Distributed Systems

CS425/ECE428

Instructor: Radhika Mittal

Acknowledgements for the materials: Spanner authors

Logistics

* MP2 due soon (Monday).

Distributed Transactions and Replication

* Iransaction processing can be distributed across multiple servers.

* Different objects can be stored on different servers.

* An object may be replicated across multiple servers.

* Case study: Google’s Spanner System

* Note for exams:
* no detailed questions from Spanner paper.
* only some high-level objective questions from materials in slides.

Spanner: Google’s Globally-Distributed Database

* First three lines from the paper:

* Spanner is a scalable, globally-distributed database designed, built,
and deployed at Google.

* At the highest level of abstraction, it is a database that shards data
across many sets of Paxos state machines in datacenters spread all
over the world.

* Replication is used for global availability and geographic locality;
clients automatically fallover between replicas.

Wilson Hsieh
representing a host of authors
OSDI 2012

500gle

e SQL query language
* Schematized tables
* Semi-relational data model

* Running in production
* Storage for Google’s ad data
* Replaced a sharded MySQL database

San Francisco
Seattle
Arizona

Spain

London
Paris
Berlin
Madrid
Lisbon

Santiago
Buenos Aires

Moscow
Berlin
Krakow

Russia

* Property: External consistency of distributed
transactions

— First system at global scale

* Implementation: Integration of concurrency
control, replication, and 2PC

— Correctness and performance

* Enabling technology: TrueTime

— Interval-based global time

G 8]

— Consistent view of friend list and their posts

Why consistency matters
1. Remove untrustworthy person X as friend
2. Post P: “My government is repressive...”

Generate my page

l

Friend1 post —— ——)
Friend2 post — ——

Friend999 post —— ——)
Friend1000 post — ——)

Friendl post—— ——»
Friend2 post—— —

N\

Generate my page

Friend999 post—— ——— _ /

Friend1000 post—— ———

Friendl post———
us

Friend2 post—————
Spain '\
Generate my page
Friend999 post——————orop /
Brazil
Friend1000 post >

UNSE]

— Each transaction T is assigned a timestamp s
— Data written by T is timestamped with s

Time <8 8 15
My friends [X] (]
My posts [P]
X’s friends [me] (]

External Consistency:
Commit order respects global wall-time order

Timestamp order respects global wall-time order
given
timestamp order == commit order

G g]

* Assign timestamp while locks are held

Acquired locks Release locks

Pick s = now()

 Timestamp order respects global wall-time order

TT.now()

> time

2*e

\Z \/

! P

Pick s = TT.now().latest s Wait until TT.now().earliest > s

Commit wait
<€ >

average €

average €

Acquired locks Releasq locks

! f

Pick s Commit wait done

‘L ‘1’ Committed
4 4 Notify participants of s
Acfjuired lockp lease locks
‘1’ v v
A
Acquired |ocks Relkase locks

v v v

T Prepared

Send s
Compute s for each Commit wait done

Compute overall s

5c=6

5p=8

s=8 s=15

Remove thyself
from X’s friend

list
s=8
Time <8 8 15
My friends (X] (]
My posts [P]
X’s friends [me] [l

* External consistency
* Timestamp assignment

* TrueTime
— Uncertainty in time can be waited out

— Mostly non-blocking
— Commit in the future

* Non-blocking reads in the past
— At any sufficiently up-to-date replica

OSDI 2012

TrueTime Architecture

GPS

Atomic-clock GPS
tlmemaster timemaster timemaster

Datacenter 1 Datacenter 2 Datacenter n

Client

Compute reference [earliest, latest] = now + €

24

+6ms
200 ps/sec
reference . _
uncertainty > time
Osec 30sec 60sec 90sec

— Bad CPUs 6 times more likely than bad clocks

Network-Induced Uncertainty

10

4 —

Epsilon (ms)

2 -

]
Mar 29
Date

OSDI 2012

— 2

1

| | | | _

LILELEL I LILELEL I LILELEL
Mar 30 Mar 31 Apr 1 6AM SAM 10AM 12PM

Date (April 13)

27

e Concurrency control
* Replication
 Time (NTP, Marzullo)

* Building out database features

— Finish implementing basic features

— Efficiently support rich query patterns

— Known unknowns are better than unknown
unknowns

— Rethink algorithms to make use of uncertainty

e Stronger semantics are achievable

— Greater scale = weaker semantics

* To lots of Googlers for feedback

e To you for listening!

e Questions?

