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Logistics

• HW4 is due today.

• HW5 has been released.
• you should be able to solve first two questions right-away
• you should be able to solve last two questions in a week. 



Our agenda for the next 3-4 classes

• Brief overview of key-value stores

• Distributed Hash Tables
• Peer-to-peer protocol for efficient insertion and retrieval of key-value 

pairs.  

• Key-value stores in the cloud
• How to run large-scale distributed computations over key-value 

stores?
• Map-Reduce Programming Abstraction

• How to schedule jobs in the cloud? 
• How to design a large-scale distributed key-value store?

• Case-study: Facebook’s Cassandra 



Recap

• Distributed Hash Tables
• Peer-to-peer protocol for efficient insertion and retrieval of key-value 

pairs. 
• Other required properties: load balancing, fault tolerance. 

• Case-study: Chord



Recap: Chord

• Uses consistent hashing to map nodes on a ring with m-bits 
identifiers. 

• Uses consistent hashing to map a key to a node.
• stored at successor(key)

• Each node maintains a finger table with m fingers. 
• With high probability, results in O(logN) hops for a look-up.



Recap: Chord Consistent Hashing 
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Where will N45 be placed on this circle? 

• SHA-1(ip_address,port) à160 bit string 
• Truncated to m bits (modulo 2m)
• Called peer id (number between 0 and 2m-1)
• m chosen such that negligible chance of id 

conflicts 
• Can then map peers to one of 2m logical 

points on a circle

• Uses Consistent Hashing on node’s (peer’s) address



Ring of Peers: Running Example

N80

N112

N96

N16
0

• Say m=7 (128 possible points on the circle – not shown)
• 6 nodes in the system.  
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Recap: Mapping Keys to Nodes
• Use the same consistent hash function
• SHA-1(key) à160 bit string (key identifier)
• Henceforth, we refer to SHA-1(key) as key. 

• The key-value pair stored at the key’s successor node.
• successor(key) = first peer with id greater than or equal to (key mod 2m )

• Cross-over the ring when you reach the end.

• 0 < 1 < 2 < 3 …….. < 127 < 0 (for m=7) 

• Consistent Hashing => with K keys and N peers, each peer stores 
O(K/N) keys. (i.e., < c.K/N, for some constant c)



Recap: Ring of Peers: Running Example
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Where will the value with key 42 be stored?

Value with key 
K42 stored here



Recap: Performing Lookups
• Option 1: Each node is aware of (can route to) any other node in the 

system.
• Need a very large routing table. 
• Poor scalability with 1000s of nodes. 
• Any node failure and join will require a necessary update at all nodes. 

• Option 2: Each node is aware of only its ring successor. 
• O(N) lookup. Not very efficient. 

• Chord chooses a sweet middle-ground. 



Recap: Performing Lookups
• Chord chooses a sweet middle-ground. 
• Each node is aware of ~m other nodes.  
• Maintains a finger table with m entries.
• The ith entry of node n’s finger table = successor(n + 2i)
• i ranges from 0 to m-1  



Recap: Finger Tables

ith entry	of	node	n’s	finger	table	=	successor(n	+	2i)



Recap: Search for key k at node n 
At node n, if k lies in range (n, next(n)], where next(n) is n’s ring successor

then next(n) = successor(key). Send query to next(n)
Else, send query for k to largest finger entry <= k
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value for K42?



Recap: Analysis
Search takes O(log(N)) time

Proof  Intuition:
• (intuition): at each step, distance between query and peer-with-file 

reduces by a factor of at least 2 (why?)
• (intuition): after log(N) forwardings, distance to key is at most 

2m/2log(N) = 2m / N
• Expected number of node identifiers in a range of 2m / N:
• ideally one
• O(log(N)) with high probability (by properties of consistent 

hashing)
So using ring successors in that range will use another O(log(N)) 
hops. Overall lookup time stays O(log(N)).

Next hop

Key

Here
Halfway	point



Recap: Chord

• Uses consistent hashing to map nodes on a ring with m-bits 
identifiers. 

• Uses consistent hashing to map a key to a node.
• stored at successor(key)

• Each node maintains a finger table with m fingers. 
• With high probability, results in O(logN) hops for a look-up.
• O(log(N)) hops true only if finger and successor entries correct.
• What happens when nodes fails or when new nodes join in? 
• Our focus today. 



Recap: Chord

• Handling node failures:
• For lookups: 

• maintain r multiple ring successor entries 
• in case of failure, use another successor entries
• if r is sufficiently large (logN), can handle a high rate of failures (50%) with a 

very high probability. 
• When storing keys:  

• replicate key-value at r successors and predecessors



Need to deal with dynamic changes

• Nodes fail
• New nodes join
• Nodes leave

So, all the time, need to:
à Need to update successors and fingers, and copy keys



New node joins 
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New node contacts an existing Chord node (introducer). 
Introducer directs N40 to N45 (and N32).
N32 updates its ring successor to N40.
N40 initializes its ring successor to N45, and initializes its finger table.
Other nodes also update their finger table. 



New node joins 
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N40 may need to copy some files/keys from N45
(files with fileid between 32 and 40)

K34,K38



Concurrent Joins

• Aggressively maintaining and updating finger tables each time a node 
joins can be difficult under high churn. 
• E.g. when new nodes are concurrently added. 

• Correctness of lookup does not require all nodes to have fully  
“correct”  finger table entries. 

• Need two invariants:
• Each node, n, correctly maintains its ring successor (next(n))

• First entry in the finger table. 
• The node, successor(k), is responsible for key k.   



Stabilization Protocol

• When a node n joins (via an introducer)
• initialize next(n), i.e. the ring successor
• notify next(n). 

• When node n gets notified by node n’:
• // update prev(n), i.e. the ring predecessor of n 
• if (prev(n) == nil or n’ is in (prev(n), n))

• prev(n) = n’. 



Stabilization Protocol (contd)
• Each node n will periodically run stabilization: 

• x = prev(next(n))
• if x in (n, next(n)), then next(n) = x.
• notify next(n). 

• Each node n periodically updates a random finger entry.
• Pick a random i in [0, m-1]
• Lookup successor(n + 2i)



New node joins 
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New node contacts an existing Chord 
node (introducer). 
Introducer informs N40 of N45.
N40 initializes its ring successor to N45.
N40 notifies N45, and N45 updates its 
ring predecessor to N40.
N45 can begin transferring appropriate 
key-value pairs to N40. 
N32 realizes its new successor is N40 
when it runs stabilization. 
N32 notifies N40, and N40 initializes its 
ring predecessor to N32.
Periodically and eventually, each node 
update their finger table entries. 



Stabilization Protocol (contd)

• Failures can be handled in a similar way.
• Also need failure detectors (you’ve seen them!)

• Maintain knowledge of r ring successors. 
• The predecessor of a failed node update’s its ring successor, 

and notifies it. 



Stabilization Protocol (contd)

• Look-ups may fail while the Chord system is getting stabilized. 
• Such failures are transient. 

• Eventually ring successors and finger-table entries will get 
updated.

• Application can then try again after a timeout. 
• Such failures are also unlikely in practice

• Multiple key-value replicas and ring successors.   



Chord Summary
• Consistent hashing for load balancing. 

• O(logn) lookups via correct finger tables.

• Correctness of lookups requires correctly maintaining ring 
successors. 

• As nodes join and leave a Chord network, runs a stabilization 
protocol to periodically update ring successors and finger table 
entries.  

• Fault tolerance: Maintain r ring successors and r key replicas. 



Our agenda for the next 3-4 classes

• Brief overview of key-value stores

• Distributed Hash Tables
• Peer-to-peer protocol for efficient insertion and retrieval of key-value 

pairs.  

• Key-value stores in the cloud
• How to run large-scale distributed computations over key-value 

stores?
• Map-Reduce Programming Abstraction

• How to schedule jobs in the cloud? 
• How to design a large-scale distributed key-value store?

• Case-study: Facebook’s Cassandra 
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Cloud Computing



Many Cloud Providers

• AWS: Amazon Web Services
– EC2: Elastic Compute Cloud
– S3: Simple Storage Service

• Microsoft Azure
• Google Cloud/Compute Engine/AppEngine
• Rightscale, Salesforce, EMC, Gigaspaces, 10gen, 

Datastax, Oracle, VMWare, Yahoo, Cloudera
• And many many more!



• Cloud = Lots of storage + compute cycles nearby

• Cloud services provide:
• managed clusters for distributed computing.
• managed distributed datastores. 

What is a cloud?



• A single cloud-site (aka “Datacenter”) consists of
• Compute nodes (grouped into racks) (2)
• Switches, connecting the racks in a hierarchical network topology.
• Storage (backend) nodes connected to the network (3)
• Front-end for submitting jobs and receiving client requests (1)
• (1-3: Often called “three-tier architecture”)

• A geographically distributed cloud consists of
• Multiple such sites
• Each site perhaps with a different structure and services

What is a cloud?



Picture of Google’s Datacenter



Picture of Google’s Datacenter



Typical Datacenter Topology



Features of cloud

I. Massive scale.
• Tens of thousands of servers and cloud tenants, and 

hundreds of thousands of  VMs.
II. On-demand access: 

• Pay-as-you-go, no upfront commitment, access to anyone. 
III. Data-intensive nature: 

• What was MBs has now become TBs, PBs and XBs.
• Daily logs, forensics, Web data, etc.



Must deal with immense complexity!

• Fault-tolerance and failure-handling 
• Replication and consensus 
• Cluster scheduling

• How would a cloud user deal with such complexity? 
• Powerful abstractions and frameworks
• Provide easy-to-use API to users.
• Deal with the complexity of distributed computing 

under the hood. 



MapReduce 
is one such powerful 

abstraction. 



MapReduce Abstraction

• Map/Reduce 
• Programming model inspired from LISP (and other functional 

languages).

• Expressive: many problems can be phrased as map/reduce.

• Easy to distribute across nodes.
• High-level job divided into multiple independent “map” tasks,  

followed by multiple independent “reduce” tasks. 

• Nice retry/failure semantics.



MapReduce Architecture
• MapReduce programming abstraction: 
• Easy to program distributed computing tasks. 

• MapReduce programming abstraction offered by multiple 
open-source application frameworks: 
• Handle creation of “map” and “reduce” tasks.
• e.g. Hadoop: one of the earliest map-reduce frameworks. 
• e.g. Spark: easier API and performance optimizations.

• Application frameworks use resource managers.
• Deal with the hassle of distributed cluster management.
• e.g. Kubernetes, YARN, Mesos, etc. 



MapReduce Architecture
• Map/Reduce abstraction: 
• Easy to program distributed computing tasks. 

• MapReduce programming abstraction offered by multiple 
open-source application frameworks: 
• Create “map” and “reduce” tasks
• e.g. Hadoop: one of the earliest map-reduce frameworks. 
• e.g. Spark: easier API and performance optimizations.

• Application frameworks use resource managers.
• Deal with the hassle of distributed cluster management.
• e.g. Kubernetes, YARN, Mesos, etc. 

• Automatic parallelization & distribution
• Fault tolerance
• Scheduling
• Monitoring & status updates



MapReduce Architecture
• Map/Reduce abstraction: 
• Easy to program distributed computing tasks. 

• MapReduce programming abstraction offered by multiple 
open-source application frameworks: 
• Create “map” and “reduce” tasks
• e.g. Hadoop: one of the earliest map-reduce frameworks. 
• e.g. Spark: easier API and performance optimizations.

• Application frameworks use resource managers.
• Deal with the hassle of distributed cluster management.
• e.g. Kubernetes, YARN, Mesos, etc. 

To be continued in next class….


