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While we wait…

What is the time?

It is 1:55pm

Bluey does not own a clock, and wants to know the time. 
He sends a message to Greeny asking the time, and Greeny sends a response 

as soon as he receives the request. 
Bluey records that it took 6 minutes for him to receive Greeny’s response 

after sending his request.   

Given this information, what time should Bluey assume it actually is when he 
receives Greeny’s message? Can he be totally accurate? 



Logistics Related

• Make sure you are on CampusWire.
• Email Sarthak (sm106) to get access if you are not already on it. 

• Please fill up VM cluster form by tomorrow (Thursday).

• MP0 released today
• Will discuss in more details at the end of the class. 



Today’s agenda

• Failure Detection
• Chapter 15.1

• Time and Clocks
• Chapter 14.1-14.3

• Logical Clocks and Timestamps (if time)
• Chapter 14.4



Types of failure

• Omission: when a process or a channel fails to perform 
actions that it is supposed to do. 

• Process may crash.
• Detected using ping-ack or heartbeat failure detector. 
• Completeness and accuracy in synchronous and asynchronous systems.
• Worst case failure detection time. 

• Communication omission: a message sent by process was 
not received by another. 

• Message drops (or omissions) can be mitigated by network 
protocols.



How to detect a crashed process?
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Extending heartbeats

• Looked at detecting failure between two processes.

• How do we extend to a system with multiple 
processes?



Centralized heartbeating

pj, Heartbeat Seq++

pi

Downside:

What if pi fails?



Ring heartbeating

pi, Heartbeat Seq++
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Downside:
What if multiple 
processes fail?
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Ring repair overhead



All-to-all heartbeats

…

pj

pi

Everyone can keep track of everyone.
Downside: Bandwidth. 

pj, Heartbeat Seq++



Extending heartbeats

• Looked at detecting failure between two processes.

• How do we extend to a system with multiple 
processes?

• Centralized heartbeating: not complete. 
• Ring heartbeating: not entirely complete, ring repair overhead. 
• All-to-all: complete, but more bandwidth usage. 



Types of failure

• Omission: when a process or a channel fails to perform 
actions that it is supposed to do, e.g. process crash and 
message drops. 

• Arbitrary (Byzantine) Failures: any type of error, e.g. a 
process executing incorrectly, sending a wrong message, etc. 

• Timing Failures: Timing guarantees are not met.
• Applicable only in synchronous systems.



Failures: Summary

• Three types
• omission, arbitrary, timing.

• Failure detection (detecting a crashed process):
• Send periodic ping-acks or heartbeats.
• Report crash if no response until a timeout.
• Timeout can be precisely computed for synchronous systems 

and estimated for asynchronous.
• Metrics: completeness, accuracy, failure detection time, bandwidth.
• Failure detection for a system with multiple processes:

• Centralized, ring, all-to-all
• Trade-off between completeness and bandwidth usage. 



Today’s agenda

• Failure Detection
• Chapter 15.1

• Time and Clocks
• Chapter 14.1-14.3

• Logical Clocks and Timestamps (if time)
• Chapter 14.4



Why are clocks useful?

• How long did it take my search request to reach Google? 
• Requires my computer’s clock to be synchronized with 

Google’s server.

• Use timestamps to order events in a distributed system.
• Requires the system clocks to be synchronized with one 

another.

• At what day and time did Alice transfer money to Bob?
• Require accurate clocks (synchronized with a global 

authority).



Clock Skew and Drift Rates

• Each process has an internal clock.
• Clocks between processes on different computers differ :

• Clock skew: relative difference between two clock values.
• Clock drift rate: change in skew from a perfect reference clock per 

unit time (measured by the reference clock).
• Depends on change in the frequency of oscillation of a crystal in the 

hardware clock.

• Synchronous systems have bound on maximum drift rate.



Ordinary and Authoritative Clocks

• Ordinary quartz crystal clocks:
• Drift rate is about 10-6 seconds/second.
• Drift by 1 second every 11.6 days. 
• Skew of about 30minutes after 60 years. 

• High precision atomic clocks:
• Drift rate is about 10-13 seconds/second.
• Skew of about 0.18ms after 60 years. 
• Used as standard for real time. 
• Universal Coordinated Time (UTC) obtained from such clocks. 



Two forms of synchronization

• External synchronization
• Synchronize time with an authoritative clock. 
• When accurate timestamps are required.

• Internal synchronization
• Synchronize time internally between all processes in a distributed 

system.
• When internally comparable timestamps are required. 

• If all clocks in a system are externally synchronized, they are 
also internally synchronized. 



Synchronization Bound
• Synchronization bound (D) between two clocks A and B over 

a real time interval I. 
• |A(t) – B(t)| < D, for all t in the real time interval I. 

• Skew(A, B) < D during the time interval I.
• A and B agree within a bound D.

• If A is authoritative, D can also be called accuracy bound.
• B is accurate within a bound of D.

• Synchronization/accuracy bound (D) at time ‘t’
• worst-case skew between two clocks at time ‘t’

• Skew(A, B) < D at time t
Q: If all clocks in a system are externally synchronized within a bound of D, 
what is the bound on their skew relative to one another?

A: 2D. So the clocks are internally synchronized within a bound of 2D. 



Synchronization in synchronous systems

What time Tc should client adjust its local clock to after receiving ms ?

client server

mr: What is the time?

ms : It is Ts



Synchronization in synchronous systems

Let max and min be maximum and minimum network delay. 
If Tc  = Ts, skew(client, server) ≤	max.
If Tc  = (Ts + max), skew(client, server) ≤	(max – min)
If Tc  = (Ts + min), skew(client, server) ≤	(max – min)
If Tc  = (Ts + (min + max)/2), skew(client,server) ≤	(max – min)/2

Provably the 
best you can 

do!

What time Tc should client adjust its local clock to after receiving ms ?

client server

mr: What is the time?

ms : It is Ts



Synchronization in asynchronous systems

• Cristian Algorithm

• Berkeley Algorithm

• Network Time Protocol 



Cristian Algorithm

client server

mr: What is the time?

What time Tc should client adjust its local clock to after receiving ms ?

ms : It is Ts

Client measures the round trip time (Tround) 
= time difference between when client sends mr and receives ms.



Cristian Algorithm

client server

mr: What is the time?

What time Tc should client adjust its local clock to after receiving ms ?

ms : It is Ts

Tc = Ts + (Tround / 2)

skew ≤	(Tround / 2) – min 
										≤	(Tround / 2) 
(min is minimum one way  network 
delay which is atleast zero).

Try deriving the worst case skew! 

Hint: client is assuming its one-way 
delay from server is ∆ = (Tround/2). How 
off can it be?  

Client measures the round trip time (Tround) 



Cristian Algorithm

client server

mr: What is the time?

What time Tc should client adjust its local clock to after receiving ms ?

ms : It is Ts

t

Ts = t + min

Ts + Tround - min 
t

Ts = t + Tround - min

Ts + min

(∆	= Tround – min)

(∆ = min)

Client measures the round 
trip time (Tround).
Tc = Ts + (Tround / 2)

skew ≤	(Tround / 2) – min 
										≤	(Tround / 2) 
(min is minimum one way  network 
delay which is atleast zero).



Cristian Algorithm

client server

mr: What is the time?

What time Tc should client adjust its local clock to after receiving ms ?

ms : It is Ts

Improve accuracy by sending multiple 
spaced requests and using response 
with smallest Tround.

Server failure: Use multiple 
synchronized time servers. 

Client measures the round 
trip time (Tround).
Tc = Ts + (Tround / 2)

skew ≤	(Tround / 2) – min 
										≤	(Tround / 2) 
(min is minimum one way  network 
delay which is atleast zero).



Cristian Algorithm

client server

mr: What is the time?

What time Tc should client adjust its local clock to after receiving ms ?

ms : It is Ts

Cannot handle 
faulty time 
servers.

Client measures the round 
trip time (Tround).
Tc = Ts + (Tround / 2)

skew ≤	(Tround / 2) – min 
										≤	(Tround / 2) 
(min is minimum one way  network 
delay which is atleast zero).



Berkeley Algorithm

1. Server periodically polls clients: 
“what time do you think it is?”

Only supports internal synchronization.

Server
Client

Client Client

Client
Client
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Berkeley Algorithm

1. Server periodically polls clients: 
“what time do you think it is?”

2. Each client responds with its local 
time.

3. Server uses Cristian algorithm to 
estimate local time at each client.

4. Average all local times (including 
its own) – use as updated time.

Only supports internal synchronization.

Server
Client

Client Client

Client
Client

t1 t2

t3

t4

t5



Berkeley Algorithm

1. Server periodically polls clients: 
“what time do you think it is?”

2. Each client responds with its local 
time.

3. Server uses Cristian algorithm to 
estimate local time at each client.

4. Average all local times (including 
its own) – use as updated time.

5. Send the offset (amount by 
which each clock needs 
adjustment). 

Only supports internal synchronization.

Server
Client

Client Client

Client
Client

𝑜1 𝑜2

𝑜3

𝑜4

𝑜5



Berkeley Algorithm

Handling faulty processes:
Only use timestamps within 
some threshold of each other. 

Handling server failure:
Detect the failure and elect a 
new leader. 

Only supports internal synchronization.

Server
Client

Client Client

Client
Client

t1 t2

t3

t4

t5



Strata 3, 
synched by  
secondary

Network Time Protocol

Time service over the Internet for synchronizing to UTC. 

1

2 2 2

3 3 3 3 3 3

Hierarchical structure for scalability.
Multiple lower strata servers for robustness.
Authentication mechanisms for security.
Statistical techniques for better accuracy. 

Primary, UTC synch

Secondary, 
synched with 
primary

A
ccuracy



Network Time Protocol

How clocks get synchronized:
• Servers may multicast timestamps within a LAN. Clients 

adjust time assuming a small delay. Low accuracy.
• Procedure-call (Cristian algorithm). Higher accuracy. 
• Symmetric mode used to synchronize lower strata 

servers. Highest accuracy.

Strata 3, 
synched by the 
secondary

1

2 2 2

3 3 3 3 3 3

Primary, UTC synch

Secondary, 
synched primary



NTP Symmetric Mode

• A and B exchange messages and record the send and receive 
timestamps. 
• TBr and TBs are local timestamps at B. 
• TAr and TAs are local timestamps at A. 
• A and B exchange their local timestamp with eachother. 

• Use these timestamps to compute offset with respect to one another.

TAr

TBsTBr

TAs

Server B

Server A

Time

m m'

Time



NTP Symmetric Mode

• t and t’: actual transmission times 
for m and m’(unknown)

• o:  true offset of clock at B 
relative to clock at A (unknown)

• oi: estimate of actual offset   
between the two clocks

• di: estimate of accuracy of oi ;
total transmission times for m 
and m’. di=t+t’

TBr = TAs + t + o 
TAr = TBs + t’ – o
o = ((TBr - TAs) - (TAr -TBs)+ (t’ – t))/2
oi = ((TBr - TAs) - (TAr -TBs))/2
o = oi + (t’ – t)/2
di = t + t’ = (TBr - TAs) + (TAr - TBs)

TAr

TBsTBr

TAs

Server B

Server A

Time

m m'

Time



NTP Symmetric Mode

• t and t’: actual transmission times 
for m and m’(unknown)

• o:  true offset of clock at B 
relative to clock at A (unknown)

• oi: estimate of actual offset   
between the two clocks

• di: estimate of accuracy of oi ;
total transmission times for m 
and m’. di=t+t’

TBr = TAs + t + o 
TAr = TBs + t’ – o
o = ((TBr - TAs) - (TAr -TBs)+ (t’ – t))/2
oi = ((TBr - TAs) - (TAr -TBs))/2
o = oi + (t’ – t)/2
di = t + t’ = (TBr - TAs) + (TAr - TBs)

TAr

TBsTBr

TAs

Server B

Server A

Time

m m'

Time

(oi – di / 2) ≤ o ≤ (oi + di / 2) given t, t’ ≥ 0



NTP Symmetric Mode
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NTP Symmetric Mode

A and B exchange messages and record the send and receive 
timestamps. 
Use these timestamps to compute offset with respect to one 
another (oi).
A server computes its offset from multiple different sources and 
adjust its local time accordingly. 

TAr

TBsTBr
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Server B

Server A

Time
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Time



Synchronization in asynchronous systems

• Cristian Algorithm
• Synchronization between a client and a server.
• Synchronization bound = (Tround / 2) – min ≤Tround / 2 

• Berkeley Algorithm
• Internal synchronization between clocks. 
• A central server picks the average time and disseminates 

offsets. 

• Network Time Protocol 
• Hierarchical time synchronization over the Internet. 



Event Ordering
• A usecase of synchronized clocks:

• Reasoning about order of events. 
• Why is it useful? 

• Debugging distributed applications
• Reconciling updates made to an object in a distributed datastore. 
• Rollback recovery during failures: 

1. Checkpoint state of the system; 2. Log events (with timestamps);        
3. Rollback to checkpoint and replay events in order if system 
crashes. 

• ….

• Can we reason about order of events without 
synchronized clocks? 



Process, state, events

• Consider a system with n processes: <p1, p2, p3, …., pn>

• Each process pi is described by its state si that gets 
transformed over time. 

• State includes values of all local variables, affected files, etc. 

• si gets transformed when an event occurs. 
• Three types of events: 

• Local computation.
• Sending a message.
• Receiving a message.



Event Ordering

• Easy to order events within a single process pi, based on 
their time of occurrence. 

• How do we reason about events across processes?
• A message must be sent before it gets received at 

another process.  

• These two notions help define happened-before (HB)
relationship  denoted by →.

• e → e’ means e happened before e’. 



Happened-Before Relationship
• Happened-before (HB) relationship  denoted by →.

• e → e’ means e happened before e’. 
• e →i e’ means e happened before e’, as observed by pi. 

• HB rules:
• If ∃ pi , e →i e’ then e → e’.
• For any message m, send(m) → receive(m)
• If e → e’ and e’ → e” then e → e’’

• Also called “causal” or “potentially causal” ordering.

• To be continued in next class…..



MP0: Event Logging

• https://courses.grainger.illinois.edu/ece428/sp2024/mps/mp0.html
• Lead TA: Sanjit Kumar

• Task:
• Collect events from distributed nodes.
• Aggregate them into a single log at a centralized logger. 

• Objective:
• Familiarize yourself with the cluster development environment. 
• Practice distributed experiments and performance analysis.
• Build infrastructure that might be useful in future MPs. 



MP0: Event Logging

• We provide you with a script that generates logs 

Timestamp Event name (random)

generator.py



MP0: Event Logging

generator.py

node	1

stdin

generator.py

node	2

stdin

generator.py

node	3

stdin

logger

stdout

VM1 VM2 VM3

VM4

TCP TCP
TCP



MP0: Event Logging
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MP0: Event Logging

• Run two experiments 
• 3 nodes, 2 events/s each
• 8 nodes, 5 events/s each

• Collect graphs of two metrics:
• Delay between event generation at the node and it appearing in the 

centralized log.
• Amount of bandwidth used by the central logger.
• Need to add instrumentation to your code to track these metrics. 



MP0: Event Logging

• Due on Feb 7, 11:59pm
• Late policy: Can use part of your 168hours of grace period 

accounted per student over the entire semester.  

• Carried out in groups of 1-2
• Same expectations regardless of group size.
• Fill out form on CampusWire to get access to cluster.

• Getting cluster access may take some time.
• But you can start coding now!

• Can use any language. 
• Supported languages are C/C++, Go, Java, Python. 


