
Distributed Systems

CS425/ECE428

Instructor : Radhika Mittal

Acknowledgements for the materials: Indy Gupta

Today’s focus

• Brief overview of key-value stores

• Distributed Hash Tables
• Peer-to-peer protocol for efficient insertion and retrieval of key-value

pairs.

• Key-value stores in the cloud
• How to run large-scale distributed computations over key-value

stores?
• Map-Reduce Programming Abstraction
• Cloud scheduling

• How to design a large-scale distributed key-value store?
• Case-study: Facebook’s Cassandra

Cluster Membership

1

1 10120 66

2 10103 62

3 10098 63

4 10111 65

2

4
3

•Nodes periodically gossip their membership list

•On receipt, the local membership list is updated, as shown

•If any heartbeat older than Tfail, node is marked as failed

1 10118 64

2 10110 64

3 10090 58

4 10111 65

1 10120 70

2 10110 64

3 10098 70

4 10111 65

Current time : 70 at node 2

(asynchronous clocks)

Address
Heartbeat Counter

Time (local)

Cassandra uses gossip-based cluster membership

(old)

(updated)

Consistency Spectrum

Strong Eventual
More consistency

Faster reads and writes

Eventual Consistency

• Cassandra offers Eventual Consistency
• If writes to a key stop, all replicas of key will converge.
• Originally from Amazon’s Dynamo and LinkedIn’s

Voldemort systems

Strong
(e.g., Sequential)Eventual

More consistency

Faster reads and writes

Cassandra write and read recap
• Writes

• Client sends write request to a coordinator.
• Coordinator writes to all replicas.
• Waits for X replicas to respond before returning acknowledgement to the

client.
• Hinted handoff: if a replica is down, it receives the write request once it

comes back up.

• Reads
• Client sends read request to a coordinator.
• Coordinator contacts X replicas, and returns the latest returned value.
• Read repair : After returning a response, coordinator continues with fetching

values from other replicas, and initiates repairs to outdated values.

Consistency levels: value of X

• Cassandra has consistency levels.
• Client is allowed to choose a consistency level for each

operation (read/write)
• ANY: any server (may not be replica)

• Fastest: coordinator caches write and replies quickly to client
• ALL: all replicas

• Ensures strong consistency, but slowest
• ONE: at least one replica

• Faster than ALL, but cannot tolerate a failure
• QUORUM: quorum across all replicas in all datacenters (DCs)

Quorums?
In a nutshell:
• Quorum = (typically) majority
• Any two quorums intersect

• Client 1 does a write in red
quorum

• Then client 2 does read in blue
quorum

• At least one server in blue quorum
returns latest write

• Quorums faster than ALL, but still
ensure strong consistency

• Several key-value/NoSQL stores (e.g.,
Riak and Cassandra) use quorums.

Five replicas of a key-value pair

A quorum
A second quorum

A server

Read Quorums

• Reads
• Client specifies value of R (≤ N = total number of replicas

of that key).
• R = read consistency level.
• Coordinator waits for R replicas to respond before

sending result to client.
• In background, coordinator checks for consistency of

remaining (N-R) replicas, and initiates read repair if
needed.

Write Quorums

• Client specifies W (≤ N)
• W = write consistency level.
• Client writes new value to W replicas and returns

when it hears back from all.
• Default strategy.

Quorums in Detail (Contd.)
• R = read replica count, W = write replica count
• Necessary conditions for consistency:

1. W+R > N
• Write and read intersect at a replica. Read returns latest write.

2. W > N/2
• Two conflicting writes on a data item don’t occur at the same time.

• Select values based on application
• (W=N, R=1):

• great for read-heavy workloads
• (W=1, R=N):

• great for write-heavy workloads with no conflicting writes.
• (W=N/2+1, R=N/2+1):

• great for write-heavy workloads with potential for write conflicts.
• (W=1, R=1):

• very few writes and reads / high availability requirement.

Cassandra Consistency Levels

• Client is allowed to choose a consistency level for each
operation (read/write)

• ANY: any server (may not be replica)
• Fastest: coordinator may cache write and reply quickly to client

• ALL: all replicas
• Slowest, but ensures strong consistency

• ONE: at least one replica
• Faster than ALL, and ensures durability without failures

• QUORUM: quorum across all replicas in all datacenters (DCs)
• Global consistency, but still fast

• EACH_QUORUM: quorum in every DC
• Lets each DC do its own quorum: supports hierarchical replies

• LOCAL_QUORUM: quorum in coordinator’s DC
• Faster: only waits for quorum in first DC client contacts

Eventual Consistency
• Sources of inconsistency:

• Quorum condition not satisfied R + W < N.
• R and W are chosen as such.
• when write returns before W replicas respond.

• Sloppy quorum: when value stored elsewhere if intended replica is down,
and later moved to the replica when it is up again.

• When local quorum is chosen instead of global quorum.
• Hinted-handoff and read repair help in achieving eventual consistency.

• If all writes (to a key) stop, then all its values (replicas) will converge
eventually.

• May still return stale values to clients (e.g., if many back-to-back writes).
• But works well when there a few periods of low writes – system converges

quickly.

Cassandra vs. RDBMS

• MySQL is one of the most popular RDBMS (and has
been for a while)

• On > 50 GB data
• MySQL

• Writes 300 ms avg
• Reads 350 ms avg

• Cassandra
• Writes 0.12 ms avg
• Reads 15 ms avg

• Orders of magnitude faster.

Other similar NoSQL stores

• Amazon’s DynamoDB
• Cassandra’s data partitioning, replication, and eventual consistency

strategies inspired from Dynamo.
• Uses sloppy quorum as the default mechanism for eventual

consistency with availability.
• Uses vector clocks to capture causality between different versions

of an object.
• Dynamo: Amazon’s Highly Available Key-value Store, SOSP’2007.

• LinkedIn’s Voldemort
• Inspired from DynamoDB.

• …..

Summary

• CAP theorem: cannot only achieve 2 out of 3 among
consistency, availability, and partition-tolerance.

• Partition-tolerance is required in distributed datastores.
• Choose between consistency and availability.

• Many modern distributed NoSQL key-value stores (e.g.
Cassandra) choose availability, providing only eventual
consistency.

