Distributed Systems

CS425/ECE428

Instructor: Radhika Mittal

While we wait.....

Two generals must agree on a time to attack the enemy base. They can communicate with each-other by sending messengers. But, a messenger may get killed by the enemy along the way. Thankfully, they have unlimited no. of messengers at their disposals. **How can the two generals agree on a time to attack?**

Logistics Related

- OHs information is up on website/course calendar
- Sign-up forms for VM clusters is available on CampusWire.
 - Please fill it up by Thursday, Jan 25th, Thursday, 11:59pm.
- MP0 will be released on Wednesday.
- Lecture recordings on MediaSpace should be accessible to all registered students.

Today's agenda

- System Model
 - Chapter 2.4 (except 2.4.3), parts of Chapter 2.3
- Failure Detection
 - Chapter 15.1

What is a distributed system?

Independent components that are **connected by a network** and communicate by **passing messages** to achieve a common goal, appearing as **a single coherent system**.

Relationship between processes

- Two main categories:
 - Client-server
 - Peer-to-peer

Key aspects of a distributed system

• Processes must communicate with one another to coordinate actions. Communication time is variable.

• Different processes (on different computers) have different clocks!

• Processes and communication channels may fail.

Key aspects of a distributed system

• Processes must communicate with one another to coordinate actions. Communication time is variable.

• Different processes (on different computers) have different clocks!

• Processes and communication channels may fail.

Two ways to model

- Synchronous distributed systems:
 - Known upper and lower bounds on time taken by each step in a process.
 - Known bounds on message passing delays.
 - Known bounds on clock drift rates.
- Asynchronous distributed systems:
 - No bounds on process execution speeds.
 - No bounds on message passing delays.
 - No bounds on clock drift rates.

Synchronous and Asynchronous

- Most real-world systems are asynchronous.
 - Bounds can be estimated, but hard to guarantee.
 - Assuming system is synchronous can still be useful.
- Possible to build a synchronous system.

Key aspects of a distributed system

• Processes must communicate with one another to coordinate actions. Communication time is variable.

• Different processes (on different computers) have different clocks!

• Processes and communication channels may fail.

Types of failure

- Omission: when a process or a channel fails to perform actions that it is supposed to do.
 - Process may **crash**.

p sends pings to q every T seconds. $\Delta_1 \text{ is the } timeout \text{ value at p.}$ If Δ_1 time elapsed after sending ping, and no ack, report q crashed.

If synchronous, $\Delta_1 = 2$ (max network delay) If asynchronous, $\Delta_1 = k$ (max observed round trip time)

q sends heartbeats to p every T seconds. $(T + \Delta_2)$ is the *timeout* value at p. If $(T + \Delta_2)$ time elapsed since last heartbeat, report q crashed.

If synchronous, $\Delta_2 = \max$ network delay – min network delay

q sends heartbeats to p every T seconds. $(T + \Delta_2)$ is the *timeout* value at p.

If $(T + \Delta_2)$ time elapsed since last heartbeat, report q crashed.

q sends heartbeats to p every T seconds. $(T + \Delta_2)$ is the *timeout* value at p. If $(T + \Delta_2)$ time elapsed since last heartbeat, report q crashed.

If synchronous, $\Delta_2 = \max$ network delay – min network delay If asynchronous, $\Delta_2 = k$ (observed delay)

Correctness of failure detection

- Completeness
 - Every failed process is eventually detected.
- Accuracy
 - Every detected failure corresponds to a crashed process (no mistakes).

Correctness of failure detection

- Characterized by **completeness** and **accuracy**.
- Synchronous system
 - Failure detection via ping-ack and heartbeat is both complete and accurate.
- Asynchronous system
 - Our strategy for ping-ack and heartbeat is
 - Impossible to achieve both completeness and accuracy.
 - Can we have an accurate but incomplete algorithm?
 - Never report failure.

• Worst case failure detection time

Try deriving these before next class!

- Ping-ack: $T + \Delta_1 \Delta$ (where Δ is time taken for last ping from p to reach q)
- Heartbeat: $\Delta + \top + \Delta_2$ (where Δ is time taken for last message from q to reach p)

- Worst case failure detection time
 - After a process crashes, how long does it take for the other process to detect the crash in the worst case?

- Worst case failure detection time
 - Ping-ack: $T + \Delta_1 \Delta$ where Δ is time taken for the last ping from p to reach q before q crashed. T is the time period for pings, and Δ_1 is timeout value.

Try deriving this!

• Worst case failure detection time

• Ping-ack: $T + \Delta_1 - \Delta$ where Δ is time taken for the last ping from p to reach q before q crashed. T is the time period for pings, and Δ_1 is timeout value.

Worst case failure detection time: $t + T + \Delta_1 - (t + \Delta)$ $= T + \Delta_1 - \Delta$

Q: What is worst case value of **∆** for a synchronous system? A: min network delay

- Worst case failure detection time
 - Heartbeat: $T + \Delta_2 + \Delta$ where Δ is time taken for last heartbeat from q to reach p T is the time period for heartbeats, and $T + \Delta_2$ is the timeout.

Try deriving this!

• Worst case failure detection time

• Heartbeat: $T + \Delta_2 + \Delta$ where Δ is time taken for last heartbeat from q to reach p T is the time period for heartbeats, and $T + \Delta_2$ is the timeout.

Worst case failure detection time: $(t + \Delta) + (T + \Delta_2) - t$ $= T + \Delta_2 + \Delta$

Q: What is worst case value of ∆ in a synchronous system? A: max network delay

- Worst case failure detection time
 - Ping-ack: $T + \Delta_1 \Delta$ (where Δ is time taken for last ping from p to reach q before crash)
 - Heartbeat: $T + \Delta_2 + \Delta$ (where Δ is time taken for last heartbeat from q to reach p)

- Worst case failure detection time
 - Ping-ack: $T + \Delta_1 \Delta$ (where Δ is time taken for previous ping from p to reach q)
 - Heartbeat: $T + \Delta_2 + \Delta$ (where Δ is time taken for last heartbeat from q to reach p)
- Bandwidth usage:
 - Ping-ack: 2 messages every T units
 - Heartbeat: I message every T units.

- Worst case failure detection time
 - Ping-ack: $T + \Delta_1 \Delta$ (where Δ is time taken for previous ping from p to reach q)
 - Heartbeat: $T + \Delta_2 + \Delta$ (where Δ is time taken for last heartbeat from q to reach p)
- Bandwidth usage:
 - Ping-ack: 2 messages every T units
 - Heartbeat: I message every T units.

Effect of decreasing T?

- Worst case failure detection time
 - Ping-ack: $T + \Delta_1 \Delta$ (where Δ is time taken for previous ping from p to reach q)
 - Heartbeat: $T + \Delta_2 + \Delta$ (where Δ is time taken for last heartbeat from q to reach p)
- Bandwidth usage:
 - Ping-ack: 2 messages every T units
 - Heartbeat: I message every T units.

Decreasing T decreases failure detection time, but increases bandwidth usage.

- Worst case failure detection time
 - Ping-ack: $T + \Delta_1 \Delta$ (where Δ is time taken for previous ping from p to reach q)
 - Heartbeat: $T + \Delta_2 + \Delta$ (where Δ is time taken for last heartbeat from q to reach p)
- Bandwidth usage:
 - Ping-ack: 2 messages every T units
 - Heartbeat: I message every T units.

Effect of increasing Δ_1 or Δ_2 ?

- Worst case failure detection time
 - Ping-ack: $T + \Delta_1 \Delta$ (where Δ is time taken for previous ping from p to reach q)
 - Heartbeat: $T + \Delta_2 + \Delta$ (where Δ is time taken for last heartbeat from q to reach p)
- Bandwidth usage:
 - Ping-ack: 2 messages every T units
 - Heartbeat: I message every T units.

Increasing Δ_1 or Δ_2 increases accuracy (in an asynchronous system) but also increases failure detection time.

Types of failure

- Omission: when a process or a channel fails to perform actions that it is supposed to do.
 - Process may **crash**.
 - Fail-stop: if other processes can certainly detect the crash.
 - Communication omission: a message sent by process was not received by another.

Communication Omission

- Channel Omission: omitted by channel
- Send omission: process completes 'send' operation, but message does not reach its outgoing message buffer.
- Receive omission: message reaches the incoming message buffer, but not received by the process.

Keep sending the message until confirmation arrives.

Assume confirmation has reached in the absence of a repeated message.

Still no guarantees! But may be good enough in practice.

Types of failure

- Omission: when a process or a channel fails to perform actions that it is supposed to do.
 - Process may **crash**.
 - Fail-stop: if other processes can detect that the process has crashed.
 - Communication omission: a message sent by process was not received by another.

Message drops (or omissions) can be mitigated by network protocols.

Summary

- Sources of uncertainty
 - Communication time, clock drift rates
- Synchronous vs asynchronous models.
- Types of failures: omission, arbitrary, timing
- Detecting failed a process.