
Distributed Systems

CS425/ECE428

Instructor : Radhika Mittal

Logistics

• HW2 is due today.

• HW3 has been released.
• you should be able to solve all questions.

• Midterm 1 scores have been released (where you lost
points yet to be disclosed).

Agenda for today
• Consensus
• Consensus in synchronous systems

• Chapter 15.4
• Impossibility of consensus in asynchronous systems

• We will not cover the proof in details
• Good enough consensus algorithm for asynchronous systems:

• Paxos made simple, Leslie Lamport, 2001
• Other forms of consensus algorithm

• Raft (log-based consensus)
• Block-chains (distributed consensus)

1. Leader election:
• Select one of the servers to act as leader
• Detect crashes, choose new leader

2. Neutralizing old leaders
3. Normal operation (basic log replication)
4. Safety and consistency after leader changes

Raft Overview

Once a log entry has been applied to a state machine, no other state
machine must apply a different value for that log entry.

• Raft safety property:
• If a leader has decided that a log entry is committed, that entry

will be present in the logs of all future leaders
• This guarantees the safety requirement
• Leaders never overwrite entries in their logs
• Only entries in the leader’s log can be committed
• Entries must be committed before applying to state machine

Safety Requirement for log consensus

Committed	→	Present	in	future	leaders’	logs

Restrictions	on
commitment

Restrictions	on
leader	election

• Leader is trying to finish committing entry from an
earlier term

• Entry 3 not safely committed:
• s5 can be elected as leader for term 5
• If elected, it will overwrite entry 3 on s1, s2, and s3!

Committing Entry from Earlier Term

1 2 3 4 5 6

1 1

1 1

1 1

1

2

1

1 1

s1

s2

s3

s4

s5

2

2 AppendEntries just
succeeded

3

4

3

Leader	for
term	4

3

• For a leader to decide an
entry is committed:
• Must be stored on a majority of

servers
• At least one new entry from

leader’s current term must also
be stored on majority of servers

• Once entry 4 committed:
• s5 cannot be elected leader for

term 5
• Entries 3 and 4 both safe

New Commitment Rules

1 2 3 4 5

1 1

1 1

1 1

1

2

1

1 1

s1

s2

s3

s4

s5

2

2

3

4

3

Leader	for
term	4

4

4

3

Once a log entry has been applied to a state machine, no other state
machine must apply a different value for that log entry.

• Raft safety property:
• If a leader has decided that a log entry is committed, that entry

will be present in the logs of all future leaders
• This guarantees the safety requirement
• Leaders never overwrite entries in their logs
• Only entries in the leader’s log can be committed
• Entries must be committed before applying to state machine

Safety Requirement for log consensus

Committed	→	Present	in	future	leaders’	logs

Restrictions	on
commitment

Restrictions	on
leader	election

March	3,	2013 Raft	Consensus	Algorithm Slide	9

• Respond to RPCs from candidates and leaders.
• Convert to candidate if election timeout elapses without

either:
• Receiving valid AppendEntries RPC, or
• Granting vote to candidate

Followers

• Increment currentTerm, vote for self
• Reset election timeout
• Send RequestVote RPCs to all other servers, wait for either:
• Votes received from majority of servers: become leader
• AppendEntries RPC received from new leader: step

down
• Election timeout elapses without election resolution:

increment term, start new election
• Discover higher term: step down

Candidates

Each server persists the following to stable storage
synchronously before responding to RPCs:
currentTerm latest term server has seen (initialized to 0

on first boot)
votedFor candidateId that received vote in current

term (or null if none)
log[] log entries

Persistent	State

term term when entry was received by leader
index position of entry in the log
command command for state machine

Log	Entry

Invoked by candidates to gather votes.

Arguments:
candidateId candidate requesting vote
term candidate's term
lastLogIndex index of candidate's last log entry
lastLogTerm term of candidate's last log entry

Results:
term currentTerm, for candidate to update itself
voteGranted true means candidate received vote

Implementation:
1. If term > currentTerm, currentTerm← term

(step down if leader or candidate)
2. If term == currentTerm, votedFor is null or candidateId,

and candidate's log is at least as complete as local log,
grant vote and reset election timeout

RequestVote RPC

Invoked by leader to replicate log entries and discover
inconsistencies; also used as heartbeat .

Arguments:
term leader's term
leaderId so follower can redirect clients
prevLogIndex index of log entry immediately preceding

new ones
prevLogTerm term of prevLogIndex entry
entries[] log entries to store (empty for heartbeat)
commitIndex last entry known to be committed

Results:
term currentTerm, for leader to update itself
success true if follower contained entry matching

prevLogIndex and prevLogTerm

Implementation:
1. Return if term < currentTerm
2. If term > currentTerm, currentTerm← term
3. If candidate or leader, step down
4. Reset election timeout
5. Return failure if log doesn’t contain an entry at

prevLogIndex whose term matches prevLogTerm
6. If existing entries conflict with new entries, delete all

existing entries starting with first conflicting entry
7. Append any new entries not already in the log
8. Advance state machine with newly committed entries

AppendEntries RPC

Raft	Protocol	Summary

• Initialize nextIndex for each to last log index + 1
• Send initial empty AppendEntries RPCs (heartbeat) to each

follower; repeat during idle periods to prevent election
timeouts

• Accept commands from clients, append new entries to local
log

• Whenever last log index ≥ nextIndex for a follower, send
AppendEntries RPC with log entries starting at nextIndex,
update nextIndex if successful

• If AppendEntries fails because of log inconsistency,
decrement nextIndex and retry

• Mark log entries committed if stored on a majority of
servers and at least one entry from current term is stored on
a majority of servers

• Step down if currentTerm changes

Leaders

• Link on the course website.

• Play with the visualization at raft.github.io

• The concepts covered Section 6 and beyond are not
in your syllabus.

More details in Raft paper

Agenda for today
• Consensus
• Consensus in synchronous systems

• Chapter 15.4
• Impossibility of consensus in asynchronous systems

• We will not cover the proof in details
• Good enough consensus algorithm for asynchronous systems:

• Paxos made simple, Leslie Lamport, 2001
• Other forms of consensus algorithm

• Raft (log-based consensus)
• Block-chains (distributed consensus)

• Implement a distributed replicated state machine that
maintains an account ledger (= bank).
• No user should be able to “double-spend”.
• Need to know of all transactions to validate this.
• Who does this validation? Cannot trust a single central authority.

• Any participant (replica) should be able to validate.
• All replicas must agree on the single history on transaction

ordering.
• Scale to thousands of replicas distributed across the world.
• Allow old replicas to fail, new replicas to join seamlessly.
• Withstand various types of attacks.

Bitcoins

• Why not use Paxos / Raft?
• Need to scale to thousands of replicas across the world.
• May not even know of all replicas a priori.
• Participants may leave / join dynamically.
• Paxos/Raft are ill-suited for such a setup.

• Leader election in Raft or proposals in Paxos require communication with
at least a majority of servers.

• Require knowing the number of replicas.
• ….

• So how does blockchain work?
• Focus of today’s class. Only a high-level discussion.

Uses Blockchains for Consensus

Transactions grouped into a block that gets added to
the chain (history of transactions) by the “leader of

that block”.

Basic Idea

• Every node chooses a random number
• The method for choosing the number in blockchains enables log

consensus (with a high probability).
• Requires the leader to expend CPU (as proof-of-work).

• Leader = “closest to 0”
• Defined such that a replica can determine this independently

without coordination

Lottery Leader Election

• Every node chooses a random number
• The method for choosing the number in blockchains enables log

consensus (with a high probability).
• Requires the leader to expend CPU (as proof-of-work).

• Leader = “closest to 0”
• Defined such that a replica can determine this independently

without coordination

Lottery Leader Election

• Cryptographic hash function:
• H(x) -> { 0, 1, ..., 2256-1}

• Hard to invert:
• Given y, find x such that H(x) = y
• E.g., SHA256, SHA3, ...

• Every node picks random number x and computes H(x)
• Node with H(x) “closest to 0” wins
• Finding such an x requires expending CPU (proof-of-work).

• But once we have found an ‘x’, we can always be the leader for
all blocks, or even share it with colluding parties. How to prevent
that?

Choosing the random number

• Every node picks x, computes H(seed || x)
• Closest to 0 wins
• What to use as a seed?
• Hash of:
• Previous log
• Node identifier
• New messages to add to log

• How to find “closest to 0”?

Using a seed

• Repeat:
• Pick random x, compute y = H(seed || x)
• If y<T, you win!

• Set threshold T so that on average, one winner
every few minutes
•Given a solution, x such that H(seed || x) < T, anyone

can verify the solution in constant time
(microseconds).

Iterated Hashing / Proof of work

Chaining the blocks

• New transactions broadcast to all nodes.
• Each node collects new transactions into a block.
• Each node works on finding a proof-of-work for its block to become

its leader and get it appended to a chain.
• i.e. finds x, such that H(seed || x) < T.

• When a node finds a proof-of-work, it broadcasts it to all nodes.
• Nodes accept a block only if all transactions in it are valid.
• Nodes express their acceptance by working on creating the next

block in the chain, using the hash of accepted block as previous hash.

Protocol Overview

• Two nodes may end up mining different versions of the next block.

What could go wrong?

• Two nodes may end up mining different versions of the next block.
• A node may receive two versions of the next block.
• Will store both, but work on the first one they receive.
• Over time, more blocks will be received.
• The node will switch to working on the longest chain.

Longest Chain Rule

1 2 3
4a

4b 5

6

6a

7

• Wait for upto k more blocks to be added in the chain.
• Then commit the transaction.
• k is set to 6 for Bitcoins.

When is a transaction committed?

• Majority decision is represented by the longest chain.
• It has greatest “proof-of-work” invested in it.

• If majority of CPU power is controlled by honest nodes, the honest
chain will grow fastest and outpace competing chains.

• To modify past blocks, an attacker will need to redo the proof-of-work
for that block, and all blocks after it, and then surpass the work of
honest nodes.

• Probability of attack reduces as more blocks get added.

Security Property

• Security better if more people participated in logging.

• Incentivize users to log others’ transactions
• Transaction fees: e.g. pay me x% to log your data (or some fixed fee per

transaction)
• Mining reward: each block creates bitcoins

Incentives for Logging

• How to set T?
• Too small: slows down transactions
• Too big: wasted effort due to chain splits

• Periodically adjust difficulty T such that one block gets added every 10
minutes.
• Depends on hardware speed (which typically improves over time)

and number of participants (which vary over time).

• Determined algorithmically based on the rate at which blocks are
mined
• Target is 1 block every 10minutes.
• Difficulty recomputed after every 2016 blocks.

Logging Speed

• Need to broadcast:
• Transactions to all nodes, so they can be included in a block.
• New blocks to all nodes, so that they can switch to longest chain.

• What if we use R-multicast?
• Have to send O(N) messages
• Have to know which nodes to send to
• Not a suitable choice.

Bitcoin Broadcast

• Each node connects to a small set of neighbors (10–100).
• Nodes propagate transactions and blocks to neighbors.
• Push method: when you hear a new tx/block, resend them to all

(some) of your neighbors (flooding).
• Pull method: periodically poll neighbors for list of blocks/tx’s, then

request any you are missing.
• Unreliable: some nodes may not receive all transactions or all blocks.

But that’s ok.

Gossip / Viral propagation

• A seed service
• Gives out a list of random or well-connected nodes
• E.g., seed.bitnodes.io

• Neighbor discovery
• Ask neighbors about their neighbors
• Randomly connect to some of them

Maintaining Neighbors

• Unreliable broadcast using gossip
• Probabilistic “leader” election for mining blocks (tx ordering)
• Longest chain rule to ensure long-term (probabilistic) consistency and

security

• Compared with Paxos/Raft:
• Scales to thousands of participants, dynamic groups
• Tens of minutes to successfully log a transaction (vs. milliseconds)

Bitcoin Summary

MP2: Raft Leader Election and Log
Consensus

• Lead TA: Aman Khinvasara

• Objective:
• Implement a leader-based consensus protocol for replicated state

machine, that maintains log consensus even when nodes crash or
get temporarily disconnected.

• Task:
• Beef up a skeleton code provided to you to implement Raft leader

election and log consensus.
• We provide an emulation framework and a test suite.
• Strive to pass all the test cases provided in our test suite.

MP2: Logistics

• Due on April 8th.
• Late policy: Can use part of your 168hours of grace period

accounted per student over the entire semester.

• Must be implemented in Go.
• The framework we provide is in Go.

• Read the specification and the comments in the provided
code carefully.

• Start early!!

