
Distributed Systems

CS425/ECE428

Instructor : Radhika Mittal

Acknowledgements for some of the materials: Indy Gupta

Logistics

• MP2 due tonight.

• MP3 has been released.

• HW4 due on Wednesday.

• HW5 will be released on Wednesday.

Our agenda for the next 3-4 classes
• Brief overview of key-value stores

• Distributed Hash Tables
• Peer-to-peer protocol for efficient insertion and retrieval of key-value

pairs.

• Key-value stores in the cloud and Cloud job scheduling
• How to run large-scale distributed computations over key-value

stores?
• Map-Reduce Programming Abstraction

• How to schedule jobs in the cloud?
• How to design a large-scale distributed key-value store?

• Case-study: Facebook’s Cassandra

Our agenda for the next 3-4 classes
• Brief overview of key-value stores

• Distributed Hash Tables
• Peer-to-peer protocol for efficient insertion and retrieval of key-value

pairs.

• Key-value stores in the cloud and Cloud job scheduling
• How to run large-scale distributed computations over key-value

stores?
• Map-Reduce Programming Abstraction

• How to schedule jobs in the cloud?
• How to design a large-scale distributed key-value store?

• Case-study: Facebook’s Cassandra

The Key-value Abstraction

• (Business) Key àValue
• (twitter.com) tweet id à information about tweet
• (amazon.com) item number à information about it
• (kayak.com) Flight number à information about flight,

e.g., availability
• (yourbank.com) Account number à information

about it

The Key-value Abstraction (2)

• It’s a dictionary data-structure.
• Insert, lookup, and delete by key
• E.g., hash table, binary tree

• But distributed.

Isn’t that just a database?

• Yes, sort of.

• Relational Database Management Systems (RDBMSs)
have been around for ages
• e.g. MySQL is the most popular among them

• Data stored in structured tables based on a Schema
• Each row (data item) in a table has a primary key that is

unique within that table.
• Queried using SQL (Structured Query Language).
• Supports joins.

Mismatch with today’s workloads

• Data: Large and unstructured
• Lots of random reads and writes
• Sometimes write-heavy
• Foreign keys rarely needed
• Joins infrequent

Key-value/NoSQL Data Model

• NoSQL = “Not Only SQL”
• Necessary API operations: get(key) and put(key, value)

• Tables
• Like RDBMS tables, but …
• May be unstructured: May not have schemas

• Some columns may be missing from some rows
• Don’t always support joins or have foreign keys
• Can have index tables, just like RDBMSs

Key-value/NoSQL Data Model

• NoSQL = “Not Only SQL”
• Necessary API operations: get(key) and put(key, value)

• Tables
• Like RDBMS tables, but …
• May be unstructured: May not have schemas

• Some columns may be missing from some rows
• Don’t always support joins or have foreign keys
• Can have index tables, just like RDBMSs

Our focus today

• Brief overview of key-value stores

• Distributed Hash Tables
• Peer-to-peer protocol for efficient insertion and retrieval of key-value

pairs.

• Key-value stores in the cloud
• How to run large-scale distributed computations over key-value

stores?
• Map-Reduce Programming Abstraction

• How to design a large-scale distributed key-value store?
• Case-study: Facebook’s Cassandra

Distributed Hash Tables (DHTs)

• Multiple protocols were proposed in early 1990s.
• Chord, CAN, Pastry, Tapestry
• Initial usecase: Peer-to-peer file sharing
• key = hash of the file, value = file

• Cloud-based distributed key-value stores reuse many techniques
from these DHTs.

• Key goals:
• Balance load uniformly across all nodes (peers).
• Fault-tolerance
• Efficient inserts and lookups.

Distributed Hash Tables (DHTs)

• Multiple protocols were proposed in early 1990s.
• Chord, CAN, Pastry, Tapestry
• Initial usecase: Peer-to-peer file sharing
• key = hash of the file, value = file

• Cloud-based distributed key-value stores reuse many techniques
from these DHTs.

• Key goals:
• Balance load uniformly across all nodes (peers).
• Fault-tolerance
• Efficient inserts and lookups.

Chord
• Developed at MIT by I. Stoica, D. Karger, F. Kaashoek, H. Balakrishnan, R.

Morris

• Key properties:
• Load balance:
• spreads keys evenly over nodes.

• Decentralized:
• no node is more important than others.

• Scalable:
• cost of key lookup is O(logN), N = no. of nodes.

• High availability:
• automatically adjusts to new nodes joining and nodes leaving.

• Flexible naming:
• no constraints on the structure of keys that it looks up.

Chord: Consistent Hashing

0

Circle	for	m	=	3

1

2

3
4

5

6

7• SHA-1(ip_address,port) à160 bit string
• Truncated to m bits (modulo 2m)
• Called peer id (number between 0 and 2m-1)
• m chosen such that negligible chance of id

conflicts
• Can then map peers to one of 2m logical

points on a circle

• Uses Consistent Hashing on node’s (peer’s) address

Chord: Consistent Hashing

0

Circle	for	m	=	3

1

2

3
4

5

6

7

N16
(id: 0)

Where will N16 be placed on this circle?

• SHA-1(ip_address,port) à160 bit string
• Truncated to m bits (modulo 2m)
• Called peer id (number between 0 and 2m-1)
• m chosen such that negligible chance of id

conflicts
• Can then map peers to one of 2m logical

points on a circle

• Uses Consistent Hashing on node’s (peer’s) address

Chord: Consistent Hashing

0

Circle	for	m	=	3

1

2

3
4

5

6

7

N16
(id: 0)

N45
(id: 5)

Where will N45 be placed on this circle?

• SHA-1(ip_address,port) à160 bit string
• Truncated to m bits (modulo 2m)
• Called peer id (number between 0 and 2m-1)
• m chosen such that negligible chance of id

conflicts
• Can then map peers to one of 2m logical

points on a circle

• Uses Consistent Hashing on node’s (peer’s) address

Ring of Peers: Running Example

N80

N112

N96

N16
0

• Say m=7 (128 possible points on the circle – not shown)
• 6 nodes in the system.

N32

N45

Mapping Keys to Nodes
• Use the same consistent hash function
• SHA-1(key) à160 bit string (key identifier)
• Henceforth, we refer to SHA-1(key) as key.

• The key-value pair stored at the key’s successor node.
• successor(key) = first peer with id greater than or equal to (key mod 2m)

• Cross-over the ring when you reach the end.

• 0 < 1 < 2 < 3 …….. < 127 < 0 (for m=7)

• Consistent Hashing => with K keys and N peers, each peer stores
O(K/N) keys. (i.e., < c.K/N, for some constant c)

Ring of Peers: Running Example

N80

N112

N96

N16
0

m=7 N32

N45

Where will the value with key 42 be stored?

Ring of Peers: Running Example

N80

N112

N96

N16
0

m=7 N32

N45

Where will the value with key 42 be stored?

Value with key
K42 stored here

Ring of Peers: Running Example

N80

N112

N96

N16
0

m=7 N32

N45

Where will the value with key 115 be stored?

Value with key
K115 stored here

Performing Lookups

N80

N112

N96

N16
0

m=7 N32

N45

Suppose N80 receives a request to lookup K42.

What is the value
for K42?

Need to ask the successor of K42!

Performing Lookups
• Option 1: Each node is aware of (can route to) any other node in the

system.
• Need a very large routing table.
• Poor scalability with 1000s of nodes.
• Any node failure and join will require a necessary update at all nodes.

• Option 2: Each node is aware of only its ring successor.
• O(N) lookup. Not very efficient.

• Chord chooses a sweet middle-ground.

Performing Lookups
• Chord chooses a sweet middle-ground.
• Each node is aware of ~m other nodes.
• Maintains a finger table with m entries.
• The ith entry of node n’s finger table = successor(n + 2i)
• i ranges from 0 to m-1

Finger Tables

N80

N112

N96

N16
0

m=7 N32

N45

Compute the finger table for N80
ith entry of node n’s finger table = successor(n + 2i),

i ranges from 0 to m-1

Finger Tables

Performing Lookups

N80

N112

N96

N16
0

m=7 N32

N45

Suppose N80 receives a request to lookup K42.

What is the value
for K42?

Need to locate successor of K42!

Which nodes is N80 aware of?

Performing Lookups

Suppose N80 receives a request to lookup K42.

N80

N112

N96

N16
0

m=7 N32

N45

What is the value
for K42?

Need to locate successor of K42!
Forward the query to the most promising node you know of.

Search for key k at node n
At node n, if k lies in range (n, next(n)], where next(n) is n’s ring successor

then next(n) = successor(key). Send query to next(n)
Else, send query for k to largest finger entry <= k

N80

N112

N96

N16
0

m=7

N32

N45

What is the
value for K42?

Analysis
Search takes O(log(N)) time

Proof Intuition:
• (intuition): at each step, distance between query and peer-with-file

reduces by a factor of at least 2 (why?)
• (intuition): after log(N) forwardings, distance to key is at most

2m/2log(N) = 2m / N
• Expected number of node identifiers in a range of 2m / N:
• ideally one
• O(log(N)) with high probability (by properties of consistent

hashing)
So using ring successors in that range will use another O(log(N))
hops. Overall lookup time stays O(log(N)).

Next hop

Key

Here
Halfway	point

Analysis

• O(log(N)) search time holds for file insertions too (in general for
routing to any key)
• “Routing” can thus be used as a building block for

• all operations: insert, lookup, delete
• O(log(N)) time true only if finger and successor entries correct
• When might these entries be wrong?
• When you have failures

• Coming up next!

Search for key k at node n

N80

N112

N96

N16
0

m=7

N32

N45

What is the
value for K42?

K42 stored here

If a node fails

N80

N112

N96

N16
0

m=7

N32

N45

What is the
value for K42?

X

Lookup fails
(N16 does not know N45)

K42 stored here

If a node fails

N80

N112

N96

N16
0

m=7

N32

N45

What is the
value for K42?

X

Lookup fails
(N16 does not know N45)

How do we handle this?

K42 stored here

If a node fails

N80

N112

N96

N16
0

m=7

N32

N45

What is the
value for K42?

X

One solution: maintain r multiple ring successor entries
In case of failure, use another successor entries

Knows N32 and N45 (if r=2)

K42 stored here

Search under node failures

• If every node fails with probability 0.5, choosing r=2log(N)
suffices to maintain lookup correctness (i.e. keep the ring
connected) with high probability.
• Intuition:

• Pr(at given node, at least one predecessor alive)=

• Pr(above is true at all alive nodes)=

If a node fails

N80

N112

N96

N16
0

m=7

N32

N45

What is the
value for K42?

X

Lookup fails
(N45 itself is dead)

X

K42 stored here

If a node fails

N80

N112

N96

N16
0

m=7

N32

N45

What is the
value for K42?

X
X

One solution: replicate key-value at r successors and predecessors

K42 stored here

K42 replicated

K42 replicated

Need to deal with dynamic changes

ü Nodes fail
• New nodes join
• Nodes leave

So, all the time, need to:
à Need to update successors and fingers, and copy keys

MP3: Distributed Transactions

• https://courses.grainger.illinois.edu/ece428/sp2024/mps/mp3.html
• Lead TA: Sarthak Moorjani

• Task:
• Build a distributed transaction system that satisfies ACI properties

(you do not need to handle Durability).

• Objective:
• Think through and implement algorithms for achieving atomicity and

consistency with distributed transactions (two-phase commit),
concurrency control (two-phase locking / timestamped ordering),
deadlock detection.

MP3: Distributed Transactions

branch_name
config_file

server A

branch_name
config_file

server B

branch_name
config_file

server C

branch_name
config_file

server D

branch_name
config_file

server E

sample config_file

Use this information to
establish communication
across servers.

MP3: Distributed Transactions

branch_name
config_file

server A

branch_name
config_file

server B

branch_name
config_file

server C

branch_name
config_file

server D

branch_name
config_file

server E

client
sample config_file

client_id
config_file

MP3: Distributed Transactions

server A server B server C server D server E

client

Receives user input (command) from stdin.
Prints output of the command to stdout.

<	BEGIN //start	a	new	transaction

MP3: Distributed Transactions

server A server B server C server D server E

client

Receives user input (command) from stdin.
Prints output of the command to stdout.

< BEGIN //start	a	new	transaction
>	OK
< DEPOSIT	A.foo 10 //deposit	10	units	in	account	foo	at	branch	A

For	each	transaction,	
client	randomly	chooses	
a	server	to	act	as	
coordinator.	Only	
communicates	with	the	
coordinator	

MP3: Distributed Transactions

server A server B server C server D server E

client

Receives user input (command) from stdin.
Prints output of the command to stdout.

< BEGIN //start	a	new	transaction
>	OK
< DEPOSIT	A.foo 10 //deposit	10	units	in	account	foo	at	branch	A
>	OK

MP3: Distributed Transactions

server A server B server C server D server E

client

Receives user input (command) from stdin.
Prints output of the command to stdout.

< BEGIN //start	a	new	transaction
>	OK
< DEPOSIT	A.foo 10 //deposit	10	units	in	account	foo	at	branch	A
>	OK

Other possible commands: WITHDRAW and BALANCE (only applicable if the account exists)

MP3: Distributed Transactions

server A server B server C server D server E

client

Receives user input (command) from stdin.
Prints output of the command to stdout.

User enters COMMIT or ABORT to end the transaction.

A server may also choose to ABORT a transaction (e.g. if consistency violated, or if
needed for concurrency control).

Changes made by one transaction visible to others only after it successful commits.

MP3: Distributed Transactions

server A server B server C server D server E

client

Receives user input (command) from stdin.
Prints output of the command to stdout.

Required properties:
• Atomicity:

• all servers commit the entire transaction, or all rollback the entire transaction.
• Consistency:

• cannot withdraw from or read balance of a non-existent account.
• a transaction cannot result in a negative account balance.

MP3: Distributed Transactions

server A server B server C server D server E

client

Receives user input (command) from stdin.
Prints output of the command to stdout.

Required properties:
• Isolation:

• multiple clients may concurrently issue commands on the object.
• Must provide serial equivalence.

• Deadlock avoidance.

client

MP3: Distributed Transactions

• Due on April 29th.
• Late policy: Can use remainder of your 168hours of grace period

accounted per student over the entire semester.

• Read the specification fully and carefully.
• Required semantics discussed more completely there.

• Start early!

