Distributed Systems

CS425/ECE428

Instructor: Radhika Mittal

Grade distribution

	3-credit	4-credit
Homework	33%	16% (drop 2 worst HWs)
Midterms	33%	25%
Final	33%	25%
MPs	N/A	33%
Participation	1%	1%

Grading

- Midterms curving formula (tentative)
- relative: 80 + 10*(your score - avg_UG_score) / standard_dev
- We will use max(absolute, relative) to get final score out of 100 .
- Relevant Stats:
- Midterm I: avg_UG_score $=76.119$, std_dev $=14.96$
- Midterm2: avg_UG_score $=75.94$, std_dev $=13.28$
- Multiply the final score (out of 100) for each midterm by:
- 0.165 for 3 -credit students
- 0.125 for 4 -credit students
- Finals will be similarly curved, but has higher weightage.

Grading

- Homeworks will not be curved.
- For 3-credit students:
- (sum of all 5 homework scores) * I 00 * 0.33 / 200
- For 4-credit students:
- (sum of best 3 homework scores) * 100 * 0.16 / 120
- MPs will not be curved.
- (sum of all four MP scores) * 100 * 0.33 / 330
- Participation score: directly taken from Campuswire
- if reported score > 100 , you get full 1%
- Else you get (reported score / I 00)\%
- Bonus for active participation in class.

Grading

- Grading for active in-class participation
- Will match faces with roster photograph.
- If you have actively participated in class, and think you look very different from your roster photograph, please email me a more representative photo.

Tentative Grades Cutoff

- Tentative mapping from score to grade (rough estimate):
- Cutoff for B: 80\%
- Bump up a grade for each 4% leap above 80%.
- B+ 84\%,A-88\%,A 92\%,A+96\%
- Bump down a grade for each 4% leap below 80%
- B- 76%, C+ 72%,
- This is subject to change!

Cloud Scheduling

Single processor scheduling: when should a task start? (order of task)
Cloud/cluster scheduling: additional dimensions

- how many tasks of each job can we run together across the cluster?
- minimize average job completion time
- high cluster resource utilization
- ensure fairness (e.g. across jobs from different users or tenants)
- on which node should we place a given task?
- data locality, tasks dependencies, minimize inter-task communication latency, etc.

Case-study I: Hadoop Scheduling

- A Hadoop job consists of Map tasks and Reduce tasks
- Only one job in entire cluster => it occupies cluster
- Multiple customers with multiple jobs
- Users/jobs = "tenants"
- Multi-tenant system
- => Need a way to schedule all these jobs (and their constituent tasks)
- => Need to be fair across the different tenants
- Hadoop YARN has two popular schedulers
- Hadoop Capacity Scheduler
- Hadoop Fair Scheduler

Hadoop Capacity Scheduler

- Contains multiple queues
- Each queue contains multiple jobs
- Each queue guaranteed some portion of the cluster capacity E.g.,
- Queue I is given 80% of cluster resources
- Queue 2 is given 20% of cluster resources
- (can specify different percentages for different resource types: memory, compute, etc)
- Percentages based on business agreements with tenants.
- For jobs within same queue, FIFO typically used

Elasticity in HCS

- Administrators can configure each queue with limits
- Soft limit: how much \% of cluster is the queue guaranteed to occupy
- (Optional) Hard limit: max \% of cluster given to the queue
- Elasticity
- A queue allowed to occupy more of cluster if resources free
- But if other queues below their capacity limit, now get full, need to give these other queues resources
- Pre-emption not allowed!
- Cannot stop a task part-way through
- When reducing \% cluster to a queue, wait until some tasks of that queue have finished

Other HCS Features

- Queues can be hierarchical
- May contain child sub-queues, which may contain child subqueues, and so on
- Child sub-queues can share resources equally

Hadoop Fair Scheduler

- Goal: all jobs get equal share of resources
- When only one job present, occupies entire cluster
- As other jobs arrive, each job given equal \% of cluster
- E.g., Each job might be given equal number of cluster-wide YARN containers
- Each container $==$ I task of job

Hadoop Fair Scheduler (2)

- Divides cluster into pools
- Typically one pool per user
- Resources divided equally among pools
- Gives each user fair share of cluster
- Within each pool, can use either
- Fair share scheduling, or
- FIFO/FCFS
- (Configurable)

Pre-emption in HFS

- Some (higher priority / production) pools may have minimum shares
- Minimum \% of cluster that pool is guaranteed
- When minimum share not met in a pool, for a while
- Take resources away from other pools
- By pre-empting jobs in those other pools
- By killing the currently-running tasks of those jobs
- Tasks can be re-started later
- Ok since tasks are idempotent!
- To kill, scheduler picks most-recently-started tasks
- Minimizes wasted work

Other HFS Features

- Can also set limits on
- Number of concurrent jobs per user
- Number of concurrent jobs per pool
- Number of concurrent tasks per pool
- Prevents other cluster resources (disk / external services) from being hogged by one user/job

Estimating Task Lengths

- HCS/HFS use FIFO
- May not be optimal (as we know!)
- Why not use SRPT or shortest-task-first instead? It's optimal (as we know!)
- Challenge: Hard to know expected running time of task (before it's completed)
- Solution: Estimate length of task
- Some approaches
- Within a job: Calculate running time of task as proportional to size of its input
- Across tasks: Calculate running time of task in a given job as average of other tasks in that given job (weighted by input size)
- Lots of recent research results in this area!

Summary

- Hadoop Scheduling in YARN
- Hadoop Capacity Scheduler
- Hadoop Fair Scheduler
- Yet, so far we've talked of only one kind of resource
- Either processor, or memory
- How about multi-resource requirements?
- Next!

Dominant-Resource Fair Scheduling

Challenge

- Jobs may have multi-resource requirements
- Job I's tasks: 2 CPUs, 8 GB
- Job 2's tasks: 6 CPUs, 2 GB
- How do you schedule these jobs in a "fair" manner?
- That is, how many tasks of each job do you allow the system to run concurrently?
- What does fairness even mean?

Dominant Resource Fairness (DRF)

- Proposed by researchers from U. California Berkeley
- Proposes notion of fairness across jobs with multi-resource requirements
- They showed that DRF is
- Fair for multi-tenant systems
- Strategy-proof: tenant can't benefit by lying
- Envy-free: tenant can't envy another tenant's allocations

Where is DRF Useful?

- DRF is
- Usable in scheduling VMs in a cluster
- Usable in scheduling Hadoop jobs in a cluster
- DRF used in Mesos, an OS intended for cloud environments
- DRF-like strategies also used some cloud computing company's distributed OS's

How DRF Works

- Our example
- Job I's tasks: 2 CPUs, 8 GB
$=>$ Job I's resource vector $=<2$ CPUs, 8 GB>
- Job 2's tasks: 6 CPUs, 2 GB
$=>$ Job 2's resource vector $=<6 \mathrm{CPUs}, 2 \mathrm{~GB}>$
- Consider a cloud with < 18 CPUs, 36 GB RAM>
- Naïve fairness: each job gets 9CPUs and I8GB RAM.
- How many tasks for each job?
- Not Pareto-efficient!

How DRF Works (2)

- Our example
- Job I's tasks: 2 CPUs, 8 GB
$=>$ Job I's resource vector $=<2$ CPUs, 8 GB $>$
- Job 2's tasks: 6 CPUs, 2 GB
$=>$ Job 2's resource vector $=<6$ CPUs, 2 GB>
- Consider a cloud with < 18 CPUs, 36 GB RAM>
- Each Job I's task consumes \% of total CPUs = 2/I8 = I/9
- Each Job I's task consumes \% of total RAM $=8 / 36=2 / 9$
- $1 / 9<2 / 9$
- => Job I's dominant resource is RAM, i.e., Job I is more memory-intensive than it is CPU-intensive

How DRF Works (3)

- Our example
- Job I's tasks: 2 CPUs, 8 GB
$=>$ Job I's resource vector $=<2$ CPUs, 8 GB $>$
- Job 2's tasks: 6 CPUs, 2 GB
$=>$ Job 2's resource vector $=<6$ CPUs, 2 GB>
- Consider a cloud with < 18 CPUs, 36 GB RAM>
- Each Job 2's task consumes \% of total CPUs $=6 / 18=6 / 18$
- Each Job 2's task consumes \% of total RAM $=2 / 36=1 / 18$
- $6 / 18>1 / 18$
- => Job 2's dominant resource is CPU, i.e., Job 2 is more CPU-intensive than it is memory-intensive

DRF Fairness

- For a given job, the \% of its dominant resource type that it gets cluster-wide, is the same for all jobs
- Job I's $\%$ of RAM = Job 2 's $\%$ of CPU
- Can be written as linear equations, and solved
- Assume JI has \times tasks and J2 has y tasks
- $2 x / 9=6 y / 18$
- $2 x+6 y<=18$
- $8 x+2 y<=36$

DRF Solution, For our Example

- DRF Ensures
- Job I's \% of RAM = Job 2's \% of CPU
- Solution for our example:
- Job I gets 3 tasks each with <2 CPUs, 8 GB>
- Job 2 gets 2 tasks each with <6 CPUs, 2 GB>
- Job I's \% of RAM
= Number of tasks * RAM per task / Total cluster RAM
$=3 * 8 / 36=2 / 3$
- Job 2's \% of CPU
$=$ Number of tasks * CPU per task / Total cluster CPUs
$=2 * 6 / 18=2 / 3$

Other DRF Details

- DRF generalizes to multiple jobs
- DRF also generalizes to more than 2 resource types
- CPU, RAM, Network, Disk, etc.
- DRF ensures that each job gets a fair share of that type of resource which the job desires the most
- Hence fairness

Other DRF Details

- DRF may not always equalize dominant resource shares.
- e.g. when a job's demand is met and does not need more tasks.
- or if one resource gets exhausted, jobs not using that resource can still be served.

DRF Algorithm

Algorithm 1 DRF pseudo-code
$R=\left\langle r_{1}, \cdots, r_{m}\right\rangle \quad \triangleright$ total resource capacities
$C=\left\langle c_{1}, \cdots, c_{m}\right\rangle \quad \triangleright$ consumed resources, initially 0
$s_{i}(i=1 . . n) \quad \triangleright$ user i 's dominant shares, initially 0
$U_{i}=\left\langle u_{i, 1}, \cdots, u_{i, m}\right\rangle(i=1 . . n) \triangleright$ resources given to user i, initially 0
pick user i with lowest dominant share s_{i}
$D_{i} \leftarrow$ demand of user i 's next task
if $C+D_{i} \leq R$ then
$C=C+D_{i} \quad \triangleright$ update consumed vector $U_{i}=U_{i}+D_{i} \quad \triangleright$ update i 's allocation vector $s_{i}=\max _{j=1}^{m}\left\{u_{i, j} / r_{j}\right\}$
else
return $\quad \triangleright$ the cluster is full
end if

DRF Algorithm

Algorithm 1 DRF pseudo-code

$R=\left\langle r_{1}, \cdots, r_{m}\right\rangle \quad \triangleright$ total resource capacities $C=\left\langle c_{1}, \cdots, c_{m}\right\rangle \quad \triangleright$ consumed resources, initially 0
$s_{i}(i=1 . . n) \quad \triangleright$ user i 's dominant shares, initially 0 $U_{i}=\left\langle u_{i, 1}, \cdots, u_{i, m}\right\rangle(i=1 . . n) \triangleright$ resources given to user i, initially 0
pick user i with lowest dominant share s_{i}
$D_{i} \leftarrow$ demand of user i 's next task
if $C+D_{i} \leq R$ then
$C=C+D_{i} \quad \triangleright$ update consumed vector
$U_{i}=U_{i}+D_{i} \quad \triangleright$ update i 's allocation vector
$s_{i}=\max _{j=1}^{m}\left\{u_{i, j} / r_{j}\right\}$
else
return $\quad \triangleright$ the cluster is full
end if

Our example
Job I's tasks: 2 CPUs, 8 GB
$=>$ Job l's resource vector $=<2$ CPUs, 8 GB>
Job 2's tasks: 6 CPUs, 2 GB
$=>$ Job 2's resource vector $=<6$ CPUs, 2 GB>
Consider a cloud with <18 CPUs, 36 GB RAM>

Summary: Scheduling

- Scheduling very important problem in cloud computing
- Limited resources, lots of jobs requiring access to these resources
- Single-processor scheduling
- FIFO/FCFS, STF, Priority, Round-Robin
- Hadoop scheduling
- Capacity scheduler, Fair scheduler
- Dominant-Resources Fairness
- Highly active area of research!!

