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Grade distribution

3-credit 4-credit

Homework 33%
16% 

(drop 2 worst HWs)

Midterms 33% 25%

Final 33% 25%

MPs N/A 33%

Participation 1% 1%



Grading
• Midterms curving formula (tentative)
• relative:  80 + 10*(your score – avg_UG_score) / standard_dev
• We will use max(absolute, relative) to get final score out of 100.   
• Relevant Stats:

• Midterm1: avg_UG_score = 76.119, std_dev = 14.96
• Midterm2: avg_UG_score = 75.94, std_dev = 13.28

• Multiply the final score (out of 100) for each midterm by:
• 0.165 for 3-credit students
• 0.125 for 4-credit students

• Finals will be similarly curved, but has higher weightage.



Grading

• Homeworks will not be curved.
• For 3-credit students: 

• (sum of all 5 homework scores) * 100 * 0.33 / 200
• For 4-credit students: 

• (sum of best 3 homework scores) * 100 * 0.16 / 120

• MPs will not be curved.
• (sum of all four MP scores) * 100 * 0.33 / 330

• Participation score: directly taken from Campuswire
• if reported score > 100, you get full 1%
• Else you get (reported score /100)%
• Bonus for active participation in class. 



Grading

• Grading for active in-class participation
• Will match faces with roster photograph.
• If you have actively participated in class, and think you look very 

different from your roster photograph, please email me a more 
representative photo. 



Tentative Grades Cutoff

• Tentative mapping from score to grade (rough estimate):
• Cutoff for B: 80%
• Bump up a grade for each 4% leap above 80%. 

• B+ 84%, A- 88%, A 92%, A+ 96%
• Bump down a grade for each 4% leap below 80%

• B- 76%, C+ 72%, …..

• This is subject to change!



Cloud Scheduling

Single processor scheduling: when should a task start? (order of task)
Cloud/cluster scheduling: additional dimensions
• how many tasks of each job can we run together across the cluster? 

• minimize average job completion time
• high cluster resource utilization
• ensure fairness (e.g. across jobs from different users or tenants)

• on which node should we place a given task?
• data locality, tasks dependencies, minimize inter-task communication latency, 

etc.

Job	1

Job	2

Job	3

tasks



• A Hadoop job consists of Map tasks and Reduce tasks
• Only one job in entire cluster => it occupies cluster
• Multiple customers with multiple jobs

• Users/jobs = “tenants”
• Multi-tenant system

• => Need a way to schedule all these jobs (and their constituent 
tasks)
• => Need to be fair across the different tenants
• Hadoop YARN has two popular schedulers

• Hadoop Capacity Scheduler
• Hadoop Fair Scheduler

Case-study 1: Hadoop Scheduling



• Contains multiple queues
• Each queue contains multiple jobs
• Each queue guaranteed some portion of the cluster capacity

E.g., 
• Queue 1 is given 80% of cluster resources
• Queue 2 is given 20% of cluster resources
• (can specify different percentages for different resource types: memory, compute, etc)
• Percentages based on business agreements with tenants. 

• For jobs within same queue, FIFO typically used

Hadoop Capacity Scheduler

Source: http://hadoop.apache.org/docs/r2.3.0/hadoop-yarn/hadoop-yarn-site/CapacityScheduler.html



• Administrators can configure each queue with limits
• Soft limit: how much % of cluster is the queue guaranteed to occupy
• (Optional) Hard limit: max % of cluster given to the queue

• Elasticity
• A queue allowed to occupy more of cluster if resources free
• But if other queues below their capacity limit, now get full, need to give 

these other queues resources

• Pre-emption not allowed!
• Cannot stop a task part-way through
• When reducing % cluster to a queue, wait until some tasks of that queue 

have finished

Elasticity in HCS



• Queues can be hierarchical
• May contain child sub-queues, which may contain child sub-

queues, and so on
• Child sub-queues can share resources equally

Other HCS Features



• Goal: all jobs get equal share of resources
• When only one job present, occupies entire cluster
• As other jobs arrive, each job given equal % of cluster
• E.g., Each job might be given equal number of cluster-wide 

YARN containers 
• Each container == 1 task of job

Hadoop Fair Scheduler

Source: http://hadoop.apache.org/docs/r1.2.1/fair_scheduler.html



• Divides cluster into pools
• Typically one pool per user

• Resources divided equally among pools
• Gives each user fair share of cluster

• Within each pool, can use either
• Fair share scheduling, or
• FIFO/FCFS
• (Configurable)

Hadoop Fair Scheduler (2)



• Some (higher priority / production) pools may have minimum shares
• Minimum % of cluster that pool is guaranteed

• When minimum share not met in a pool, for a while
• Take resources away from other pools
• By pre-empting jobs in those other pools
• By killing the currently-running tasks of those jobs

• Tasks can be re-started later
• Ok since tasks are idempotent!

• To kill, scheduler picks most-recently-started tasks
• Minimizes wasted work

Pre-emption in HFS



• Can also set limits on
• Number of concurrent jobs per user
• Number of concurrent jobs per pool
• Number of concurrent tasks per pool

• Prevents other cluster resources (disk / external 
services) from being hogged by one user/job

Other HFS Features

15



• HCS/HFS use FIFO 
• May not be optimal (as we know!)
• Why not use SRPT or shortest-task-first instead? It’s optimal (as we know!)

• Challenge: Hard to know expected running time of task (before it’s 
completed)
• Solution: Estimate length of task
• Some approaches

• Within a job: Calculate running time of task as proportional to size of its 
input

• Across tasks: Calculate running time of task in a given job as average of 
other tasks in that given job (weighted by input size)

• Lots of recent research results in this area! 

Estimating Task Lengths



• Hadoop Scheduling in YARN
• Hadoop Capacity Scheduler
• Hadoop Fair Scheduler

• Yet, so far we’ve talked of only one kind of resource
• Either processor, or memory
• How about multi-resource requirements?
• Next!

Summary
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Dominant-Resource Fair Scheduling



• Jobs may have multi-resource requirements
• Job 1’s tasks: 2 CPUs, 8 GB
• Job 2’s tasks: 6 CPUs, 2 GB

• How do you schedule these jobs in a “fair” manner?
• That is, how many tasks of each job do you allow the system 

to run concurrently?
• What does fairness even mean?

Challenge



• Proposed by researchers from U. California Berkeley
• Proposes notion of fairness across jobs with multi-resource 

requirements
• They showed that DRF is

• Fair for multi-tenant systems
• Strategy-proof: tenant can’t benefit by lying
• Envy-free: tenant can’t envy another tenant’s allocations

Dominant Resource Fairness (DRF)



• DRF is
• Usable in scheduling VMs in a cluster
• Usable in scheduling Hadoop jobs in a cluster

• DRF used in Mesos, an OS intended for cloud environments
• DRF-like strategies also used some cloud computing company’s 

distributed OS’s

Where is DRF Useful?



• Our example
• Job 1’s tasks: 2 CPUs, 8 GB 

=> Job 1’s resource vector = <2 CPUs, 8 GB>
• Job 2’s tasks: 6 CPUs, 2 GB 

=> Job 2’s resource vector = <6 CPUs, 2 GB>

• Consider a cloud with <18 CPUs, 36 GB RAM>

• Naïve fairness: each job gets 9CPUs and 18GB RAM. 
• How many tasks for each job?  
• Not Pareto-efficient!

How DRF Works



• Our example
• Job 1’s tasks: 2 CPUs, 8 GB 

=> Job 1’s resource vector = <2 CPUs, 8 GB>
• Job 2’s tasks: 6 CPUs, 2 GB 

=> Job 2’s resource vector = <6 CPUs, 2 GB>

• Consider a cloud with <18 CPUs, 36 GB RAM>
• Each Job 1’s task consumes % of total CPUs = 2/18 = 1/9
• Each Job 1’s task consumes % of total RAM = 8/36 = 2/9
• 1/9 < 2/9

• => Job 1’s dominant resource is RAM, i.e., Job 1 is more memory-intensive 
than it is CPU-intensive

How DRF Works (2)



• Our example
• Job 1’s tasks: 2 CPUs, 8 GB 

=> Job 1’s resource vector = <2 CPUs, 8 GB>
• Job 2’s tasks: 6 CPUs, 2 GB 

=> Job 2’s resource vector = <6 CPUs, 2 GB>

• Consider a cloud with <18 CPUs, 36 GB RAM>
• Each Job 2’s task consumes % of total CPUs = 6/18 = 6/18
• Each Job 2’s task consumes % of total RAM = 2/36 = 1/18
• 6/18 > 1/18

• => Job 2’s dominant resource is CPU, i.e., Job 2 is more CPU-intensive than it is 
memory-intensive

How DRF Works (3)



• For a given job, the % of its dominant resource type that it 
gets cluster-wide, is the same for all jobs
• Job 1’s % of RAM = Job 2’s % of CPU

• Can be written as linear equations, and solved
• Assume J1 has x tasks and J2 has y tasks
• 2x/9 = 6y/18
• 2x + 6y <= 18
• 8x + 2y <= 36

DRF Fairness



• DRF Ensures
• Job 1’s % of RAM = Job 2’s % of CPU

• Solution for our example:
• Job 1 gets 3 tasks each with <2 CPUs, 8 GB>
• Job 2 gets 2 tasks each with <6 CPUs, 2 GB>
• Job 1’s % of RAM 
= Number of tasks * RAM per task / Total cluster RAM 
= 3*8/36 = 2/3
• Job 2’s % of CPU
= Number of tasks * CPU per task / Total cluster CPUs 
= 2*6/18 = 2/3

DRF Solution, For our Example



• DRF generalizes to multiple jobs
• DRF also generalizes to more than 2 resource types 
• CPU, RAM, Network, Disk, etc.

• DRF ensures that each job gets a fair share of that type of 
resource which the job desires the most
• Hence fairness

Other DRF Details



• DRF may not always equalize dominant resource shares.
• e.g. when a job’s demand is met and does not need more tasks. 
• or if one resource gets exhausted, jobs not using that resource 

can still be served. 

Other DRF Details



DRF Algorithm 



DRF Algorithm 

Our example
Job 1’s tasks: 2 CPUs, 8 GB 

=> Job 1’s resource vector = <2 CPUs, 8 GB>
Job 2’s tasks: 6 CPUs, 2 GB 

=> Job 2’s resource vector = <6 CPUs, 2 GB>
Consider a cloud with <18 CPUs, 36 GB RAM>



• Scheduling very important problem in cloud computing 
• Limited resources, lots of jobs requiring access to these resources

• Single-processor scheduling
• FIFO/FCFS, STF, Priority, Round-Robin

• Hadoop scheduling
• Capacity scheduler, Fair scheduler

• Dominant-Resources Fairness
• Highly active area of research!!

Summary: Scheduling 


