel can also be associated with a state.
 - Which messages are currently pending on the channel.
 - Can be computed from process' state:
 - Record when a process sends and receives messages.
 - if $\mathbf{p_i}$ sends a message that $\mathbf{p_j}$ has not yet received, it is pending on the channel.
- State of a process (or a channel) gets transformed when an event occurs. 3 types of events:
 - local computation, sending a message, receiving a message.

Capturing a global snapshot

- Useful to capture a global snapshot of the system:
 - Checkpointing the system state.
 - Reasoning about unreferenced objects (for garbage collection).
 - Deadlock detection.
 - Distributed debugging.

Capturing a global snapshot

- Global state or global snapshot is state of each process (and each channel) in the system at a given instant of time.
- Difficult to capture a global snapshot of the system.
- Strawman:
 - Each process records its state at 2:05pm.
 - We get the global state of the system at 2:05pm.
 - But precise clock synchronization is difficult to achieve.
- How do we capture global snapshots without precise time synchronization across processes?

Some more notations and definitions

For a process p_i, where events e_i⁰, e_i¹, ... occur: history(p_i) = h_i = <e_i⁰, e_i¹, ... >
 prefix history(p_i^k) = h_i^k = <e_i⁰, e_i¹, ..., e_i^k >
 s_i^k: p_i's state immediately after kth event.

```
• For a set of processes \langle p_1, p_2, p_3, ..., p_n \rangle:

global history: H = \bigcup_i (h_i)

a cut C \subseteq H = h_1^{c_1} \cup h_2^{c_2} \cup ... \cup h_n^{c_n}

the frontier of C = \{e_i^{c_i}, i = 1, 2, ... n\}

global state S that corresponds to cut C = \bigcup_i (s_i^{c_i})
```

Consistent cuts and snapshots

A cut C is consistent if and only if

$$\forall e \in C \text{ (if } f \rightarrow e \text{ then } f \in C)$$

• A global state **S** is consistent if and only if it corresponds to a consistent cut.

How to capture global state?

- Ideally: state of each process (and each channel) in the system at a given instant of time.
 - Difficult to capture -- requires precisely synchronized time.
- Relax the problem: find a consistent global state.
 - For a system with n processes $< p_1, p_2, p_3, \ldots, p_n >$, capture the state of the system after the c_i th event at process p_i .
 - State corresponding to the *cut* defined by frontier events $\{e_i^{c_i}, \text{ for } i = 1, 2, \dots n\}.$
 - We want the state to be consistent.
 - Must correspond to a consistent cut.

How to find a consistent global state that corresponds to a consistent cut?

- Goal:
 - Record a global snapshot
 - Process state (and channel state) for a set of processes.
 - The recorded global state is consistent.
- Identifies a consistent cut.
- Records corresponding state locally at each process.

- System model and assumptions:
 - System of **n** processes: $\langle p_1, p_2, p_3, ..., p_n \rangle$.
 - There are two uni-directional communication channels between each ordered process pair : $\mathbf{p_i}$ to $\mathbf{p_i}$ and $\mathbf{p_i}$ to $\mathbf{p_{i'}}$
 - Communication channels are FIFO-ordered (first in first out).
 - if p_i sends m before m' to p_i , then p_i receives m before m'.
 - All messages arrive intact, and are not duplicated.
 - No failures: neither channel nor processes fail.

- Requirements:
 - Snapshot should not interfere with normal application actions, and it should not require application to stop sending messages.
 - Any process may initiate algorithm.

- First, initiator **p**_i:
 - records its own state.
 - creates a special marker message.
 - sends the marker to all other process.

- When a process receives a marker.
 - records its own state.

- First, initiator **p**_i:
 - records its own state.
 - creates a special marker message.
 - sends the marker to all other process.

- When a process receives a marker.
 - records its own state.

Cut frontier: $\{e_1^2, e_2^2\}$

- First, initiator **p**_i:
 - records its own state.
 - creates a special marker message.
 - sends the marker to all other process.

- When a process receives a marker.
 - records its own state.

This captures the local state at each process.

How do we ensure the state is consistent?

What about the channel state?

- First, initiator **p**_i:
 - records its own state.
 - creates a special marker message.
 - sends the marker to all other process.

- When a process receives a marker.
 - If marker is received for the first time.
 - records its own state.
 - sends marker on all other channels.

Leads to a consistent cut (we'll get back to it)

What about the channel state?

Cut frontier: $\{e_1^2, e_2^2\}$

Cut frontier: $\{e_1^2, e_2^2\}$

- First, initiator **p**_i:
 - records its own state.
 - creates a special marker message.
 - sends the marker to all other process.
 - start recording messages received on other channels.
 - until a marker is received on a channel.
- When a process receives a marker.
 - If marker is received for the first time.
 - records its own state.
 - sends marker on all other channels.
 - start recording messages received on other channels.
 - until a marker is received on a channel.

- First, initiator **p**_i:
 - records its own state.
 - creates a special marker message.
 - for j=1 to n except i
 - $\mathbf{p_i}$ sends a marker message on outgoing channel $\mathbf{c_{ii}}$
 - starts recording the incoming messages on each of the incoming channels at $\mathbf{p_i}$: $\mathbf{c_{ii}}$ (for j=1 to n except i).

Whenever a process $\mathbf{p_i}$ receives a **marker** message on an incoming channel $\mathbf{c_{ki}}$

- if (this is the first marker p_i is seeing)
 - **p**_i records its own state first
 - marks the state of channel c_{ki} as "empty"
 - for j=1 to n except i
 - p_i sends out a marker message on outgoing channel c_{ii}
 - starts recording the incoming messages on each of the incoming channels at $\mathbf{p_i}$: $\mathbf{c_{ii}}$ (for j=1 to n except i and k).
- else // already seen a marker message
 - mark the state of channel \mathbf{c}_{ki} as all the messages that have arrived on it since recording was turned on for \mathbf{c}_{ki}

The algorithm terminates when

- All processes have received a marker
 - To record their own state
- All processes have received a **marker** on all the (*n-1*) incoming channels
 - To record the state of all channels

- **p**_I is initiator:
- Record local state **s**₁,
- Send out markers

Frontier for the resulting cut: {B, G, H}

Channel state for the cut: Only c_{21} has a pending message.

Global snapshots pieces can be collected at a central location.

- Any run of the Chandy-Lamport Global Snapshot algorithm creates a consistent cut.
- Let $\mathbf{e_i}$ and $\mathbf{e_j}$ be events occurring at $\mathbf{p_i}$ and $\mathbf{p_j}$, respectively such that
 - $e_i \rightarrow e_j$ (e_i happens before e_j)
- •The snapshot algorithm ensures that
 - if $\mathbf{e}_{\mathbf{i}}$ is in the cut then $\mathbf{e}_{\mathbf{i}}$ is also in the cut.
- That is: if $\mathbf{e_j} \rightarrow < \mathbf{p_j}$ records its state>, then it must be true that $\mathbf{e_i} \rightarrow < \mathbf{p_i}$ records its state>.

- If $\mathbf{e_j} \rightarrow < \mathbf{p_j}$ records its state>, then it must be true that $\mathbf{e_i} \rightarrow < \mathbf{p_i}$ records its state>.
- By contradiction, suppose $e_j \rightarrow < p_j$ records its state>, and $< p_i$ records its state> $\rightarrow e_i$

- If $\mathbf{e_j} \to < \mathbf{p_j}$ records its state>, then it must be true that $\mathbf{e_i} \to < \mathbf{p_i}$ records its state>.
- By contradiction, suppose $e_j \rightarrow < p_j$ records its state>, and $< p_i$ records its state> $\rightarrow e_i$

- If $\mathbf{e_j} \rightarrow < \mathbf{p_j}$ records its state>, then it must be true that $\mathbf{e_i} \rightarrow < \mathbf{p_i}$ records its state>.
- By contradiction, suppose $e_j \rightarrow < p_j$ records its state>, and $< p_i$ records its state> $\rightarrow e_i$

- If $\mathbf{e}_{\mathbf{j}} \rightarrow < \mathbf{p}_{\mathbf{j}}$ records its state>, then it must be true that $\mathbf{e}_{\mathbf{i}} \rightarrow < \mathbf{p}_{\mathbf{i}}$ records its state>.
- By contradiction, suppose $\mathbf{e}_{j} \rightarrow \langle \mathbf{p}_{j} | \text{records its state} \rangle$, and $\langle \mathbf{p}_{i} | \text{records its state} \rangle \rightarrow \mathbf{e}_{i}$.

- If $\mathbf{e_j} \rightarrow < \mathbf{p_j}$ records its state>, then it must be true that $\mathbf{e_i} \rightarrow < \mathbf{p_i}$ records its state>.
- By contradiction, suppose $\mathbf{e}_j \rightarrow < p_j$ records its state>, and $< p_i$ records its state> $\rightarrow \mathbf{e}_i$
- Consider the path of app messages (through other processes) that go from $\mathbf{e_i}$ to $\mathbf{e_j}$.
- Due to FIFO ordering, markers on each link in above path will precede regular app messages.
- Thus, since $<\mathbf{p_i}$ records its state $> \rightarrow \mathbf{e_i}$, it must be true that $\mathbf{p_i}$ received a marker before $\mathbf{e_i}$.
- Thus $\mathbf{e_i}$ is not in the cut => contradiction.

Global Snapshot Summary

- The ability to calculate global snapshots in a distributed system is very important.
- But don't want to interrupt running distributed application.
- Chandy-Lamport algorithm calculates global snapshot.
- Obeys causality (creates a consistent cut).
- Can be used to detect global properties.
 - Safety vs. Liveness.

Revisions: notations and definitions

For a process p_i, where events e_i⁰, e_i¹, ... occur: history(p_i) = h_i = <e_i⁰, e_i¹, ... >
 prefix history(p_i^k) = h_i^k = <e_i⁰, e_i¹, ..., e_i^k >
 s_i^k: p_i's state immediately after kth event.

```
• For a set of processes \langle p_1, p_2, p_3, ..., p_n \rangle:

global history: H = \bigcup_i (h_i)

a cut C \subseteq H = h_1^{c_1} \cup h_2^{c_2} \cup ... \cup h_n^{c_3}

the frontier of C = \{e_i^{c_i}, i = 1, 2, ... n\}

global state S that corresponds to cut C = \bigcup_i (s_i^{c_i})
```

More notations and definitions

- A run is a total ordering of events in H that is consistent with each \mathbf{h}_i 's ordering.
- A linearization is a run consistent with happens-before
 (→) relation in H.

Order at p_1 : $< e_1^0, e_1^1, e_1^2, e_1^3 >$ Order at p_2 : $< e_2^0, e_2^1, e_2^2 >$ Causal order across p_1 and p_2 : $< e_1^0, e_1^1, e_2^0, e_2^1 e_2^2, e_1^3 >$

Run: $< e_1^0, e_1^1, e_1^2, e_1^3, e_2^0, e_2^1 e_2^2 >$ Linearization: $< e_1^0, e_1^1, e_1^2, e_2^0, e_2^1 e_2^2, e_1^3 >$

Order at p_1 : $< e_1^0, e_1^1, e_1^2, e_1^3 >$ Order at p_2 : $< e_2^0, e_2^1, e_2^2 >$ Causal order across p_1 and p_2 : $< e_1^0, e_1^1, e_2^0, e_2^1, e_2^2, e_1^3 >$

Run: $< e_1^0, e_1^1, e_1^2, e_1^3, e_2^0, e_2^1 e_2^2 >$ Linearization: $< e_1^0, e_1^1, e_1^2, e_2^0, e_2^1 e_2^2, e_1^3 >$

Order at p_1 : $< e_1^0, e_1^1, e_1^2, e_1^3 >$ Order at p_2 : $< e_2^0, e_2^1, e_2^2 >$ Causal order across p_1 and p_2 : $< e_1^0, e_1^1, e_2^0, e_2^1 e_2^2, e_1^3 >$

$$< e_1^0, e_1^1, e_2^0, e_2^1, e_1^2, e_2^2, e_1^3 >$$
:

Order at p_1 : $< e_1^0, e_1^1, e_1^2, e_1^3 >$ Order at p_2 : $< e_2^0, e_2^1, e_2^2 >$ Causal order across p_1 and p_2 : $< e_1^0, e_1^1, e_2^0, e_2^1 e_2^2, e_1^3 >$

$$< e_1^0, e_1^1, e_2^0, e_2^1, e_1^2, e_2^2, e_1^3 >$$
: Linearization $< e_1^0, e_2^1, e_2^0, e_1^1, e_1^2, e_2^2, e_1^3 >$:

Order at p_1 : $< e_1^0, e_1^1, e_1^2, e_1^3 >$ Order at p_2 : $< e_2^0, e_2^1, e_2^2 >$ Causal order across p_1 and p_2 : $< e_1^0, e_1^1, e_2^0, e_2^1 e_2^2, e_1^3 >$

$$< e_1^0, e_1^1, e_2^0, e_2^1, e_1^2, e_2^2, e_1^3 >$$
: Linearization
 $< e_1^0, e_2^1, e_2^0, e_1^1, e_1^2, e_2^2, e_1^3 >$: Not even a run

More notations and definitions

- A run is a total ordering of events in H that is consistent with each \mathbf{h}_i 's ordering.
- A linearization is a run consistent with happens-before
 (→) relation in H.
- Linearizations pass through consistent global states.

Order at p_1 : $< e_1^0, e_1^1, e_1^2, e_1^3 >$ Order at p_2 : $< e_2^0, e_2^1, e_2^2 >$ Causal order across p_1 and p_2 : $< e_1^0, e_1^1, e_2^0, e_2^1 e_2^2, e_1^3 >$

Order at p_1 : $< e_1^0, e_1^1, e_1^2, e_1^3 >$ Order at p_2 : $< e_2^0, e_2^1, e_2^2 >$ Causal order across p_1 and p_2 : $< e_1^0, e_1^1, e_2^0, e_2^1 e_2^2, e_1^3 >$

Order at p_1 : $< e_1^0, e_1^1, e_1^2, e_1^3 >$ Order at p_2 : $< e_2^0, e_2^1, e_2^2 >$ Causal order across p_1 and p_2 : $< e_1^0, e_1^1, e_2^0, e_2^1 e_2^2, e_1^3 >$

Order at p_1 : $< e_1^0, e_1^1, e_1^2, e_1^3 >$ Order at p_2 : $< e_2^0, e_2^1, e_2^2 >$ Causal order across p_1 and p_2 : $< e_1^0, e_1^1, e_2^0, e_2^1 e_2^2, e_1^3 >$

Order at p_1 : $< e_1^0, e_1^1, e_1^2, e_1^3 >$ Order at p_2 : $< e_2^0, e_2^1, e_2^2 >$ Causal order across p_1 and p_2 : $< e_1^0, e_1^1, e_2^0, e_2^1 e_2^2, e_1^3 >$

Order at p_1 : $< e_1^0, e_1^1, e_1^2, e_1^3 >$ Order at p_2 : $< e_2^0, e_2^1, e_2^2 >$ Causal order across p_1 and p_2 : $< e_1^0, e_1^1, e_2^0, e_2^1 e_2^2, e_1^3 >$

Linearization: $< e_1^0, e_1^1, e_1^2, e_2^0, e_2^1, e_2^2, e_1^3 >$ Linearization $< e_1^0, e_1^1, e_2^0, e_2^1, e_1^2, e_2^2, e_1^3 >$

More notations and definitions

- A run is a total ordering of events in H that is consistent with each \mathbf{h}_i 's ordering.
- A linearization is a run consistent with happens-before (→)
 relation in H.
- Linearizations pass through consistent global states.
- A global state S_k is reachable from global state S_i , if there is a linearization that passes through S_i and then through S_k .
- The distributed system evolves as a series of transitions between global states S_0 , S_1 ,

Many linearizations:

- < p0, p1, p2, q0, q1, q2>
- < p0, q0, p1, q1, p2, q2>
- < q0, p0, p1, q1, p2, q2 >
- < q0, p0, p1, p2, q1, q2 >
- •

Causal order:

- $p0 \rightarrow p1 \rightarrow p2$
- $q0 \rightarrow q1 \rightarrow q2$
- $p0 \rightarrow p1 \rightarrow q1 \rightarrow q2$

Concurrent:

- p0 || q0
- pl || q0
- p2 || q0, p2 || q1, p2 || q2

More notations and definitions

- A run is a total ordering of events in H that is consistent with each \mathbf{h}_i 's ordering.
- A linearization is a run consistent with happens-before (→)
 relation in H.
- Linearizations pass through consistent global states.
- A global state S_k is reachable from global state S_i , if there is a linearization that passes through S_i and then through S_k .
- The distributed system evolves as a series of transitions between global states S_0 , S_1 ,

Global State Predicates

- A global-state-predicate is a property that is *true* or *false* for a global state.
 - Is there a deadlock?
 - Has the distributed algorithm terminated?
- Two ways of reasoning about predicates (or system properties) as global state gets transformed by events.
 - Liveness
 - Safety

Liveness

 Liveness = guarantee that something good will happen, eventually

• Examples:

- Guarantee that a distributed computation will terminate.
- "Completeness" in failure detectors.
- All processes eventually decide on a value.
- A global state S₀ satisfies a **liveness** property P iff:
 - liveness($P(S_0)$) $\equiv \forall L \in \text{linearizations from } S_0$, L passes through a $S_L \& P(S_L) = \text{true}$
 - For any linearization starting from S_0 , P is true for some state S_L reachable from S_0 .

Liveness Example

If predicate is true only in the marked states, does it satisfy liveness?

Liveness Example

If predicate is true only in the marked states, does it satisfy liveness?

Liveness Example

If predicate is true only in the marked states, does it satisfy liveness?

Yes

Liveness

 Liveness = guarantee that something good will happen, eventually

• Examples:

- Guarantee that a distributed computation will terminate.
- "Completeness" in failure detectors.
- All processes eventually decide on a value.
- A global state S₀ satisfies a **liveness** property P iff:
 - liveness($P(S_0)$) $\equiv \forall L \in \text{linearizations from } S_0$, L passes through a $S_L \& P(S_L) = \text{true}$
 - For any linearization starting from S_0 , P is true for some state S_L reachable from S_0 .

Safety

• Safety = guarantee that something bad will never happen.

• Examples:

- There is no deadlock in a distributed transaction system.
- "Accuracy" in failure detectors.
- No two processes decide on different values.
- A global state S₀ satisfies a **safety** property P iff:
 - safety($P(S_0)$) $\equiv \forall S$ reachable from S_0 , P(S) = true.
 - For all states S reachable from S_0 , P(S) is true.

Safety Example

If predicate is true only in the marked states, does it satisfy safety?

No

Safety Example

If predicate is true only in the unmarked states, does it satisfy safety?

Yes

Safety

• Safety = guarantee that something bad will never happen.

• Examples:

- There is no deadlock in a distributed transaction system.
- "Accuracy" in failure detectors.
- No two processes decide on different values.
- A global state S₀ satisfies a **safety** property P iff:
 - safety($P(S_0)$) $\equiv \forall S$ reachable from S_0 , P(S) = true.
 - For all states S reachable from S₀, P(S) is true.

Global Snapshot Summary

- The ability to calculate global snapshots in a distributed system is very important.
- But don't want to interrupt running distributed application.
- Chandy-Lamport algorithm calculates global snapshot.
- Obeys causality (creates a consistent cut).
- Can be used to detect global properties.
- Safety vs. Liveness.