
Distributed Systems

CS425/ECE428

Instructor : Radhika Mittal

Logistics Related

• Eng-IT is still working on assigning VM clusters
• Will hopefully be done by the end of the day.
• Watch for an email from us, and CampusWire post with

instructions.

• All registered students have been added to Gradescope.
• If you have registered late / plan on registering when a slot opens

up, you can email Sarthak (sm106) to get added to Gradescope.
• But please wait a week before doing so.

Today’s agenda

• Logical Clocks and Timestamps
• Chapter 14.4

• Global State (if time)
• Chapter 14.5

Event Ordering
• A usecase of synchronized clocks:

• Reasoning about order of events.
• Why is it useful?

• Debugging distributed applications
• Reconciling updates made to an object in a distributed datastore.
• Rollback recovery during failures:

1. Checkpoint state of the system; 2. Log events (with timestamps);
3. Rollback to checkpoint and replay events in order if system
crashes.

• ….

• Can we reason about order of events without
synchronized clocks?

Process, state, events

• Consider a system with n processes: <p1, p2, p3, …., pn>

• Each process pi is described by its state si that gets
transformed over time.

• State includes values of all local variables, affected files, etc.

• si gets transformed when an event occurs.
• Three types of events:

• Local computation.
• Sending a message.
• Receiving a message.

Event Ordering

• Easy to order events within a single process pi, based on
their time of occurrence.

• How do we reason about events across processes?
• A message must be sent before it gets received at

another process.

• These two notions help define happened-before (HB)
relationship denoted by →.

• e → e’ means e happened before e’.

Happened-Before Relationship

• Happened-before (HB) relationship denoted by →.
• e → e’ means e happened before e’.
• e →i e’ means e happened before e’, as observed by pi.

• HB rules:
• If ∃ pi , e →i e’ then e → e’.
• For any message m, send(m) → receive(m)
• If e → e’ and e’ → e” then e → e’’

• Also called “causal” or “potentially causal” ordering.

Event Ordering: Example

p1

p2

p3

a b

c d

e f

m1

m2

Physical
time

p1

p2

p3

a b

c d

e f

m1

m2

Physical
time

Which event happened first?
a → b and b → c and c → d and d → f
a → b and a → c and a → d and a → f

Event Ordering: Example

p1

p2

p3

a b

c d

e f

m1

m2

Physical
time

What can we say about e?
e → f

a → e and e → a
a || e

a and e are concurrent.

/ /

Event Ordering: Example

p1

p2

p3

a b

c d

e f

m1

m2

Physical
time

What can we say about e and d?
e || d

Logical Timestamps: Example

p1

p2

p3

a b

c d

e f

m1

m2

Physical
time

g

h

What can we say about e and d?
e → d

Lamport’s Logical Clock

• Logical timestamp for each event that captures the
happened-before relationship.

• Algorithm: Each process pi

1. initializes local clock Li = 0.
2. increments Li before timestamping each event.
3. piggybacks Li when sending a message.
4. upon receiving a message with clock value t

• sets Li = max(t, Li)
• increments Li before timestamping the receive event (as per

step 2).

Logical Timestamps: Example

p1

p2

p3

a b

c d

e f

m1

m2

Physical
time

1 20

(2)

0 (2	>	0)

3

0

4

(4)

1 (4	>	1)

5

Lamport’s Logical Clock

• Logical timestamp for each event that captures the
happened-before relationship.

• Algorithm: Each process pi

1. initializes local clock Li = 0.
2. increments Li before timestamping each event.
3. piggybacks Li when sending a message.
4. upon receiving a message with clock value t

• sets Li = max(t, Li)
• increments Li before timestamping the receive event (as per

step 2).

Logical Timestamps: Example

p1

p2

p3

a b

c d

e f

m1

m2

Physical
time

1 20

(2)

0

3

0

5

(5)

1

6g

h

2

(2)

4

Lamport’s Logical Clock

• Logical timestamp for each event that captures the
happened-before relationship.

• If e → e’ then
• L(e) < L(e’)

• What if L(e) < L(e’)?
• We cannot say that e → e’
• We can say: e’ → e
• Either e → e’ or e || e’

/

Logical Timestamps: Example

p1

p2

p3

a b

c d

e f

m1

m2

Physical
time

1 20

(2)

0 (2	>	0)

3

0

4

(4)

1 (4	>	1)

5

L(e) < L(d), e || d L(e) < L(f), e → f

Vector Clocks
• Each event associated with a vector timestamp.
• Each process pi maintains vector of clocks Vi

• The size of this vector is the same as the no. of processes.
• Vi[j] is the clock for process pj as maintained by pi

• Algorithm: each process pi:

Vector Clocks
• Each event associated with a vector timestamp.
• Each process pi maintains vector of clocks Vi

• The size of this vector is the same as the no. of processes.
• Vi[j] is the clock for process pj as maintained by pi

• Algorithm: each process pi:
1. initializes local clock Vi[j] = 0

Vector Clocks
• Each event associated with a vector timestamp.
• Each process pi maintains vector of clocks Vi

• The size of this vector is the same as the no. of processes.
• Vi[j] is the clock for process pj as maintained by pi

• Algorithm: each process pi:
1. initializes local clock Vi[j] = 0
2. increments Vi[i] before timestamping each event.

Vector Clocks
• Each event associated with a vector timestamp.
• Each process pi maintains vector of clocks Vi

• The size of this vector is the same as the no. of processes.
• Vi[j] is the clock for process pj as maintained by pi

• Algorithm: each process pi:
1. initializes local clock Vi[j] = 0
2. increments Vi[i] before timestamping each event.
3. piggybacks Vi when sending a message.

Vector Clocks
• Each event associated with a vector timestamp.
• Each process pi maintains vector of clocks Vi

• The size of this vector is the same as the no. of processes.
• Vi[j] is the clock for process pj as maintained by pi

• Algorithm: each process pi:
1. initializes local clock Vi[j] = 0
2. increments Vi[i] before timestamping each event.
3. piggybacks Vi when sending a message.
4. upon receiving a message with vector clock value v

• setsVi[j] = max(Vi[j], v[j]) for all j=1…n.
• increments Vi[i] before timestamping receive event

(as per step 2).

Vector Timestamps: Example

p1

p2

p3

a b

c d

e f

m1

m2

Physical
time

[1,0,0] [2,0,0][0,0,0]

([2,0,0])

[0,0,0]

[2,1,0]

[0,0,0]

[2,2,0]

([2,2,0])

[0,0,1]

[2,2,2]

Vector Timestamps: Example

p1

p2

p3

a b

c d

e f

m1

m2

Physical
time

[1,0,0] [2,0,0][0,0,0]

([2,0,0])

[0,0,0]

[2,1,0]

[0,0,0]

[2,3,2]

([2,3,2])

[0,0,1]

[2,3,3]g

h

[0,0,2]

([0,0,2])

[2,2,2]

Comparing Vector Timestamps
• Let V(e) = V and V(e’) = V’

• V= V’, iff V[i] = V’[i], for all i = 1, … , n
• V ≤	V’, iff V[i] ≤V’[i], for all i = 1, … , n
• V < V’, iff V ≤V’ &V ≠	V’

iff V ≤V’ & $ j such that (V[j] < V’[j])

• e → e’ iff V < V’
• (V < V’ implies e → e’) and (e → e’ implies V < V’)

• e || e’ iff (V ≮V’ and V’ ≮V)

Vector Timestamps: Example

p1

p2

p3

a b

c d

e f

m1

m2

Physical
time

[1,0,0] [2,0,0][0,0,0]

([2,0,0])

[0,0,0]

[2,1,0]

[0,0,0]

[2,2,0]

([2,2,0])

[0,0,1]

[2,2,2]

What can we say about e & f based on their vector timestamps?

Vector Timestamps: Example

p1

p2

p3

a b

c d

e f

m1

m2

Physical
time

[1,0,0] [2,0,0][0,0,0]

([2,0,0])

[0,0,0]

[2,1,0]

[0,0,0]

[2,2,0]

([2,2,0])

[0,0,1]

[2,2,2]

V(e) < V(f), e → f

Vector Timestamps: Example

p1

p2

p3

a b

c d

e f

m1

m2

Physical
time

[1,0,0] [2,0,0][0,0,0]

([2,0,0])

[0,0,0]

[2,1,0]

[0,0,0]

[2,2,0]

([2,2,0])

[0,0,1]

[2,2,2]

What can we say about e & d based on their vector timestamps?

Vector Timestamps: Example

p1

p2

p3

a b

c d

e f

m1

m2

Physical
time

[1,0,0] [2,0,0][0,0,0]

([2,0,0])

[0,0,0]

[2,1,0]

[0,0,0]

[2,2,0]

([2,2,0])

[0,0,1]

[2,2,2]

V(e) ≮	V(d) andV(d) ≮	V(e), e || d

Vector Timestamps: Example

p1

p2

p3

a b

c d

e f

m1

m2

Physical
time

[1,0,0] [2,0,0][0,0,0]

([2,0,0])

[0,0,0]

[2,1,0]

[0,0,0]

[2,3,2]

([2,3,2])

[0,0,1]

[2,3,3]g

h

[0,0,2]

([0,0,2])

[2,2,2]

How about now?

Vector Timestamps: Example

p1

p2

p3

a b

c d

e f

m1

m2

Physical
time

[1,0,0] [2,0,0][0,0,0]

([2,0,0])

[0,0,0]

[2,1,0]

[0,0,0]

[2,3,2]

([2,3,2])

[0,0,1]

[2,3,3]g

h

[0,0,2]

([0,0,2])

[2,2,2]

V(e) < V(f), e → f
V(e) < V(d), e →	d

Timestamps Summary

• Comparing timestamps across events is useful.
• Reconciling updates made to an object in a distributed datastore.
• Rollback recovery during failures:

1. Checkpoint state of the system; 2. Log events (with timestamps);
3. Rollback to checkpoint and replay events in order if system crashes.

• How to compare timestamps across different processes?
• Physical timestamp: requires clock synchronization.

• Google’s Spanner Distributed Database uses “TrueTime”.
• Lamport’s timestamps: cannot fully differentiate between causal

and concurrent ordering of events.
• Oracle uses “System Change Numbers” based on Lamport’s clock.

• Vector timestamps: larger message sizes.
• Amazon’s DynamoDB uses vector clocks.

Timestamps Summary

• Comparing timestamps across events is useful.
• Reconciling updates made to an object in a distributed datastore.
• Rollback recovery during failures:

1. Checkpoint state of the system; 2. Log events (with timestamps);
3. Rollback to checkpoint and replay events in order if system crashes.

• How to compare timestamps across different processes?
• Physical timestamp: requires clock synchronization.

• Google’s Spanner Distributed Database uses “TrueTime”.
• Lamport’s timestamps: cannot fully differentiate between causal

and concurrent ordering of events.
• Oracle uses “System Change Numbers” based on Lamport’s clock.

• Vector timestamps: larger message sizes.
• Amazon’s DynamoDB uses vector clocks.

Today’s agenda

• Logical Clocks and Timestamps
• Chapter 14.4

• Global State
• Chapter 14.5

Process, state, events
• Consider a system with n processes: <p1, p2, p3, …., pn>.
• Each process pi is associated with state si.

• State includes values of all local variables, affected files, etc.
• Each channel can also be associated with a state.

• Which messages are currently pending on the channel.
• Can be computed from process’ state:

• Record when a process sends and receives messages.
• if pi sends a message that pj has not yet received, it is pending

on the channel.
• State of a process (or a channel) gets transformed when an event

occurs. 3 types of events:
• local computation, sending a message, receiving a message.

Global State (or Global Snapshot)

• State of each process (and each channel) in the system at a
given instant of time.

• Example:

p1 p2

c12

c21

Two processes: p1 and p2.
c12: channel from p1 to p2. c21: channel from p2 to p1.

Global State (or Global Snapshot)

• State of each process (and each channel) in the system at a
given instant of time.

• Example:

p1 p2

c12: [empty]

c21: [empty]

Process state for p1 and p2.

No pending messages on the channels..

X1: 0

Y1: 0

Z1: 0

X2: 1

Y2: 2

Z2: 3

Global State (or Global Snapshot)

• State of each process (and each channel) in the system at a
given instant of time.

• Example:

p1 p2

c12: [X2 = 4]

c21: [empty]

event 1: p1 sends a message to p2 asking it to set X2 = 4

X1: 0

Y1: 0

Z1: 0

X2: 1

Y2: 2

Z2: 3

Global State (or Global Snapshot)

• State of each process (and each channel) in the system at a
given instant of time.

• Example:

p1 p2

c12: [empty]

c21: [empty]

event 2: p2 receives the message.

X1: 0

Y1: 0

Z1: 0

X2: 1

Y2: 2

Z2: 3

X2 = 4

Global State (or Global Snapshot)

• State of each process (and each channel) in the system at a
given instant of time.

• Example:

p1 p2

c12: [empty]

c21: [empty]

event 3: p2 changes the value of X2

X1: 0

Y1: 0

Z1: 0

X2: 4

Y2: 2

Z2: 3

Capturing a global snapshot

• Useful to capture a global snapshot of the system:
• Checkpointing the system state.
• Reasoning about unreferenced objects (for garbage

collection).
• Distributed debugging.

Capturing a global snapshot

• Difficult to capture a global snapshot of the system.
• Global state or global snapshot is state of each process

(and each channel) in the system at a given instant of time.
• Strawman:

• Each process records its state at 3:15pm.
• We get the global state of the system at 3:15pm.
• But precise clock synchronization is difficult to achieve.

• How do we capture global snapshots without
precise time synchronization across processes?

• State of a process (or a channel) gets transformed when an event
occurs.

• 3 types of events:
• local computation, sending a message, receiving a message.

• ei
n is the nth event at pi.

Some more notations and definitions

Some more notations and definitions
• For a process pi , where events ei

0, ei
1, … occur:

history(pi) = hi = <ei
0, ei

1, … >
prefix history(pi

k) = hi
k = <ei

0, ei
1, …,ei

k >
si

k : pi’s state immediately after kth event.
• For a set of processes <p1, p2, p3, …., pn>:

global history: H = Èi (hi)
global state: S = Èi (si)

Some more notations and definitions
• For a process pi , where events ei

0, ei
1, … occur:

history(pi) = hi = <ei
0, ei

1, … >
prefix history(pi

k) = hi
k = <ei

0, ei
1, …,ei

k >
si

k : pi’s state immediately after kth event.
• For a set of processes <p1, p2, p3, …., pn>:

global history: H = Èi (hi)
global state: S = Èi (si)
But state at what time instant?

Some more notations and definitions
• For a process pi , where events ei

0, ei
1, … occur:

history(pi) = hi = <ei
0, ei

1, … >
prefix history(pi

k) = hi
k = <ei

0, ei
1, …,ei

k >
si

k : pi’s state immediately after kth event.
• For a set of processes <p1, p2, p3, …., pn>:

global history: H = Èi (hi)
global state: S = Èi (si

ci)
a cut C Í H = h1

c1 È h2
c2 È … È hn

cn

the frontier of C = {ei
ci, i = 1,2, … n}

global state S that corresponds to cut C = Èi (si
ci)

Example: Cut

m1 m2

p1

p2
Physical

time

e1
0

CB
CA

e 1
1 e 1

2 e 1
3

e 2
0 e 2

1 e 2
2

CA: < e1
0, e2

0>
Frontier of CA: {e1

0, e2
0}

CB: < e1
0, e1

1, e1
2, e2

0, e2
1 e2

2 >
Frontier of CB: {e1

2, e2
2}

Some more notations and definitions
• For a process pi , where events ei

0, ei
1, … occur:

history(pi) = hi = <ei
0, ei

1, … >
prefix history(pi

k) = hi
k = <ei

0, ei
1, …,ei

k >
si

k : pi’s state immediately after kth event.
• For a set of processes <p1, p2, p3, …., pn>:

global history: H = Èi (hi)
a cut C Í H = h1

c1 È h2
c2 È … È hn

cn

the frontier of C = {ei
ci, i = 1,2, … n}

global state S that corresponds to cut C = Èi (si
ci)

Consistent cuts and snapshots

• A cut C is consistent if and only if
"e Î C (if f ® e then f Î C)

Example: Cut

m1 m2

p1

p2
Physical

time

e1
0

CB
CA

e 1
1 e 1

2 e 1
3

e 2
0 e 2

1 e 2
2

CA: < e1
0, e2

0>
Frontier of CA: {e1

0, e2
0}

Inconsistent cut.

CB: < e1
0, e1

1, e1
2, e2

0, e2
1 e2

2 >
Frontier of CB: {e1

2, e2
2}

Consistent cut.

Consistent cuts and snapshots

• A cut C is consistent if and only if
"e Î C (if f ® e then f Î C)

• A global state S is consistent if and only if it corresponds
to a consistent cut.

Consistent cuts and snapshots

• A cut C is consistent if and only if
"e Î C (if f ® e then f Î C)

• A global state S is consistent if and only if it corresponds
to a consistent cut.

How to capture global state?
• State of each process (and each channel) in the system at a given instant

of time.
• Difficult to capture -- requires precisely synchronized time.

• Relax the problem: find a consistent global state.
• For a system with n processes <p1, p2, p3, …., pn>, capture the state

of the system after the ci
th event at process pi.

• State corresponding to the cut defined by frontier events
{ei

ci, for i = 1,2, … n}.
• We want the state to be consistent.

• Must correspond to a consistent cut.

How to find consistent global state?

Chandy-Lamport Algorithm

• Goal:
• Record a global snapshot

• Process state (and channel state) for a set of processes.
• The recorded global state is consistent.

• Identifies a consistent cut.

• Records corresponding state locally at each process.

Chandy-Lamport Algorithm

• System model and assumptions:
• System of n processes: <p1, p2, p3, …., pn>.
• There are two uni-directional communication channels between

each ordered process pair : pj to pi and pi to pj.
• Communication channels are FIFO-ordered (first in first out).
• All messages arrive intact, and are not duplicated.
• No failures: neither channel nor processes fail.

• Requirements:
• Snapshot should not interfere with normal application actions,

and it should not require application to stop sending messages.
• Any process may initiate algorithm.

Chandy-Lamport Algorithm

• To be continued in next class….

