
Distributed Systems

CS425/ECE428

Instructor : Radhika Mittal

Acknowledgements for the materials: Indy Gupta and Nikita Borisov

Logistics

• HW4 released.
• you should be able to handle all questions right-away.

• Midterm 2 next week (April 2-4)
• See post on Campuswire.

• Please reserve a slot for finals (if you haven’t already done so).

• Class on April 1st: Raft tutorial (by Sarthak) + Q/A with TAs
• My office hour on April 1st will be online (over Zoom).

Agenda for today

• Transaction Processing and Concurrency Control
• Chapter 16

• Transaction semantics: ACID
• Isolation and serial equivalence
• Conflicting operations
• Two-phase locking
• Deadlocks
• Timestamped ordering (wrap up)

• Distributed Transactions

Transactions with Distributed Servers

• Different objects touched by a transaction T may reside on different
servers.

Transaction T
write(A,1);
write(B,2);

…
write(Y, 25);
write(Z, 26);
commit

Object A

Object B

Server 1

Object Y

Object Z

Server 13

.

.

.

Distributed Transaction Challenges

• Atomic: all-or-nothing
• Must ensure atomicity across servers.

• Consistent: rules maintained
• Generally done locally, but may need to check non-local invariants at

commit time.
• Isolation: multiple transactions do not interfere with each other

• Locks at each server. How to detect and handle deadlocks?
• Durability: values preserved even after crashes

• Each server keeps local recovery log.

Distributed Transaction Challenges

• Atomic: all-or-nothing
• Must ensure atomicity across servers.

• Consistent: rules maintained
• Generally done locally, but may need to check non-local invariants at

commit time.
• Isolation: multiple transactions do not interfere with each other

• Locks at each server. How to detect and handle deadlocks?
• Durability: values preserved even after crashes

• Each server keeps local recovery log.

Coordinator Server

Transaction T
write(A,1);
write(B,2);

…
write(Y, 25);
write(Z, 26);
commit

Object A

Object B

Server 1

Object Y

Object Z

Server 13

.

.

.

Coordinator
Server

.

.

.

• Special server called “Coordinator” initiates
atomic commit.

• can be same as one of the servers with
objects.

• Different transactions may have different
coordinators.

Two-phase commit

Coordinator
Server … Server 1 Server 13

Prepare

• Save updates to disk
• Respond with “Yes” or “No”

All (13)
“Yes”
votes
received
within
timeout?

Commit • Commit updates from disk
to store

HaveCommitted • Coordinator now knows that all servers
have committed and it can delete the
associated transaction information.

Two-phase commit

Coordinator
Server … Server 1 Server 13

Prepare

• Save updates to disk
• Respond with “Yes” or “No”

• Delete tentative updates in disk and abort.

If any
“No” vote
or timeout
before all
(13) votes

Abort

Distributed Transaction Atomicity
• When T tries to commit, need to ensure

• all these servers commit their updates from T => T will commit
• Or none of these servers commit => T will abort

• What problem is this?
• Consensus!
• (It’s also called the “Atomic Commit” problem)

• Consensus is impossible in asynchronous system.
• What makes two-phase commit work?
• Crash failures in processes masked by replacing the crashed process with

a new process whose state is retrieved from permanent storage.
• Two-phase commit is blocked until a failed coordinator recovers.

Distributed Transaction Challenges

• Atomic: all-or-nothing
• Must ensure atomicity across servers.

• Consistent: rules maintained
• Generally done locally, but may need to check non-local invariants at

commit time.
• Isolation: multiple transactions do not interfere with each other

• Locks at each server. How to detect and handle deadlocks?
• Durability: values preserved even after crashes

• Each server keeps local recovery log.

Isolation with Distributed Transaction

• Each server is responsible for applying concurrency control to objects it
stores.

• Servers are collectively responsible for serial equivalence of operations.

Timestamped Ordering with Distributed Transaction

• Each server is responsible for applying concurrency control to objects it
stores.

• Servers are collectively responsible for serial equivalence of operations.

• Timestamped ordering can be applied locally at each server.
• When a server aborts a transaction, inform the coordinator which will relay the

“abort” to other servers.

Locks with Distributed Transaction
• Each server is responsible for applying concurrency control to objects it

stores.

• Servers are collectively responsible for serial equivalence of operations.

• Locks are held locally, and cannot be released until all servers involved
in a transaction have committed or aborted.

• Locks are retained during 2PC (two-phase commit) protocol.

• How to handle deadlocks?

Deadlock Detection in Distributed Transactions

• The wait-for graph in a distributed set of transactions is
distributed.

• Centralized detection
• Each server reports waits-for relationships to central server.
• Coordinator constructs global graph, checks for cycles.

• Issues:
• Single point of failure (can get blocked if the central server fails).
• Scalability.

Decentralized Deadlock Detection
• Edge chasing: Forward “probe” messages to servers in the edges of

wait-for graph, pushing the graph forward, until cycle is found.

V

Held by
W

Waits forHeld by

Waits
for

Waits for

U

C

A

B

Z

Y

X

W,	U,	V:	transactions
A,	B,	C:	objects
X,	Y,	Z:	servers

Decentralized Deadlock Detection
• Edge chasing: Forward “probe” messages to servers in the edges of

wait-for graph, pushing the graph forward, until cycle is found.

V

Held by
W

Waits forHeld by

Waits
for

Waits for

U

C

A

B

Z

Y

X

W,	U,	V:	transactions
A,	B,	C:	objects
X,	Y,	Z:	servers

All servers know local wait-
for relationships.

Coordinator for each
transaction knows whether
the transaction is waiting
on an object lock, and at
which server.

W®U

U®V

V ®W

Decentralized Deadlock Detection
• Edge chasing: Forward “probe” messages to servers in the edges of

wait-for graph, pushing the graph forward, until cycle is found.

V

Held by
W

Waits forHeld by

Waits
for

Waits for

U

C

A

B

Z

Y

X

W,	U,	V:	transactions
A,	B,	C:	objects
X,	Y,	Z:	servers

Initiation

• Server X realizes W is waiting
on U (a potential edge in the
wait-for graph).

• Ask U’s coordinator whether U
is waiting on anything, and at
which server.

Decentralized Deadlock Detection
• Edge chasing: Forward “probe” messages to servers in the edges of

wait-for graph, pushing the graph forward, until cycle is found.

V

Held by
W

Waits forHeld by

Waits
for

Waits for

U

C

A

B

Z

Y

X

W,	U,	V:	transactions
A,	B,	C:	objects
X,	Y,	Z:	servers

Initiation

• Server X realizes W is waiting
on U (a potential edge in the
wait-for graph).

• Ask U’s coordinator whether U
is waiting on anything, and at
which server.

• Send a probe to the next server.W®U

Decentralized Deadlock Detection
• Edge chasing: Forward “probe” messages to servers in the edges of

wait-for graph, pushing the graph forward, until cycle is found.

V

Held by
W

Waits forHeld by

Waits
for

Waits for

U

C

A

B

Z

Y

X

W,	U,	V:	transactions
A,	B,	C:	objects
X,	Y,	Z:	servers

Initiation

W®U

• Y adds another edge, and
forwards the probe to the next
server.

W®U ® V

Decentralized Deadlock Detection
• Edge chasing: Forward “probe” messages to servers in the edges of

wait-for graph, pushing the graph forward, until cycle is found.

V

Held by
W

Waits forHeld by

Waits
for

Waits for
Deadlock
detected

U

C

A

B

Initiation

W®U ® V ®W

W®U

W®U ® V

Z

Y

X

W,	U,	V:	transactions
A,	B,	C:	objects
X,	Y,	Z:	servers

• Z can now detect a deadlock.

• A transaction in the cycle can
now be aborted (by informing
its coordinator), and deadlock
breaks.

Edge Chasing: Phases

• Initiation: When a server S1 notices that a transaction T starts waiting for
another transaction U, where U is waiting to access an object at another
server S2, it initiates detection by sending <TàU> to S2.

• Detection: Servers receive probes and decide whether deadlock has
occurred and whether to forward the probes.

• Resolution: When a cycle is detected, one or more transactions in the
cycle is/are aborted to break the deadlock.

Phantom Deadlocks

• Phantom deadlocks = false detection of deadlocks that don’t actually
exist

• Edge chasing messages contain stale data (Edges may have
disappeared in the meantime).

• So, all edges in a “detected” cycle may not have been present in the
system all at the same time.

• Leads to spurious aborts.

Transaction Priority

• Which transaction to abort?

• Transactions may be given priority.
• e.g. inverse of timestamp.

• When deadlock cycle is found, abort lowest priority transaction
• Only one aborted even if several simultaneous probes find cycle.

Summary

• Distributed Transaction: Different objects that a transaction touches are
stored on different servers.

• One server process marked out as coordinator
• Atomic Commit: 2PC
• Deadlock detection: Centralized, Edge chasing

• Next: when objects are replicated across multiple servers.

Distributed Transactions

• Sharding: objects can be distributed across multiple (1000’s
of) servers

• what we have been discussing so far.
• Primary reason: load balancing and scalability.

• Replication: the same object may be replicated among a
handful of nodes.

• Primary reason: fault-tolerance, availability, durability.

Replication: Natural way to handle failures

• Node failures are common.
In each cluster's first year, it's typical that 1,000 individual machine
failures will occur; thousands of hard drive failures will occur; one
power distribution unit will fail, bringing down 500 to 1,000 machines
for about 6 hours; 20 racks will fail, each time causing 40 to 80
machines to vanish from the network; 5 racks will "go wonky," with
half their network packets missing in action; and the cluster will have
to be rewired once, affecting 5 percent of the machines at any given
moment over a 2-day span. And there's about a 50 percent chance
that the cluster will overheat, taking down most of the servers in less
than 5 minutes and taking 1 to 2 days to recover.

-- Jeff Dean (Google), source: cnet.com

Replication: Natural way to handle failures

• Node failures are common.

• What could happen if a node fails?
• Objects unavailable until recovery.
• 2PC “stuck” after coordinator failure

• Even worse: what happens if the drive failures.
• no recovery!

• Replication provides greater availability and robustness to
failures.

• Geo-replication (spanning datacenters across the world) for greater
robustness.

Replication

• Replication = An object has identical copies, each maintained by a
separate server.

• Copies are called “replicas”

• With k replicas of each object, can tolerate failure of any (k-1) servers
in the system

Replication: Availability

• If each server is down a fraction f of the time
• Server’s failure probability

• With no replication, availability of object
= Probability that single copy is up
= (1 – f)

• With k replicas, availability of object
= Probability that at least one replicas is up
= 1 – Probability that all replicas are down
= (1 – f k)

Replication: Availability

• With no replication, availability of object =
= Probability that single copy is up
= (1 – f)

• With k replicas, availability of object =
Probability that at least one replicas is up
= 1 – Probability that all replicas are down
= (1 – f k)

f=failure	
probability

No	replication k=3 replicas k=5	replicas

0.1 90% 99.9% 99.999%

0.05 95% 99.9875% 6	Nines

0.01 99% 99.9999% 10	Nines

Replication: Challenges

1. Replication Transparency
• A client ought not to be aware of multiple copies of objects

existing on the server side

2. Replication Consistency
• All clients see single consistent copy of data, in spite of replication
• For transactions, guarantee ACID

Replication Transparency

Client Front End

Replica 1

Replica 2

Replica 3

Front ends
provide replication

transparency

Client
Front End

Client

Requests
(replies flow opposite)

Replicas of an
object O

Replication Consistency

• Two ways to forward updates from front-ends (FEs) to replica group
• Active Replication: treats all replicas identically
• Passive Replication: uses a primary replica (leader)

• Both approaches use the concept of “Replicated State Machines”
• Each replica’s code runs the same state machine
• Multiple copies of the same State Machine begun in the Start state,

and receiving the same Inputs in the same order will arrive at the same
State having generated the same Outputs. [Schneider 1990]

Active Replication

Client Front End

Replica 1

Replica 2

Replica 3

Front ends
provide replication

transparency

Client
Front End

Client

Requests
(replies flow opposite)

Multicast
inside

Replica group

Passive Replication

Client Front End

Replica 1

Replica 2

Replica 3

Client
Front End

Client

Requests
(replies flow opposite)

Elected leader

• Leader => total reliable ordering
of all updates

• On leader failure, run election

Transactions and Replication

• One-copy serializability
• A concurrent execution of transactions in a replicated database is one-

copy-serializable if it is equivalent to a serial execution of these
transactions over a single logical copy of the database.

• (Or) The effect of transactions performed by clients on replicated
objects should be the same as if they had been performed one at a
time on a single set of objects (i.e., 1 replica per object).

• In a non-replicated system, transactions appear to be performed one at
a time in some order.

• Correctness means serial equivalence of transactions
• When objects are replicated, transaction systems for correctness need

one-copy serializability.

Transactions and Replication

• Objects distributed among 1000’s cluster nodes for load-balancing
(sharding)

• Objects replicated among a handful of nodes for availability / durability.
• Replication across data centers, too

• Two-level operation:
• Use transactions, coordinators, 2PC per object
• Use Paxos / Raft among object replicas

• Consensus needed across object replicas, e.g.
• When acquiring locks and executing operations
• When committing transactions

2PC and Paxos
• E.g. workflow:

• Coordinator leader sends Prepare message to
leaders of each replica group

Coordinator

2PC and Paxos
• E.g. workflow:

• Coordinator leader sends Prepare message to
leaders of each replica group

• Each replica leader uses Paxos to commit the
Prepare to the group logs

Coordinator

2PC	prepare

2PC and Paxos
• E.g. workflow:

• Coordinator leader sends Prepare message to
leaders of each replica group

• Each replica leader uses Paxos to commit the
Prepare to the group logs

Coordinator

Paxos Prepare

2PC and Paxos
• E.g. workflow:

• Coordinator leader sends Prepare message to
leaders of each replica group

• Each replica leader uses Paxos to commit the
Prepare to the group logs

Coordinator

Paxos Promise

2PC and Paxos
• E.g. workflow:

• Coordinator leader sends Prepare message to
leaders of each replica group

• Each replica leader uses Paxos to commit the
Prepare to the group logs

Coordinator

Paxos Accept

2PC and Paxos
• E.g. workflow:

• Coordinator leader sends Prepare message to
leaders of each replica group

• Each replica leader uses Paxos to commit the
Prepare to the group logs

Coordinator

Paxos relay	accept	to	leader	
(distinguished	learner)

2PC and Paxos
• E.g. workflow:

• Coordinator leader sends Prepare message to
leaders of each replica group

• Each replica leader uses Paxos to commit the
Prepare to the group logs

• Once commit prepare succeeds, reply to
coordinator leader

Coordinator

Paxos Decision

2PC and Paxos
• E.g. workflow:

• Coordinator leader sends Prepare message to
leaders of each replica group

• Each replica leader uses Paxos to commit the
Prepare to the group logs

• Once commit prepare succeeds, reply to
coordinator leader

• Coordinator leader uses Paxos to commit
decision to its group log.

Coordinator

Series	of	Paxos
message	exchanges.	

2PC and Paxos
• E.g. workflow:

• Coordinator leader sends Prepare message to
leaders of each replica group

• Each replica leader uses Paxos to commit the
Prepare to the group logs

• Once commit prepare succeeds, reply to
coordinator leader

• Coordinator leader uses Paxos to commit
decision to its group log.

• Coordinator leader sends Commit message to
leaders of each replica group.

Coordinator

2PC and Paxos
• E.g. workflow:

• Coordinator leader sends Prepare message to
leaders of each replica group

• Each replica leader uses Paxos to commit the
Prepare to the group logs

• Once commit prepare succeeds, reply to
coordinator leader

• Coordinator leader uses Paxos to commit
decision to its group log.

• Coordinator leader sends Commit message to
leaders of each replica group.

• Each replica leader uses Paxos to process the
final commit.

Coordinator

Series	of	Paxos
message	exchanges.	

2PC and Paxos
• E.g. workflow:

• Coordinator leader sends Prepare message to
leaders of each replica group

• Each replica leader uses Paxos to commit the
Prepare to the group logs

• Once commit prepare succeeds, reply to
coordinator leader

• Coordinator leader uses Paxos to commit
decision to its group log.

• Coordinator leader sends Commit message to
leaders of each replica group.

• Each replica leader uses Paxos to process the
final commit.

• Replica leader send the “commit ok / have
committed” message back to coordinator.

Coordinator

