Distributed Systems

CS425/ECE428

Instructor: Radhika Mittal

While we wait...

. What is the time? »@

/\ Itis [:55pm / @
N N

Bluey does not own a clock, and wants to know the time.
He sends a message to Greeny asking the time, and Greeny sends a response
as soon as he receives the request.
Bluey records that it took 6 minutes for him to receive Greeny's response
after sending his request.

Given this information, what time should Bluey assume it actually is when he
receives Greeny's message? Can he be totally accurate?

Logistics Related

* Make sure you are on CampusWire.
* Email Sarthak (sm106) to get access if you are not already on it

* Please fill up VM cluster form by tomorrow (Thursday).

* MPO released today

Wil discuss in more details at the end of the class.

Today’s agenda

e Failure Detection
* Chapter |5.]

* Time and Clocks
* Chapter [4.1-14.3

* Logical Clocks and Timestamps (if time)
* Chapter 14.4

Types of failure

* Omission: when a process or a channel fails to perform
actions that i1t i1s supposed to do.

* Process may crash.

* Detected using ping-ack or heartbeat failure detector.
* Completeness and accuracy in synchronous and asynchronous systems.
* Worst case failure detection time.

* Communication omission: a message sent by process was
not received by another.

* Message drops (or omissions) can be mitigated by network
protocols.

How to detect a crashed process?

Periodic ping

heartbeats

@ @
ack
Periodic

e L

How to detect a crashed process?

Periodic ping

heartbeats

@ @
ack
Periodic

e L

Extending heartbeats

* Looked at detecting failure between two processes.

* How do we extend to a system with multiple
processes!

Centralized heartbeating

Downside:
What if p. fails?

p;, Heartbeat Seq++

Ring heartbeating

p;, Heartbeat Seq++

P
HEN
S
(@7
P

Pi @ P«

X l Downside:
What if multiple
processes fail?

@ Ring repair overnead

All-to-all heartbeats

eartbeat Seq++

Everyone can keep track of everyone.

Downside;

Extending heartbeats

* Looked at detecting failure between two processes.

* How do we extend to a system with multiple

processes!
* Centralized heartbeating: not complete.
* Ring heartbeating: not entirely complete, ring repair overnead.
* All-to-all: complete, but more bandwidth usage.

Types of failure

* Omission: when a process or a channel fails to perform
actions that i1t i1s supposed to do, e.g. process crash and
message drops.

* Arbitrary (Byzantine) Failures: any type of error, e.g. a
process executing incorrectly, sending a wrong message, etc.

* Timing Failures: Timing guarantees are not met.
* Applicable only in synchronous systems.

Failures: Summary

* [hree types
* omission, arbitrary, timing.

* Failure detection (detecting a crashed process):
* Send periodic ping-acks or heartbeats.
* Report crash if no response until a timeout.
* Timeout can be precisely computed for synchronous systems
and estimated for asynchronous.
* Metrics: completeness, accuracy, failure detection time, bandwidth.

* Fallure detection for a system with multiple processes:
* Centralized, ring, all-to-all
* Trade-off between completeness and bandwidth usage.

Today’s agenda

* Time and Clocks
* Chapter [4.1-14.3

* Logical Clocks and Timestamps (if time)
* Chapter 14.4

Why are clocks useful?

* How long did it take my search request to reach Google!?
* Requires my computer’s clock to be synchronized with
Google's server.

* Use timestamps to order events in a distributed system.
* Requires the system clocks to be synchronized with one
another.

* At what day and time did Alice transfer money to Bob!
* Require accurate clocks (synchronized with a global
authority).

Clock Skew and Drift Rates

* Fach process has an internal clock.

* Clocks between processes on different computers differ:
* Clock skew: relative difference between two clock values.

* Clock drift rate: change in skew from a perfect reference clock per
unit time (measured by the reference clock).

* Depends on change in the frequency of oscillation of a crystal in the
hardware clock.

* Synchronous systems have bound on maximum drift rate.

Ordinary and Authoritative Clocks

* Ordinary quartz crystal clocks:
* Drift rate is about 10 seconds/second.
* Drift by | second every | 1.6 days.
* Skew of about 30minutes after 60 years.

* High precision atomic clocks:
* Drift rate is about 10-'3 seconds/second.
* Skew of about O.]8ms after 60 years.
* Used as standard for real time.
* Universal Coordinated Time (UTC) obtained from such clocks.

Two forms of synchronization

* External synchronization
* Synchronize time with an authoritative clock
* When accurate timestamps are required.

* Internal synchronization
* Synchronize time internally between all processes in a distributed
system.
* When internally comparable timestamps are required.

* |f all clocks In a system are externally synchronized, they are
also internally synchronized.

Synchronization Bound

* Synchronization bound (D) between two clocks A and B over
a real time interval |.

* |A(t) — B(t)| < D, for all tin the real time interval |.
* Skew(A, B) < D during the time interval |.
* A and B agree within a bound D.

* [f A'Is authoritative, D can also be called accuracy bound.
* B is accurate within a bound of D.

* Synchronization/accuracy bound (D) at time 't

e Wworst-case skew between two clocks at time ‘t’
e Skew(A B) <D attime t

Q:If all clocks in a system are externally synchronized within a bound of D,
what is the bound on their skew relative to one another?

A:2D. 5o the clocks are internally synchronized within a bound of 2D.

Synchronization in synchronous systems

m_:VWhat is the time?

client , server
m:ltis T,

What time T, should client adjust its local clock to after receiving m ?

Synchronlzatlon in synchronous systems e

//

m,.:VWhat is the time?

client server
It is T

What time T, should client adjust its local clock to after receiving m, ?

et max and min be maximum and minimum network delay.

It T, = T, skew(client, server) < Provably the

f T, = (T, + max), skew(client, server) < best éof can
. : O.

It T, = (T + min), skew(client, server) < 7

It T. = (T, + (min + max)/2), skew(client,server) <
I /—’

Synchronization in asynchronous systems

* Cristian Algorithm
* Berkeley Algorithm

 Network Time Protocol

Cristian Algorithm

m_:VWhat is the time?

client , server
m:ltis T,

What time T, should client adjust its local clock to after receiving m ?

Client measures the round trip time (T,,,nq)
= time difference between when client sends m, and receives m..

Cristian Algorithm

m_:VWhat is the time?

client , server
m:ltis T,

What time T, should client adjust its local clock to after receiving m ?

Client measures the round trip time (T._,.q)

T. =T+ (Teouna! 2) Try deriving the worst case skew!

skew < (T oung/ 2) — min

<(T.. /2 Hint: client is assuming its one-way
— round : .
(min is minimum one way network delay from serveris & = (1,4 2). How

delay which is atleast zero). off can it be’

Cristian Algorithm

/ v
m,:What is the time? < g
client . server
m:ltis T,

What time T, should client adjust its local clock to after receiving m

Client measures the round
trip time (T.gund)-

Tc = Ts + (Tround / 2) ‘-

skew < (T g/ 2) —min ¢

<T.../2)

round
(min is minimum one way network

delay which is atleast zero). T, + min!

'Y

Cristian Algorithm

m_:VWhat is the time?

client , server
m:ltis T,

What time T, should client adjust its local clock to after receiving m ?

Client measures the round

trip time (T.o.q) Improve accuracy by sending multiple

spaced requests and using response

Tc = Ts + (Tround / 2) with smallest Tround'
skew < (T oung/ 2) — min | |
< (Tl 2) Server failure: Use multiple

(min is minimum one way network synchronized time servers.

delay which is atleast zero).

Cristian Algorithm

m_:VWhat is the time?

client , server
m:ltis T,

What time T, should client adjust its local clock to after receiving m ?

Client measures the round

trip time (Troung)- Cannot handle

Tc = Ts + (Tround / 2) f&Ult)’ time
skew < (T, ng/ 2) — min servers.
< (Tround/ 2)

(min is minimum one way network
delay which is atleast zero).

Berkeley Algorithm

Only supports internal synchronization.

|. Server periodically polls clients:
“what time do you think it is?”

?

Berkeley Algorithm

Only supports internal synchronization.

|. Server periodically polls clients:
“what time do you think it is?”

2. Each client responds with its local
time.

3. Server uses Cristian algorithm to
estimate local time at each client.

4. Average all local times (including
its own) — use as updated time.

ts Server t
5

t,

Berkeley Algorithm

Only supports internal synchronization.

|. Server periodically polls clients:
“what time do you think it is?”

2. Each client responds with its local

0) time.

3. Server uses Cristian algorithm to
> Server estimate local time at each client.
’ 05 4, Average all local times (including

its own) — use as updated time.

. Send the offset (amount by
which each clock needs
adjustment).

O4

Berkeley Algorithm

Only supports internal synchronization.

Handling faulty processes:
Only use timestamps within

some threshold of each other;
MServer ts Handling server failure:
Detect the failure and elect a
new leader

t,

Network Time Protocol

Time service over the Internet for synchronizing to UTC.

synched by
secondary

Hierarchical structure for scalability.
Multiple lower strata servers for robustness.
Authentication mechanisms for security.
Statistical techniques for better accuracy.

Primary, UTC synch A

Aoeandoy

Network Time Protocol

n Primary, UTC synch
Secondary,
synched primary 0 0 o Strata 3,

van U it Ut
synched by the

@ 0 o e @ secondary

N7V N J U AVN 7\

How clocks get synchronized:

* Servers may multicast timestamps within a LAN. Clients
adjust time assuming a small delay. Low accuracy. <

* Procedure-call (Cristian algorithm). Higher accuracy. -

* Symmetric mode used to synchronize lower strata
servers. Highest accuracy.

NTP Symmetric Mode

Server B Tg, T

Time
m m'’

- g Time
Server A Tas Tar
~ -—

* A and B exchange messages and record the send and receive
timestamps.
* T[g and Ty are local timestamps at B.
* T, and T, are local timestamps at A.
* A and B exchange their local timestamp with eachother.

* Use these timestamps to compute offset with respect to one another.

NTP Symmetric Mode

Server B Tg, T

Time

Time
Server A Tas Tar

e t and t": actual transmission times TBr — TAs +1t+4 0 (

for m and m'(unknown) B , 3
e 0: true offset of clock at B TAr _ TBs Tt-o

relative to clock at A (unknown) o = ((Tg. - Ty.) - (Ta.-Tg)+ (' —1))/2

* O ebstimate of actual offset 0, = (Tg, - Ta) - (Ta.-Tg))/2
etween the two clocks . ,
o=o+ (t—-1/2

* d: estimate of accuracy of o, ; ’
total transmission times form @i = T F €= (T = Tag) + (Tar - Tgy)
and m’. d.=t+t’

NTP Symmetric Mode

Server B Tg, T

Time

Time
Server A Tas Tar

e t and t": actual transmission times TBr — TAs +1t+4 0

for m and m'(unknown) ,
= + 1 —
e 0: true offset of clock at B TA" TBS t—o

relative to clock at A (unknown) o = ((Tg. - Ty.) - (Ta.-Tg)+ (' —1))/2

* O ebstimate of actual offset 0, = (Tg, - Ta) - (Ta.-Tg))/2
etween the two clocks . ,
o=o+ (t—-1/2

* d: estimate of accuracy of o, ; ’
total transmission times form @i = T F €= (T = Tag) + (Tar - Tgy)

and m’. d|:t+t’ (Oi_ dl/ 2) <o< (Oi + dl/ 2) gi\/eﬂ 1, >0

NTP Symmetric Mode

Server B Tg, T

Time

Time

Server A Tas Tar

NTP Symmetric Mode

Server B Tg, T

Time

Time
Server A Tas Tar

A and B exchange messages and record the send and receive
timestamps.

Use these timestamps to compute offset with respect to one
another (o).

A server computes Its offset from multiple different sources and
adjust 1ts local time accordingly.

Synchronization in asynchronous systems

* Cristian Algorithm

* Synchronization between a client and a server.
* Synchronization bound = (1 ./ 2) —min < T

round — 'round

/2

* Berkeley Algorithm
* Internal synchronization between clocks.
* A central server picks the average time and disseminates
offsets.

* Network Time Protocol
* Hierarchical time synchronization over the Internet.

Event Ordering

* A usecase of synchronized clocks:
* Reasoning about order of events.

* Why Is It useful?
* Debugging distributed applications
* Reconciling updates made to an object in a distributed datastore.

Rollback recovery during failures:

I. Checkpoint state of the system; 2. Log events (with timestamps);
3. Rollback to checkpoint and replay events in order if system
crashes.

e Can we reason about order of events without
synchronized clocks?

Process, state, events

* Consider a system with n processes: <py, Ps P3s -« -+ P,

* Fach process p; Is described by its state s; that gets

transformed over time.
e State includes values of all local variables, affected files, etc.

* s, gets transformed when an event occurs.

* Three types of events:
* Local computation.
* Sending a message.
* Recelving a message.

Event Ordering

* Fasy to order events within a single process p;, based on
their time of occurrence.

* How do we reason about events across processes!
* A message must be sent before it gets received at
another process.

* These two notions help define happened-before (HB)
relationship denoted by —.
* e = e means e happened before ¢€’.

Happened-Before Relationship

* Happened-before (HB) relationship denoted by —.
* e = e means e happened before ¢€’.
* e >, € means e happened before €', as observed by p..

« HB rules:

fAp,e— e thene > €.
-or any message m, send(m) — receive(m)

fe—oe’ande > e’ thene - ¢e”

* Also called “causal” or “potentially causal” ordering.

e Jo be continued in next class.....

MPO: Event Logging

* https://courses.grainger.illinois.edu/ece428/sp2024/mps/mp0.html

* Lead TA: Sanjit Kumar

* Task:
* Collect events from distributed nodes.
* Aggregate them into a single log at a centralized logger.

* Objective:
* Familiarize yourself with the cluster development environment.
* Practice distributed experiments and performance analysis.
* Build infrastructure that might be useful in future MPs.

MPO:

* We provide you with a script that generates logs | generator.py

Timestamp

Event Logging

[Event name (random)

/

\
% python?\generator.py 0.1 l

1610688413.

782391|ce783874ba65a148930de32704cd4c809d22a98359f7aed2c2@85bc1bd10f096

1610688433

1610688418.
1610688428.
1610688432.
. 771072 deafbbc7b28c868fec560e40cffaeddaf757b677eab62b51e8bec87955ca3274
1610688449.
1610688455.
1610688455.
1610688463.

2844002 b6b9592d531331512fd4f74b1e055434b2d8126e772dc30fb9b8c65298696517
992117 4e51685633af8aacd4bcd2cfceelbbbbc2514be43faa20743f2d2cc4de853162
144099 5828e97bf79bef141f2c243ab1203fd119a16a35d6354039¢12289841bc33608

1301062 cabe5225e2ea02c1174701dd0320954fbfffb51dbcd9d15717el11d7e40556efb
484428 ed4bleb8a7bd980alf@dad4l1f5d6513e919e2bf201ba9ec9f9c05201bd777at94
813278 3b014179elccld2cc9cf553441492ad4f054634d2f0fOb66d0185c60fc4355da
543133 8110f0cc37404a10989bfeld4ae83224a73e642bb676ded625b08ed7d3e439706

MPO: Event Logging

VM1 VM2 VM3
generator.py generator.py generator.py
| stdin | stdin | stdin
node 1 node 2 node 3
SN ~
'IN TeP TCP
VM4
logger

stdout

MPO: Event Logging

VM1

generator.py

stdin

node 1

TCP

TCP

VM4

logger

stdout

VM2 VM3
generator.py generator.py
"stdin "stdin
node 2 node 3
—

TCP

11610688413.743385 — nodel connected |

1610688413.782391 nodel ce783874ba65a148930de32704cd4c809d22a98359f7aed2¢c2085bc1bd10f096

1610688418.2844002) nodel p6b9592d531331512fd4f74b1e055434b2d8126e772dc30fb9b8c65298696517
1610688426.373611 connected

1610688426.4092941) node2 p33cc5cch2b360c95bc429e3fcd60bb@03ce52d9345df033a4345bded49f5da2c
1610688428.992117 nodel 4e51685633af8aacd4bcd2cfceelbbbbc2514be43faa20743f2d2cc4de853162

1610688432.144099 nodel 5828e97bf79bef141f2c243ab1203fd119a16a35d6354039c12289841bc33608

1610688433.771072 nodel deafbbc7b28c868fec560e40cffaeddaf757b677eab62b51e8bec87955ca3274

11A10RR2AA7 EQABEE _ nnde roannected

MPO: Event Logging

* Run two experiments
* 3 nodes, 2 events/s each
8 nodes, 5 events/s each

* Collect graphs of two metrics:
* Delay between event generation at the node and it appearing in the
centralized log.
* Amount of bandwidth used by the central logger.
* Need to add instrumentation to your code to track these metrics.

MPO: Event Logging

* Due on Feb 7, | [:.59pm

* Late policy: Can use part of your |68hours of grace period
accounted per student over the entire semester.

* Carried out in groups of |-2
* Same expectations regardless of group size.
* Fill out form on CampusWire to get access to cluster.
* Getting cluster access may take some time.
* But you can start coding now!

* Can use any language.
* Supported languages are C/C++, Go, Java, Python.

