Distributed Systems

CS425/ECE428

Instructor: Radhika Mittal

Logistics

- Midterm 2 assessment now visible.
- Comprehensive Final exam: May 2- May 6 via CBTF
 - Please make reservation if you haven't already done so.

Our agenda for the next 2-3 classes

- Brief overview of key-value stores
- Distributed Hash Tables
 - Peer-to-peer protocol for efficient insertion and retrieval of key-value pairs.
- Key-value stores in the cloud
 - How to run large-scale distributed computations over key-value stores?
 - Map-Reduce Programming Abstraction
 - Job scheduling
 - How to design a large-scale distributed key-value store?
 - Case-study: Facebook's Cassandra

Features of cloud

- I. Massive scale.
 - Tens of thousands of servers and cloud tenants, and hundreds of thousands of VMs.
- II. On-demand access:
 - Pay-as-you-go, no upfront commitment, access to anyone.
- III. Data-intensive nature:
 - What was MBs has now become TBs, PBs and XBs.
 - Daily logs, forensics, Web data, etc.

Must deal with immense complexity!

- Fault-tolerance and failure-handling
- Replication and consensus
- Cluster scheduling
- How would a cloud user deal with such complexity?
 - Powerful abstractions and frameworks
 - Provide easy-to-use API to users.
 - Deal with the complexity of distributed computing under the hood.

MapReduce is one such powerful abstraction.

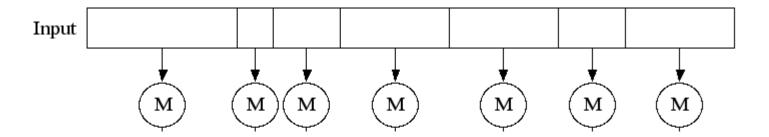
MapReduce Abstraction

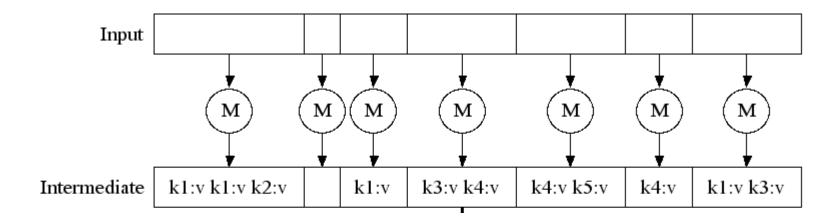
- Map/Reduce
 - Programming model inspired from LISP (and other functional languages).
- Expressive: many problems can be phrased as map/reduce.
- Easy to distribute across nodes.
 - High-level job divided into multiple independent "map" tasks, followed by multiple independent "reduce" tasks.
- Nice retry/failure semantics.

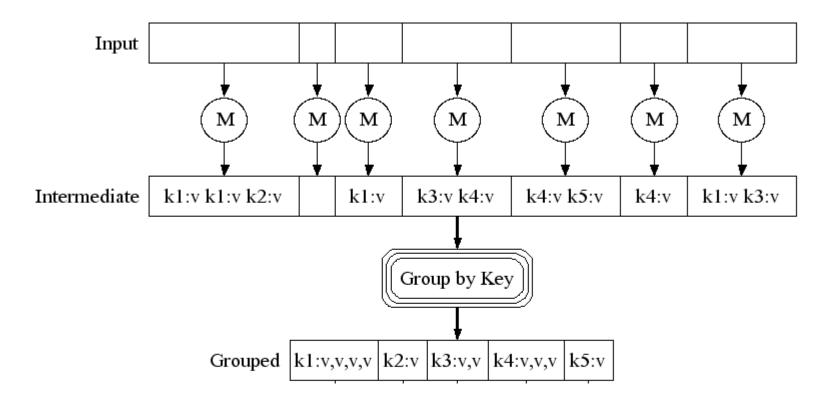
MapReduce Architecture

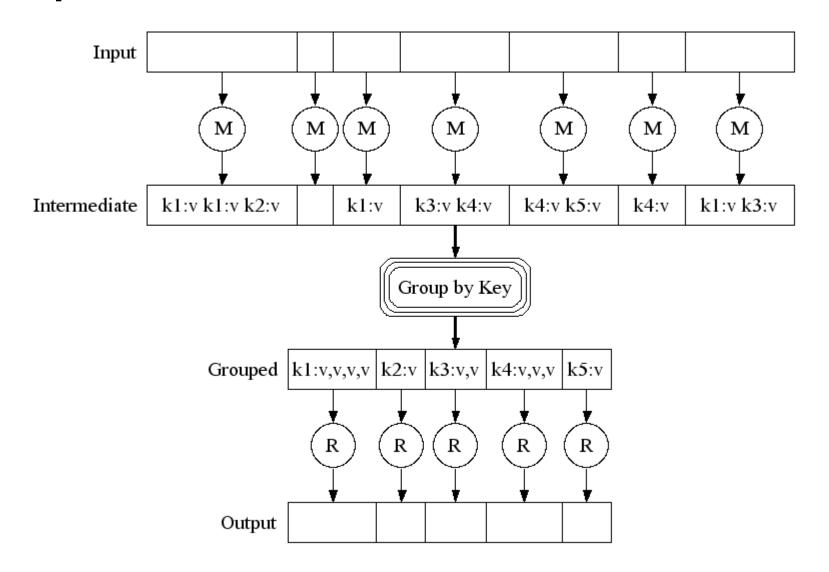
- MapReduce programming abstraction:
 - Easy to program distributed computing tasks.
- MapReduce programming abstraction offered by multiple open-source application frameworks:
 - Handle creation of "map" and "reduce" tasks.
 - e.g. Hadoop: one of the earliest map-reduce frameworks.
 - e.g. Spark: easier API and performance optimizations.
- Application frameworks use resource managers.
 - Deal with the hassle of distributed cluster management.
 - e.g. Kubernetes, YARN, Mesos, etc.

- Input: a set of key/value pairs
- User supplies two functions:
 - map(k,v) \rightarrow list(k1,v1)
 - reduce(kl, list(vl)) → v2
- (kl,vl) is an intermediate key/value pair.
- Output is the set of (k1,v2) pairs.









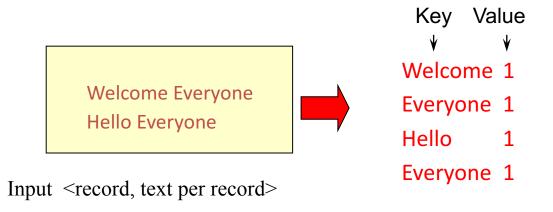
Typical Example: Word Count

- We have a large file of words containing multiple lines (or records).
- Count the number of times each distinct word appears in the file.
- Sample application: analyze web server logs to find popular URLs.

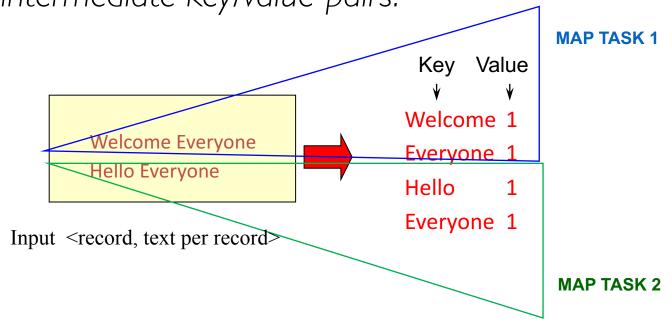
• Process individual records to generate intermediate key/value pairs.

Input <record, text per record>

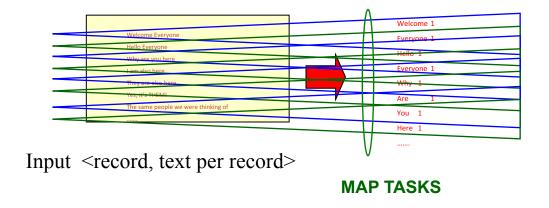
• Process individual records to generate intermediate key/value pairs.



• Parallelly process individual records to generate intermediate key/value pairs.



 Parallelly process a large number of individual records to generate intermediate key/value pairs.

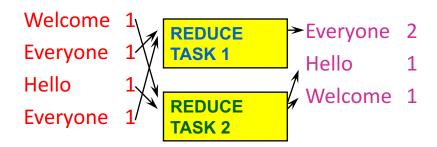


Reduce

• Processes and merges all intermediate values associated <u>per key.</u>

Reduce

- Each key assigned to one Reduce task.
- Parallelly processes and merges all intermediate values partitioned per key.



- Popular: Hash partitioning, i.e., key is assigned to
 - reduce # = hash(key)%number of reduce tasks

- Input: a set of key/value pairs
- User supplies two functions:
 - map(k,v) \rightarrow list(k1,v1)
 - reduce(kl, list(vl)) → v2
- (kl,vl) is an intermediate key/value pair.
- Output is the set of (k1,v2) pairs.

- Input: a set of key/value pairs (record, list of words)
- User supplies two functions:
 - map(k,v) \rightarrow list(k1,v1)
 - reduce(kl, list(vl)) → v2
- (kl,vl) is an intermediate key/value pair. (word, l)
- Output is the set of (k1,v2) pairs. (word, count)

Word Count using MapReduce

```
map(key, value):
// key: record (line no.); value: list of words in the record
  for each word w in value:
        emit(w, I)
 reduce(key, values):
// key: a word; values: an iterator over counts
         result = 0
         for each count v in values:
                 result += v
         emit(key, result)
```

Hadoop Code - Map

```
public static class MapClass extends MapReduceBase
  implements Mapper<LongWritable, Text, Text, IntWritable> {
  private final static IntWritable one =
    new IntWritable(1);
  private Text word = new Text();
  public void map ( LongWritable key, Text value,
     OutputCollector<Text, IntWritable> output, Reporter reporter) // key is empty, value is the line
    throws IOException {
    String line = value.toString();
    StringTokenizer itr = new StringTokenizer(line);
    while (itr.hasMoreTokens()) {
     word.set(itr.nextToken());
     output.collect(word, one);
} // Source: http://developer.yahoo.com/hadoop/tutorial/module4.html#wordcount
```

Hadoop Code - Reduce

```
public static class ReduceClass extends MapReduceBase
                                                               implements
Reducer<Text, IntWritable, Text, IntWritable> {
 public void reduce (
            Text key,
            Iterator<IntWritable> values,
            OutputCollector<Text, IntWritable> output,
            Reporter reporter)
                         throws IOException {
                         // key is word, values is a list of 1's
            int sum = 0;
            while (values.hasNext()) {
              sum += values.next().get();
            output.collect(key, new IntWritable(sum));
} // Source: http://developer.yahoo.com/hadoop/tutorial/module4.html#wordcount
```

Hadoop Code - Driver

// Tells Hadoop how to run your Map-Reduce job

```
public void run (String inputPath, String outputPath)
            throws Exception {
 // The job. WordCount contains MapClass and Reduce.
  JobConf conf = new JobConf(WordCount.class);
  conf.setJobName("mywordcount");
 // The keys are words
  (strings) conf.setOutputKeyClass(Text.class);
  // The values are counts (ints)
 conf.setOutputValueClass(IntWritable.class);
  conf.setMapperClass(MapClass.class);
  conf.setReducerClass(ReduceClass.class);
  FileInputFormat.addInputPath(
            conf, newPath(inputPath));
  FileOutputFormat.setOutputPath(
            conf, new Path(outputPath));
  JobClient.runJob(conf);
} // Source: http://developer.yahoo.com/hadoop/tutorial/module4.html#wordcount
```

Spark Code

```
Python:
   text file = sc.textFile("hdfs://...")
   counts = text file.flatMap \
               (lambda line: line.split(" ")) \
               .map(lambda word: (word, 1)) \
               .reduceByKey(lambda a, b: a + b)
   counts.saveAsTextFile("hdfs://...")
   // Source: <a href="http://spark.apache.org/examples.html">http://spark.apache.org/examples.html</a>
```

More examples: Host size

- Suppose we have a large web corpus
- Metadata file
 - Lines of the form (URL, size, date, ...)
- For each host, find the total number of bytes
 - i.e., the sum of the sizes for all pages from a given host/URL

```
map(key, value):
// key: metadata record#;
// key: URL, values: iterator over sizes:
    result = 0
    for each (URL, size) in value:
        result += s
        emit(URL, size)

reduce(key, values):
// key: URL, values: iterator over sizes:
result = 0
for each size s in values:
    result += s
emit(URL, size)
```

More examples: Distributed Grep

- Input: large set of files
- Output: unique lines that match pattern

```
map(key, value):
// key: file, value: list of lines
for each line in value:
    if ''pattern'' in line:
        emit(line, I)
reduce(key, values):

// key: line that matches pattern; values: I's
emit(key, I)

emit(line, I)
```

More examples: Graph reversal

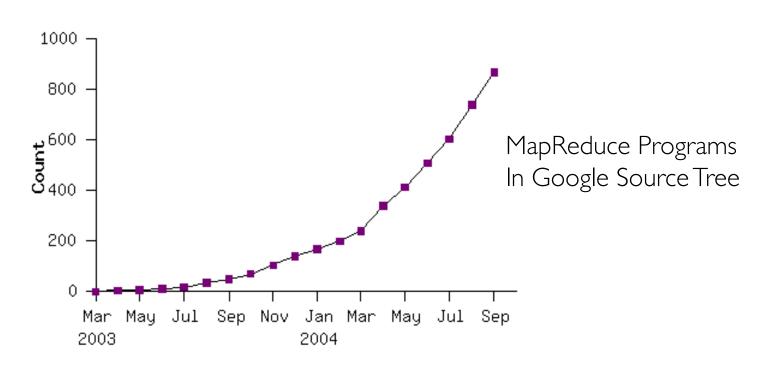
- Input: Web graph: tuples (a, b) where (page a → page b)
- Output: For each page, list of pages that link to it

MapReduce Chains

mapl -> reducel -> map2 -> reduce2

- E.g., output words grouped by their frequency
 - Map1: emit ("word", 1)
 - Reduce1: emit ("word", count)
 - Map2: emit (count, "word")
 - Reduce2: identity, i.e. emit(count, list of words)

MapReduce is popular and widely applicable



Example uses:

distributed grep term-vector / host document clustering distributed sort
web access log stats
machine learning

web link-graph reversal inverted index construction statistical machine translation

... ...

Externally: For user

- I. Write a Map program (short), write a Reduce program (short)
- 2. Specify number of Maps and Reduces (parallelism level)
- 3. Submit job; wait for result
- 4. Need to know very little about parallel/distributed programming!

Internally: For the framework and resource manager in the cloud

- I. Parallelize Map
- 2. Transfer data from Map to Reduce (shuffle data)
- Parallelize Reduce
- 4. Implement Storage for Map input, Map output, Reduce input, and Reduce output

(Ensure that no Reduce starts before all Maps are finished. That is, ensure the <u>barrier</u> between the Map phase and Reduce phase)

Internally: For the framework and resource manager in the cloud

- I. Parallelize Map (easy!)
 - Each map task is independent of the other!
- 2. Transfer data from Map to Reduce (shuffle data)
- 3. Parallelize Reduce
- Implement Storage for Map input, Map output, Reduce input, and Reduce output

(Ensure that no Reduce starts before all Maps are finished. That is, ensure the <u>barrier</u> between the Map phase and Reduce phase)

Internally: For the framework and resource manager in the cloud

- I. Parallelize Map (easy!)
- 2. Transfer data from Map to Reduce (shuffle data)
 - All Map output records with same key assigned to same Reduce
 - Use partitioning function, e.g., hash(key)%number of reducers
- 3. Parallelize Reduce
- 4. Implement Storage for Map input, Map output, Reduce input, and Reduce output

(Ensure that no Reduce starts before all Maps are finished. That is, ensure the <u>barrier</u> between the Map phase and Reduce phase)

MapReduce Execution

Internally: For the framework and resource manager in the cloud

- Parallelize Map (easy!)
- 2. Transfer data from Map to Reduce (shuffle data)
- 3. Parallelize Reduce (easy!)
 - Each reduce task is independent of the other!
- 4. Implement Storage for Map input, Map output, Reduce input, and Reduce output

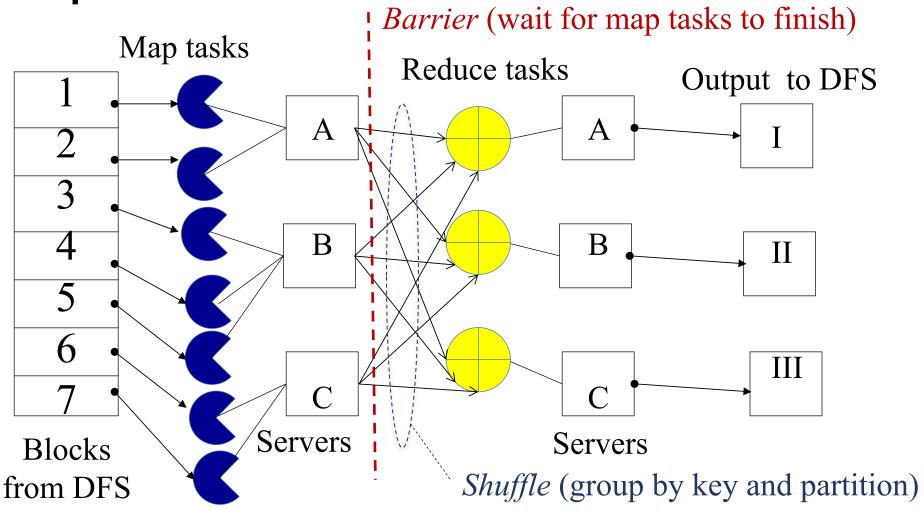
(Ensure that no Reduce starts before all Maps are finished. That is, ensure the <u>barrier</u> between the Map phase and Reduce phase)

MapReduce Execution

Internally: For the framework and resource manager in the cloud

- I. Parallelize Map
- 2. Transfer data from Map to Reduce (shuffle data)
- Parallelize Reduce
- 4. Implement Storage for Map input, Map output, Reduce input, and Reduce output
 - Map input: from distributed file system/data store
 - Map output: to local disk (at Map node); uses local file system
 - Reduce input: from (multiple) remote disks; uses local file systems
 - Reduce output: to distributed file system/data store local file system (e.g. Linux FS) distributed file system (e.g. Google File System, Hadoop Distributed File System) distributed data store (e.g. Cassandra, BigTable, Spanner, DynamoDB)

MapReduce Execution



Resource Manager (assigns map and reduce tasks to servers)

Resource Manager

- Examples:
 - YARN (Yet Another Resource Negotiator), used underneath Hadoop 2.x +
 - Kubernetes, Borg, Mesos, etc.
- Treats each server as a collection of containers
 - Container = fixed CPU + fixed memory (e.g. Docker)
 - Each tasks runs in a container.
- Has 3 main components
 - Global Resource Manager (RM): Cluster Scheduling
 - Per-server Node Manager (NM): Daemon and server-specific functions
 - Per-application (job) Application Master (AM)
 - Container negotiation with RM and NMs.
 - Handling task failures of that job.

Fault Tolerance

- NM heartbeats to RM
 - If server fails: RM times out waiting for next heartbeat, RM lets all affected AMs know, and AMs take appropriate action.
- NM keeps track of each task running at its server
 - If task fails while in-progress, mark the task as idle and restart it.
- AM heartbeats to RM
 - On failure, RM restarts AM, which then syncs it up with its running tasks.
- RM Failure
 - Use old checkpoints and bring up secondary RM.

Slow Servers

Slow tasks are called Stragglers.

• The slowest task slows the entire job down (why?)

Barrier at the end of Map phase!

- Due to bad disk, network bandwidth, CPU, or memory
- Keep track of "progress" of each task (% done)
- Perform proactive backup (replicated) execution of some straggler tasks
 - A task considered done when its first replica complete (other replicas can then be killed).
 - Approach called Speculative Execution.
- Straggler mitigation has been a very active area of research.

Task Scheduling

- Favour data locality:
 - attempts to schedule a map task on a machine that contains a replica of corresponding input data.
 - if that's not possible, on the same rack as a machine containing the input.
 - if that's not possible, anywhere.
- What does "if that's not possible" mean?
 - No more resources available on the machine.
 - Might be worth waiting a while for resources to become available.
 - Delay scheduling in Spark!
- Cluster scheduling is also a very active area of research.

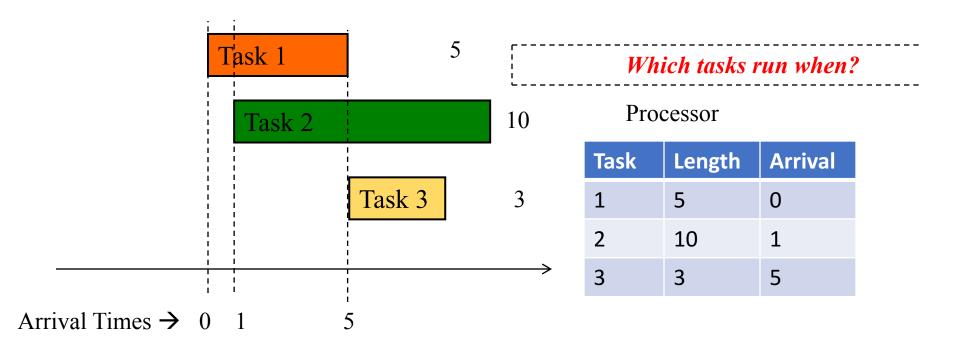
Summary

- Cloud provides distributed computing infrastructure as a service.
- Running a distributed job on the cloud cluster can be very complex:
 - Must deal with parallelization, scheduling, fault-tolerance, etc.
- MapReduce is a powerful abstraction to hide this complexity.
 - User programming via easy-to-use API.
 - Distributed computing complexity handled by underlying frameworks and resource managers
- Plenty of ongoing research work in scheduling, faulttolerance, and straggler mitigation for MapReduce.

Why Scheduling?

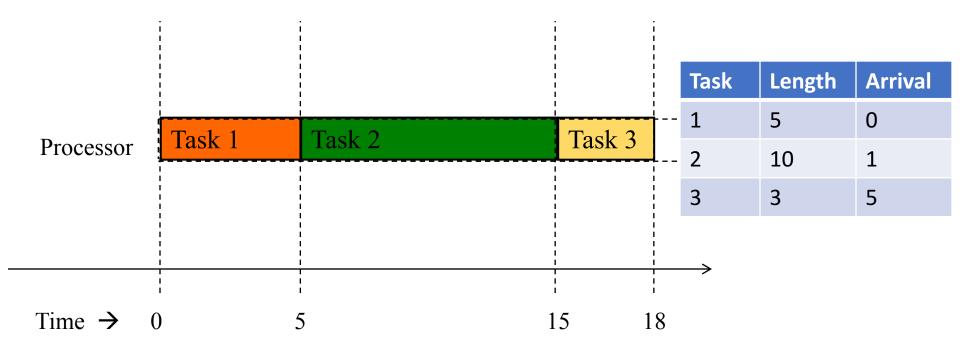
- Multiple "tasks" to schedule
 - The processes on a single-core OS
 - The tasks of a Hadoop job
 - The tasks of multiple Hadoop jobs
- Limited resources that these tasks require
 - Processor(s)
 - Memory
 - (Less contentious) disk, network
- Scheduling goals
 - I.Good throughput or response time for tasks (or jobs)
 - 2. High utilization of resources
 - 3. Fairness (across jobs from multiple users / tenants)

Single Processor Scheduling



FIFO Scheduling (First-In First-Out)/FCFS

- Maintain tasks in a queue in order of arrival
- When processor free, dequeue head and schedule it

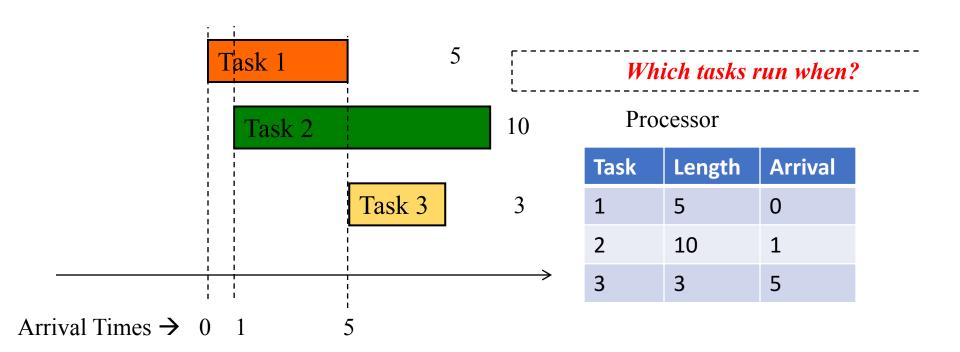


FIFO/FCFS Performance

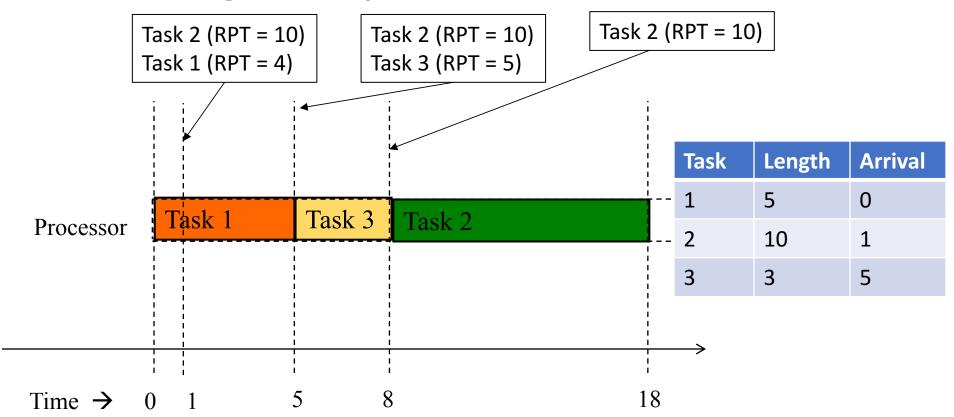
Average completion time may be high

- For our example on previous slides,
 - Average completion time of FIFO/FCFS = (Task I + Task 2 + Task 3)/3
 - = (5+14+13)/3
 - = 10.667

What schedule will minimize avg completion time?



SRPT Scheduling (Shortest Remaining Processing Time)



- Schedule tasks in the order of "remaining processing time" (RPT).
- RPT= total processing time required processing time given so far

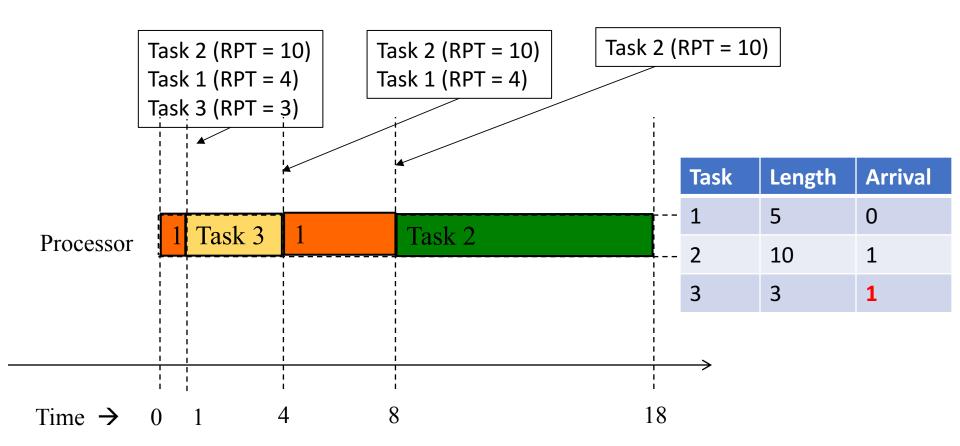
SRPT Is Optimal!

- Average completion of SRPT is the shortest among <u>all</u> scheduling approaches!
- For our example on previous slides,
 - Average completion time of SRPT =
 (Task I + Task 2 + Task 3)/3
 = (5+17+3)/3
 = 25/3
 = 8.333
 (versus I 0.667 for FIFO/FCFS)

Priority Scheduling

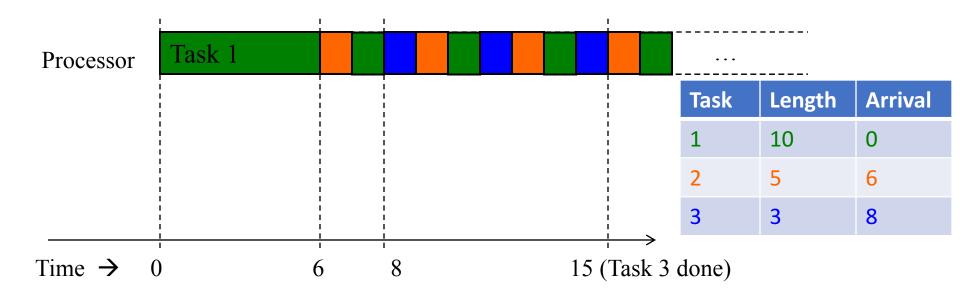
- In general, SRPT is a special case of <u>priority scheduling</u>
 - Schedule tasks in priority order.
 - Maintain a priority queue, and insert tasks into the queue based on their priority value.
 - FIFO/FCFS: use arrival time as priority.
 - SRPT: use remaining processing time as priority
 - STF (shortest task first): use total processing duration as priority
 - Can also use any other user-provided priority.

Preemption



- SRPT / Priority Scheduling can also cause pre-emption
- (Task I pre-empted when higher priority Task 2 arrives at time I)
- Some systems may choose to implement a non-preemptive priority scheduler for simplicity (wait until currently scheduled task is complete).

Round-Robin Scheduling



- Use a quantum (say 1 time unit) to run portion of task at queue head
- Pre-empts processes by saving their state, and resuming later
- After pre-empting, add to end of queue

FIFO vs SRPT vs Round-Robin

• FIFO: lower tail completion time.

- SRPT: lower average completion time.
- Round-robin: Fairness across tasks (from different users).
 - Small task from one user will not be blocked behind large task from another user (as with FIFO)
 - Large task from one user will not starve due to many small tasks from another user (as with SRPT)

Summary

- Single processor scheduling algorithms
 - FIFO/FCFS
 - Shorted remaining processing time first (optimal!)
 - Shortest task first
 - Priority
 - Round-robin
 - (preemption vs non-preemption)
 - Many other scheduling algorithms out there!
- What about cloud scheduling?
 - Next!