Distributed Systems

CS425/ECE428

Instructor: Radhika Mittal
Logistics Related

- Eng-IT is still working on assigning VM clusters
 - Will hopefully be done by the end of the day.
 - Watch for an email from us, and CampusWire post with instructions.

- All registered students have been added to Gradescope.
 - If you have registered late / plan on registering when a slot opens up, you can email Sarthak (sm106) to get added to Gradescope.
 - But please wait a week before doing so.
Today’s agenda

• Logical Clocks and Timestamps
 • Chapter 14.4

• Global State (if time)
 • Chapter 14.5
Event Ordering

• A usecase of synchronized clocks:
 • Reasoning about order of events.

• Why is it useful?
 • Debugging distributed applications
 • Reconciling updates made to an object in a distributed datastore.
 • Rollback recovery during failures:
 1. Checkpoint state of the system; 2. Log events (with timestamps);
 3. Rollback to checkpoint and replay events in order if system crashes.

• ….

• Can we reason about order of events without synchronized clocks?
Process, state, events

• Consider a system with \(n \) processes: \(<p_1, p_2, p_3, \ldots, p_n>\)

• Each process \(p_i \) is described by its state \(s_i \) that gets transformed over time.
 • State includes values of all local variables, affected files, etc.

• \(s_i \) gets transformed when an event occurs.

• Three types of events:
 • Local computation.
 • Sending a message.
 • Receiving a message.
Event Ordering

- Easy to order events within a single process \(p_i \), based on their time of occurrence.

- How do we reason about events across processes?
 - A message must be sent before it gets received at another process.

- These two notions help define happened-before (HB) relationship denoted by \(\rightarrow \).
 - \(e \rightarrow e' \) means \(e \) happened before \(e' \).
Happened-Before Relationship

- Happened-before (HB) relationship denoted by \rightarrow.
 - $e \rightarrow e'$ means e happened before e'.
 - $e \rightarrow_i e'$ means e happened before e', as observed by p_i.

- HB rules:
 - If $\exists \ p_i, e \rightarrow_i e'$ then $e \rightarrow e'$.
 - For any message m, $\text{send}(m) \rightarrow \text{receive}(m)$
 - If $e \rightarrow e'$ and $e' \rightarrow e''$ then $e \rightarrow e''$

- Also called "causal" or "potentially causal" ordering.
Event Ordering: Example

Which event happened first?

- $a \rightarrow b$ and $b \rightarrow c$ and $c \rightarrow d$ and $d \rightarrow f$
- $a \rightarrow b$ and $a \rightarrow c$ and $a \rightarrow d$ and $a \rightarrow f$
Event Ordering: Example

What can we say about \(e \)?

\[e \rightarrow f \]

\[a \leftrightarrow e \text{ and } e \leftrightarrow a \]

\[a \parallel e \]

\(a \) and \(e \) are concurrent.
Event Ordering: Example

What can we say about e and d?

$e \parallel d$
Logical Timestamps: Example

What can we say about e and d?

\[e \rightarrow d \]
Lamport’s Logical Clock

• Logical timestamp for each event that captures the happened-before relationship.

• Algorithm: Each process \(p_i \)
 1. initializes local clock \(L_i = 0 \).
 2. increments \(L_i \) before timestamping each event.
 3. piggybacks \(L_i \) when sending a message.
 4. upon receiving a message with clock value \(t \)
 • sets \(L_i = \max(t, L_i) \)
 • increments \(L_i \) before timestamping the receive event (as per step 2).
Logical Timestamps: Example

Logical timestamps:
- p1: a (0), b (1), m1 (2)
- p2: c (2 > 0), d (4)
- p3: e (0), f (5)

Physical timestamps:
- (2 > 0)
- (4 > 1)
Lamport’s Logical Clock

• Logical timestamp for each event that captures the *happened-before* relationship.

Algorithm: Each process p_i
1. initializes local clock $L_i = 0$.
2. increments L_i before timestamping each event.
3. piggybacks L_i when sending a message.
4. upon receiving a message with clock value t
 • sets $L_i = \max(t, L_i)$
 • increments L_i before timestamping the receive event (as per step 2).
Logical Timestamps: Example

Physical time

- p_1: a -> b -> m$_1$ (2)
- p_2: 0, 1, 2, 3, 4, 5, 6
- p_3: e -> g

- m$_2$ (5)
Lamport’s Logical Clock

• Logical timestamp for each event that captures the happened-before relationship.

• If $e \rightarrow e'$ then
 • $L(e) < L(e')$

• What if $L(e) < L(e')$?
 • We cannot say that $e \rightarrow e'$
 • We can say: $e' \not\rightarrow e$
 • Either $e \rightarrow e'$ or $e \parallel e'$
Logical Timestamps: Example

L(e) < L(d), e ⪯ d
L(e) < L(f), e → f
Vector Clocks

• Each event associated with a vector timestamp.
• Each process p_i maintains vector of clocks V_i
• The size of this vector is the same as the no. of processes.
 • $V_i[j]$ is the clock for process p_j as maintained by p_i
• Algorithm: each process p_i:

Vector Clocks

- Each event associated with a vector timestamp.
- Each process p_i maintains vector of clocks V_i.
- The size of this vector is the same as the no. of processes.
 - $V_i[j]$ is the clock for process p_j as maintained by p_i.
- Algorithm: each process p_i:
 1. initializes local clock $V_i[j] = 0$.
Vector Clocks

- Each event associated with a vector timestamp.
- Each process p_i maintains vector of clocks V_i
- The size of this vector is the same as the no. of processes.
 - $V_i[j]$ is the clock for process p_j as maintained by p_i
- Algorithm: each process p_i:
 1. initializes local clock $V_i[j] = 0$
 2. increments $V_i[i]$ before timestamping each event.
Vector Clocks

• Each event associated with a vector timestamp.
• Each process p_i maintains vector of clocks V_i
• The size of this vector is the same as the no. of processes.
 • $V_i[j]$ is the clock for process p_j as maintained by p_i
• Algorithm: each process p_i:
 1. initializes local clock $V_i[j] = 0$
 2. increments $V_i[i]$ before timestamping each event.
 3. piggybacks V_i when sending a message.
Vector Clocks

• Each event associated with a vector timestamp.
• Each process p_i maintains vector of clocks V_i
• The size of this vector is the same as the no. of processes.
 • $V_i[j]$ is the clock for process p_j as maintained by p_i
• Algorithm: each process p_i:
 1. initializes local clock $V_i[j] = 0$
 2. increments $V_i[i]$ before timestamping each event.
 3. piggybacks V_i when sending a message.
 4. upon receiving a message with vector clock value v
 • sets $V_i[j] = \max(V_i[j], v[j])$ for all $j=1 \ldots n$.
 • increments $V_i[i]$ before timestamping receive event
 (as per step 2).
Vector Timestamps: Example

Physical time

p_1 [0,0,0] [1,0,0] [2,0,0]
a b m_1 ([2,0,0])

p_2 [0,0,0] [2,1,0] [2,2,0]
c d m_2 ([2,2,0])

p_3 [0,0,0] [0,0,1] e

f [2,2,2]
Vector Timestamps: Example

Physical time

[p_1] [p_2] [p_3]

[a] [b] [c]

[m_1] ([2,0,0])

[d] [e] [f] [g]

([0,0,2])

([[2,3,2]])
Comparing Vector Timestamps

- Let $V(e) = V$ and $V(e') = V'$

- $V = V'$, iff $V[i] = V'[i]$, for all $i = 1, \ldots, n$

- $V \leq V'$, iff $V[i] \leq V'[i]$, for all $i = 1, \ldots, n$

- $V < V'$, iff $V \leq V' \& V \neq V'$

 iff $V \leq V' \& \exists$ j such that $(V[j] < V'[j])$

- $e \rightarrow e'$ iff $V < V'$

 -(V < V' implies $e \rightarrow e'$) and $(e \rightarrow e'$ implies $V < V'$)

- $e \parallel e'$ iff $(V \not< V' \& V' \not< V)$
What can we say about e & f based on their vector timestamps?
Vector Timestamps: Example

$V(e) < V(f)$, $e \rightarrow f$
What can we say about e & d based on their vector timestamps?
Vector Timestamps: Example

\[V(e) \not\leq V(d) \quad \text{and} \quad V(d) \not\leq V(e), \quad e \parallel d \]
Vector Timestamps: Example

How about now?
Vector Timestamps: Example

\[
\begin{align*}
V(e) &< V(f), \ e \rightarrow f \\
V(e) &< V(d), \ e \rightarrow d
\end{align*}
\]
timestamps summary

• Comparing timestamps across events is useful.
 • Reconciling updates made to an object in a distributed datastore.
 • Rollback recovery during failures:

 1. Checkpoint state of the system; 2. Log events (with timestamps);
 3. Rollback to checkpoint and replay events in order if system crashes.

• How to compare timestamps across different processes?
 • Physical timestamp: requires clock synchronization.
 • Google's Spanner Distributed Database uses “TrueTime”.
 • Lamport’s timestamps: cannot fully differentiate between causal and concurrent ordering of events.
 • Oracle uses “System Change Numbers” based on Lamport's clock.
 • Vector timestamps: larger message sizes.
 • Amazon’s DynamoDB uses vector clocks.
Timestamps Summary

• Comparing timestamps across events is useful.
 • Reconciling updates made to an object in a distributed datastore.
 • Rollback recovery during failures:
 1. Checkpoint state of the system; 2. Log events (with timestamps);
 3. Rollback to checkpoint and replay events in order if system crashes.

• How to compare timestamps across different processes?
 • Physical timestamp: requires clock synchronization.
 • Google's Spanner Distributed Database uses “TrueTime”.
 • Lamport’s timestamps: cannot fully differentiate between causal and concurrent ordering of events.
 • Oracle uses “System Change Numbers” based on Lamport's clock.
 • Vector timestamps: larger message sizes.
 • Amazon’s DynamoDB uses vector clocks.
Today’s agenda

• Logical Clocks and Timestamps
 • Chapter 14.4

• Global State
 • Chapter 14.5
Process, state, events

- Consider a system with \(n \) processes: \(\langle p_1, p_2, p_3, \ldots, p_n \rangle \).
- Each process \(p_i \) is associated with state \(s_i \).
 - State includes values of all local variables, affected files, etc.
- Each channel can also be associated with a state.
 - Which messages are currently pending on the channel.
 - Can be computed from process’ state:
 - Record when a process sends and receives messages.
 - if \(p_i \) sends a message that \(p_j \) has not yet received, it is pending on the channel.
- State of a process (or a channel) gets transformed when an event occurs. 3 types of events:
 - local computation, sending a message, receiving a message.
Global State (or Global Snapshot)

- State of each process (and each channel) in the system at a given instant of time.

- Example:

Two processes: \(p_1 \) and \(p_2 \).

\(c_{12} \): channel from \(p_1 \) to \(p_2 \).

\(c_{21} \): channel from \(p_2 \) to \(p_1 \).
Global State (or Global Snapshot)

- State of each process (and each channel) in the system at a given instant of time.

- Example:

 Process state for p_1 and p_2.
 No pending messages on the channels.
Global State (or Global Snapshot)

- State of each process (and each channel) in the system at a given instant of time.

- Example:

 \[c_{12} : [X_2 = 4] \]

 \[c_{21} : [\text{empty}] \]

 event 1: \(p_1 \) sends a message to \(p_2 \) asking it to set \(X_2 = 4 \)
Global State (or Global Snapshot)

• State of each process (and each channel) in the system at a given instant of time.

• Example:

\[c_{12} : [\text{empty}] \]
\[c_{21} : [\text{empty}] \]

\[X_1 : 0 \]
\[Y_1 : 0 \]
\[Z_1 : 0 \]

\[P_1 \]

\[X_2 = 4 \]
\[Y_2 : 2 \]
\[Z_2 : 3 \]

\[X_2 : 1 \]

\[P_2 \]

\text{event 2: } p_2 \text{ receives the message.}
Global State (or Global Snapshot)

- State of each process (and each channel) in the system at a given instant of time.

- Example:

 \[\begin{align*}
 &c_{12}: \text{[empty]} \\
 &c_{21}: \text{[empty]}
 \end{align*} \]

 \[\begin{array}{c|c|c|}
 \hline
 & P_1 & P_2 \\
 \hline
 X_1 & 0 & X_2: 4 \\
 Y_1 & 0 & Y_2: 2 \\
 Z_1 & 0 & Z_2: 3 \\
 \hline
 \end{array} \]

 event 3: \(p_2 \) changes the value of \(X_2 \)
Capturing a global snapshot

• Useful to capture a global snapshot of the system:
 • Checkpointing the system state.
 • Reasoning about unreferenced objects (for garbage collection).
 • Distributed debugging.
Capturing a global snapshot

• Difficult to capture a global snapshot of the system.

• Global state or global snapshot is state of each process (and each channel) in the system at a given instant of time.

• Strawman:
 • Each process records its state at 3:15pm.
 • We get the global state of the system at 3:15pm.
 • But precise clock synchronization is difficult to achieve.

• How do we capture global snapshots without precise time synchronization across processes?
Some more notations and definitions

- State of a process (or a channel) gets transformed when an event occurs.

- 3 types of events:
 - local computation, sending a message, receiving a message.

- e_i^n is the n^{th} event at p_i.
Some more notations and definitions

- For a process p_i, where events e_i^0, e_i^1, \ldots occur:
 \[
 \text{history}(p_i) = h_i = \langle e_i^0, e_i^1, \ldots \rangle \\
 \text{prefix history}(p_i^k) = h_i^k = \langle e_i^0, e_i^1, \ldots, e_i^k \rangle \\
 s_i^k: p_i$’s state immediately after k^{th} event.
 \]
- For a set of processes $\langle p_1, p_2, p_3, \ldots, p_n \rangle$:
 \[
 \text{global history}: H = \bigcup_i (h_i) \\
 \text{global state}: S = \bigcup_i (s_i)
 \]
Some more notations and definitions

- For a process p_i, where events e_i^0, e_i^1, \ldots occur:
 \[
 \text{history}(p_i) = h_i = <e_i^0, e_i^1, \ldots >
 \]
 \[
 \text{prefix history}(p_i^k) = h_i^k = <e_i^0, e_i^1, \ldots, e_i^k >
 \]
 \[
 s_i^k : p_i$'s state immediately after k^{th} event.
 \]

- For a set of processes $<p_1, p_2, p_3, \ldots, p_n>$:
 \[
 \text{global history}: H = \bigcup_i (h_i)
 \]
 \[
 \text{global state}: S = \bigcup_i (s_i)
 \]

 But state at what time instant?
Some more notations and definitions

• For a process p_i, where events e_i^0, e_i^1, \ldots occur:
 \[
 \text{history}(p_i) = h_i = <e_i^0, e_i^1, \ldots >
 \]
 \[
 \text{prefix history}(p_i^k) = h_i^k = <e_i^0, e_i^1, \ldots, e_i^k >
 \]
 \[
 s_i^k : p_i's \text{ state immediately after } k^{th} \text{ event.}
 \]

• For a set of processes $<p_1, p_2, p_3, \ldots, p_n>$:
 \[
 \text{global history: } H = \bigcup_i (h_i)
 \]
 \[
 \text{global state: } S = \bigcup_i (s_i^{c_i})
 \]
 a cut $C \subseteq H = h_1^{c_1} \cup h_2^{c_2} \cup \ldots \cup h_n^{c_n}$
 the frontier of $C = \{e_i^{c_i}, i = 1, 2, \ldots, n\}$
 global state S that corresponds to cut $C = \bigcup_i (s_i^{c_i})$
Example: Cut

\[
C_A: \langle e_1^0, e_2^0 \rangle
\]
Frontier of \(C_A\):

\[
C_B: \langle e_1^0, e_1^1, e_1^2, e_2^0, e_2^1, e_2^2 \rangle
\]
Frontier of \(C_B\):
Some more notations and definitions

• For a process p_i, where events e_i^0, e_i^1, \ldots occur:

 $\text{history}(p_i) = h_i = <e_i^0, e_i^1, \ldots>$

 $\text{prefix history}(p_i^k) = h_i^k = <e_i^0, e_i^1, \ldots, e_i^k>$

 $s_i^k: p_i$’s state immediately after k^{th} event.

• For a set of processes $<p_1, p_2, p_3, \ldots, p_n>$:

 $\text{global history}: H = \bigcup_i (h_i)$

 a cut $C \subseteq H = h_1^{c_1} \cup h_2^{c_2} \cup \ldots \cup h_n^{c_n}$

 the frontier of $C = \{e_i^{c_i}, i = 1,2, \ldots n\}$

 $\text{global state} S$ that corresponds to cut $C = \bigcup_i (s_i^{c_i})$
Consistent cuts and snapshots

• A cut C is consistent if and only if
 \[\forall e \in C \ (\text{if } f \to e \text{ then } f \in C) \]
Example: Cut

\[C_A : < e_1^0, e_2^0 > \]
Frontier of \(C_A \): \{e_1^0, e_2^0\}

Inconsistent cut.

\[C_B : < e_1^0, e_1^1, e_1^2, e_2^0, e_2^1, e_2^2 > \]
Frontier of \(C_B \): \{e_1^2, e_2^2\}

Consistent cut.
Consistent cuts and snapshots

- A cut C is consistent if and only if
 \[\forall e \in C \ (\text{if } f \rightarrow e \text{ then } f \in C) \]

- A global state S is consistent if and only if it corresponds to a consistent cut.
Consistent cuts and snapshots

- A cut C is **consistent** if and only if
 $$\forall e \in C \ (\text{if } f \rightarrow e \text{ then } f \in C)$$

- A global state S is consistent if and only if it corresponds to a consistent cut.
How to capture global state?

• State of each process (and each channel) in the system at a given instant of time.
 • Difficult to capture -- requires precisely synchronized time.

• Relax the problem: find a consistent global state.
 • For a system with n processes \(<p_1, p_2, p_3, \ldots, p_n> \), capture the state of the system after the \(c_i \)th event at process \(p_i \).
 • State corresponding to the cut defined by frontier events \(\{e_i^{c_i}, \text{for } i = 1,2, \ldots n \} \).
 • We want the state to be consistent.
 • Must correspond to a consistent cut.

How to find consistent global state?
Chandy-Lamport Algorithm

• Goal:
 • Record a global snapshot
 • Process state (and channel state) for a set of processes.
 • The recorded global state is consistent.

• Identifies a consistent cut.

• Records corresponding state locally at each process.
Chandy-Lamport Algorithm

- **System model and assumptions:**
 - System of n processes: $<p_1, p_2, p_3, \ldots, p_n>$.
 - There are two uni-directional communication channels between each ordered process pair: p_j to p_i and p_i to p_j.
 - Communication channels are FIFO-ordered (first in first out).
 - All messages arrive intact, and are not duplicated.
 - No failures: neither channel nor processes fail.

- **Requirements:**
 - Snapshot should not interfere with normal application actions, and it should not require application to stop sending messages.
 - Any process may initiate algorithm.
Chandy-Lamport Algorithm

• To be continued in next class....