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Logistics

* MP2 due soon (Monday).



Distributed Transactions and Replication

* Iransaction processing can be distributed across multiple servers.

* Different objects can be stored on different servers.

* An object may be replicated across multiple servers.

* Case study: Google’s Spanner System

* Note for exams:
* no detailed questions from Spanner paper.
* only some high-level objective questions from materials in slides.



Spanner: Google’s Globally-Distributed Database

* First three lines from the paper:

* Spanner is a scalable, globally-distributed database designed, built,
and deployed at Google.

* At the highest level of abstraction, it is a database that shards data
across many sets of Paxos state machines in datacenters spread all
over the world.

* Replication is used for global availability and geographic locality;
clients automatically fallover between replicas.
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e SQL query language
* Schematized tables
* Semi-relational data model

* Running in production
* Storage for Google’s ad data
* Replaced a sharded MySQL database
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* Property: External consistency of distributed
transactions

— First system at global scale

* Implementation: Integration of concurrency
control, replication, and 2PC

— Correctness and performance

* Enabling technology: TrueTime

— Interval-based global time

G 8]




— Consistent view of friend list and their posts

Why consistency matters
1. Remove untrustworthy person X as friend
2. Post P: “My government is repressive...”
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— Each transaction T is assigned a timestamp s
— Data written by T is timestamped with s

Time <8 8 15
My friends [X] (]
My posts [P]
X’s friends [me] (]




External Consistency:
Commit order respects global wall-time order

Timestamp order respects global wall-time order
given
timestamp order == commit order
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* Assign timestamp while locks are held

Acquired locks Release locks

Pick s = now()




 Timestamp order respects global wall-time order
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> time
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* External consistency
* Timestamp assignment

* TrueTime
— Uncertainty in time can be waited out




— Mostly non-blocking
— Commit in the future

* Non-blocking reads in the past
— At any sufficiently up-to-date replica
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— Bad CPUs 6 times more likely than bad clocks




Network-Induced Uncertainty
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e Concurrency control
* Replication
 Time (NTP, Marzullo)




* Building out database features

— Finish implementing basic features

— Efficiently support rich query patterns




— Known unknowns are better than unknown
unknowns

— Rethink algorithms to make use of uncertainty

e Stronger semantics are achievable

— Greater scale = weaker semantics




* To lots of Googlers for feedback

e To you for listening!

e Questions?



