
Distributed Systems

CS425/ECE428

Instructor : Radhika Mittal

Logistics

• MP1 is due today.

• HW2 is due on Wednesday.

• MP2 has been released.

• HW3 will be released on Wednesday.

• Midterm 1 scores will be released in 1-2 weeks.

Agenda for today
• Consensus
• Consensus in synchronous systems

• Chapter 15.4
• Impossibility of consensus in asynchronous systems

• We will not cover the proof in details
• Good enough consensus algorithm for asynchronous systems:

• Paxos made simple, Leslie Lamport, 2001
• Other forms of consensus algorithm

• Raft (log-based consensus)
• Block-chains (distributed consensus)

Raft: A Consensus
Algorithm

for Replicated Logs

Slides from Diego Ongaro and John Ousterhout, Stanford University

• Replicated log => replicated state machine
• All servers execute same commands in same order

• Consensus module ensures proper log replication
• System makes progress as long as any majority of servers are up

• Failure model: fail-stop (not Byzantine), delayed/lost messages

Goal: Replicated Log

add jmp mov shl
Log

Consensus
Module

State
Machine

add jmp mov shl
Log

Consensus
Module

State
Machine

add jmp mov shl
Log

Consensus
Module

State
Machine

Servers

Clients

shl

1. Leader election:
• Select one of the servers to act as leader
• Detect crashes, choose new leader

2. Neutralizing old leaders
3. Normal operation (basic log replication)
4. Safety and consistency after leader changes

Raft Overview

1. Leader election:
• Select one of the servers to act as leader
• Detect crashes, choose new leader

2. Neutralizing old leaders
3. Normal operation (basic log replication)
4. Safety and consistency after leader changes

Raft Overview

• At any given time, each server is either :
• Leader: handles all client interactions, log replication

• At most 1 viable leader at a time
• Follower: completely passive: issues no RPCs (requests),

responds to incoming RPCs
• Candidate: used to elect a new leader

• Normal operation: 1 leader, N-1 followers

Server States

• Raft servers communicate via RPCs.
• What are RPCs?
• Remote Procedure Calls: procedure call between functions

on different processes
• Convenient programming abstraction.

Quick Detour: RPCs

P1 P2

P2.call(“foo”, args, reply)

1. “foo”, args 2. foo(args) {
….
….
return reply

}

3. reply

• At any given time, each server is either :
• Leader: handles all client interactions, log replication

• At most 1 viable leader at a time
• Follower: completely passive: issues no RPCs, responds to

incoming RPCs
• Candidate: used to elect a new leader

• Normal operation: 1 leader, N-1 followers

Server States

Follower Candidate Leader

start
timeout,
start	election

receive	votes	from
majority	of	servers

timeout,
new	election

discover	server	with
higher	termdiscover	current	server

or	higher	term

“step
down”

• Time divided into terms:
• Election
• Normal operation under a single leader

• At most 1 leader per term
• Some terms have no leader (failed election)
• Each server maintains current term value
• Key role of terms: identify obsolete information

Terms
Term	1 Term	2 Term	3 Term	4 Term	5

time

Elections Normal	OperationSplit	Vote

• Servers start up as followers.
• Followers expect to receive RPCs from leaders or

candidates.
• Leaders must send heartbeats (empty AppendEntries

RPCs) to maintain authority.
• If electionTimeout elapses with no RPCs:
• Follower assumes leader has crashed
• Follower promotes itself to candidate and starts new election
• Timeouts typically in range100-500ms
• Randomly chosen in some range to reduce probability of

split election.

Heartbeats and Timeouts

• On timeout:
• Increment current term
• Change to Candidate state
• Vote for self
• Send RequestVote RPCs to all other servers:

1. Receive votes from majority of servers:
• Become leader
• Send AppendEntries heartbeats (RPCs) periodically to all other

servers
2. Receive RPC from valid leader (with same or higher term):
• Return to follower state

3. No-one wins election (election timeout elapses):
• Increment term, start new election

Election Basics

State Diagram Revisit

Follower Candidate Leader

start
timeout,
start	election

receive	votes	from
majority	of	servers

timeout,
new	election

discover	server	with
higher	termdiscover	current	server

or	higher	term

“step
down”

• Suppose a server in term currentTerm has voted for process with id
votedFor in that term.
• When it receives RequestVote RPC from process candidateId with

term voteRequestTerm:
If voteRequestTerm < currentTerm

reply false
return.

If voteRequestTerm > currentTerm
currentTerm = voteRequestTerm, votedFor = null

If (votedFor is null or candidateId)*
//should not have voted for anyone else in that term
Grant vote, votedFor = candidateId
*we will extend on this condition later.

Election Basics: handling RequestVote RPCs

• Safety: allow at most one winner per term

• Each server gives out only one vote per term (persist on
disk)
• Two different candidates can’t accumulate majorities in same

term

• Liveness: some candidate must eventually win
• Choose election timeouts randomly in [T, kT]
• One server usually times out and wins election before others

wake up
• Works well if T >> broadcast time

• Safety is guaranteed. Liveness is not guaranteed.

Elections, cont’d

Servers

Voted	for	
candidate	A

B	can’t	also	get	
majority

• Each term has at most one leader (safety condition).

• Terms always increase with time.

• If the latest term has an elected leader, majority of processes
must have updated themselves to the latest term.

• Only the leader of the latest term can commit log entries
(we will discuss this next).

Implication of terms

1. Leader election:
• Select one of the servers to act as leader
• Detect crashes, choose new leader

2. Neutralizing old leaders
3. Normal operation (basic log replication)
4. Safety and consistency after leader changes

Raft Overview

• Deposed leader may not be dead:
• Temporarily disconnected from network
• Other servers elect a new leader
• Old leader becomes reconnected, attempts to commit log

entries
• Terms used to detect stale leaders (and candidates)

• Every RPC contains term of sender
• If sender’s term is older, RPC is rejected, sender reverts to

follower and updates its term
• If receiver’s term is older, it reverts to follower, updates its term,

then processes RPC normally
• Election updates terms of majority of servers

• Deposed server cannot commit new log entries

Neutralizing Old Leaders

1. Leader election:
• Select one of the servers to act as leader
• Detect crashes, choose new leader

2. Neutralizing old leaders
3. Normal operation (basic log replication)
4. Safety and consistency after leader changes

Raft Overview

• Replicated log => replicated state machine
• All servers execute same commands in same order

• Consensus module ensures proper log replication
• System makes progress as long as any majority of servers are up

• Failure model: fail-stop (not Byzantine), delayed/lost messages

Goal: Replicated Log

add jmp mov shl
Log

Consensus
Module

State
Machine

add jmp mov shl
Log

Consensus
Module

State
Machine

add jmp mov shl
Log

Consensus
Module

State
Machine

Servers

Clients

shl

• Log entry = index, term, command
• Log stored on stable storage (disk); survives crashes
• Entry is committed by the leader when certain conditions are met*.

• Durable, will eventually be executed by state machines
• * we will get back to this.

Log Structure
1

add

1 2 3 4 5 6 7 8
3

jmp
1

cmp
1
ret

2
mov

3
div

3
shl

3
sub

1
add

3
jmp

1
cmp

1
ret

2
mov

1
add

3
jmp

1
cmp

1
ret

2
mov

3
div

3
shl

3
sub

1
add

1
cmp

1
add

3
jmp

1
cmp

1
ret

2
mov

3
div

3
shl

leader

log	index

followers

committed	entries

term

command
s1

s2

s3

s4

s5

• Client sends command to leader
• Leader appends command to its log (not yet committed)
• Leader sends AppendEntries RPCs to followers
• Once new entry committed* (we will discuss when and how):

• Leader passes command to its state machine, returns result to client
• Leader notifies followers of committed entries in subsequent AppendEntries

RPCs
• Followers pass committed commands to their state machines

• Crashed/slow followers?
• Leader retries RPCs until they succeed

• Performance is optimal in common case:
• One successful RPC to any majority of servers

Normal Operation

High level of coherency between logs:
Raft guarantees that:
• If log entries on different servers have same index

and term:
• They store the same command
• The logs are identical in all preceding entries

• If a given entry is committed, all preceding entries
are also committed

Log Consistency

1
add

1 2 3 4 5 6
3

jmp
1

cmp
1
ret

2
mov

3
div

4
sub

1
add

3
jmp

1
cmp

1
ret

2
mov

4
add

• Each AppendEntries RPC contains index and term of
entry preceding new ones
• Follower must contain matching entry; otherwise it

rejects request
• Implements an induction step, ensures coherency

AppendEntries Consistency Check

1
add

3
jmp

1
cmp

1
ret

2
mov

1
add

1
cmp

1
ret

2
mov

leader

follower

1 2 3 4 5

1
add

3
jmp

1
cmp

1
ret

2
mov

1
add

1
cmp

1
ret

1
shl

leader

follower

AppendEntries succeeds:
matching	entry

AppendEntries fails:
mismatch

• At beginning of new leader’s term:
• Old leader may have left entries partially replicated
• No special steps by new leader: just start normal operation
• Leader’s log is “the truth”
• Will eventually make follower’s logs identical to leader’s
• Unless a new leader gets elected during the process.

• Multiple crashes can leave many extraneous log entries:

Leader Changes

1 2 3 4 5 6 7 8log	index

1 1

1 1

5

5

6 6 6

6

1 1 5 5

1 31

1 1

7 7

2 2 4 4 4

2

7

term s1

s2

s3

s4

s5

Log Inconsistencies

1 41 1 4 5 5 6 6 6

1 2 3 4 5 6 7 8 9 10 11 12log	index

leader	for	term	8

1 41 1 4 5 5 6 6

1 41 1

1 41 1 4 5 5 6 6 6 6

1 41 1 4 5 5 6 6 6

1 41 1 4

1 1 1

possible
followers

4 4

7 7

2 2 33 3 3 32

(a)

(b)

(c)

(d)

(e)

(f)

Extraneous
Entries

Missing
Entries

• New leader must make follower logs consistent with its own
• Delete extraneous entries
• Fill in missing entries

• Leader keeps nextIndex for each follower:
• Index of next log entry to send to that follower
• Initialized to (1 + leader’s last index)

• When AppendEntries consistency check fails, decrement nextIndex
and try again:

Repairing Follower Logs

1 41 1 4 5 5 6 6 6

1 2 3 4 5 6 7 8 9 10 11 12log	index

leader	for	term	7

1 41 1

1 1 1
followers

2 2 33 3 3 32

(a)

(b)

nextIndex

• When follower overwrites inconsistent entry, it
deletes all subsequent entries:

Repairing Logs, cont’d

1 41 1 4 5 5 6 6 6

1 2 3 4 5 6 7 8 9 10 11log	index

leader	for	term	7

1 1 1follower	(before) 2 2 33 3 3 32

nextIndex

1 1 1follower	(after) 4 Leader	then	writes	other	
entries	from	index	5	onwards

Log Inconsistencies

1 41 1 4 5 5 6 6 6

1 2 3 4 5 6 7 8 9 10 11 12log	index

leader	for	term	8

1 41 1 4 5 5 6 6

1 41 1

1 41 1 4 5 5 6 6 6 6

1 41 1 4 5 5 6 6 6

1 41 1 4

1 1 1

possible
followers

4 4

7 7

2 2 33 3 3 32

(a)

(b)

(c)

(d)

(e)

(f)

Extraneous
Entries

Missing
Entries

Eventually make it consistent with
leader

1 41 1 4 5 5 6 6 6

1 2 3 4 5 6 7 8 9 10 11 12log	index

leader	for	term	8

1 41 1 4 5 5 6 6

1 41 1

1 41 1 4 5 5 6 6 6 6

1 41 1 4 5 5 6 6 6

1 41 1 4

1 1 1

possible
followers

4 4

7 7

2 2 33 3 3 32

(a)

(b)

(c)

(d)

(e)

(f)

Extraneous
Entries

Missing
Entries

6

4 5 5 6 6 6

5 5 6 6 6

4 4 5 5 6 6 6

Leader changes in the process, can impact this.

High level of coherency between logs:
Raft guarantees that:
• If log entries on different servers have same index

and term:
• They store the same command
• The logs are identical in all preceding entries

• If a given entry is committed, all preceding entries
are also committed

Log Consistency

1
add

1 2 3 4 5 6
3

jmp
1

cmp
1
ret

2
mov

3
div

4
sub

1
add

3
jmp

1
cmp

1
ret

2
mov

4
add

Once a log entry has been applied to a state machine, no other state
machine must apply a different value for that log entry.

• Raft safety property:
• If a leader has decided that a log entry is committed, that entry

will be present in the logs of all future leaders
• This guarantees the safety requirement
• Leaders never overwrite entries in their logs
• Only entries in the leader’s log can be committed
• Entries must be committed before applying to state machine

Safety Requirement for log consensus

Committed	→	Present	in	future	leaders’	logs

Restrictions	on
commitment

Restrictions	on
leader	election

• During elections, choose candidate with log most likely to
contain all committed entries
• Candidates include log info in RequestVote RPCs

(index & term of last log entry)
• Voting server V denies vote if its log is “more up-to-date”:

(lastTermV > lastTermC) ||
(lastTermV == lastTermC) && (lastIndexV > lastIndexC)

Picking the Best Leader

1 21 1 2

1 2 3 4 5

1 21 1

1 21 1 2 unavailable	during	leader	
transition

committed?

Leader for term 2

• Suppose a server S in term currentTerm has voted for process with
id votedFor in that term.
• When it receives RequestVote RPC from process candidateId with

term voteRequestTerm:
If voteRequestTerm < currentTerm

Reply false, return.
If voteRequestTerm > currentTerm

currentTerm = voteRequestTerm, votedFor = null
If (candidate’s log is at least as up-to-date S’s log) and (votedFor is null or
candidateId)

Grant vote, votedFor = candidateId

Election Basics: handling RequestVote RPCs

• When can a leader commit entries?

• Leader decides entry in index 4 is committed
• Safe: leader for term 3 must contain entry 4

• What about committing entry in index 5?
• Perhaps leader can commit an entry once replicated on

majority of servers?

Committing Entry from Current Term

1 2 3 4 5 6

1 1

1 1

1 1

1

2

1

1 1

s1

s2

s3

s4

s5

2

2

2

2

2

2

2

AppendEntries just
succeeded

Can’t	be	elected	as
leader	for	term	3

Leader	for
term	2

• Leader is trying to finish committing entry from an
earlier term

• Entry 3 not safely committed:
• s5 can be elected as leader for term 5
• If elected, it will overwrite entry 3 on s1, s2, and s3!

Committing Entry from Earlier Term

1 2 3 4 5 6

1 1

1 1

1 1

1

2

1

1 1

s1

s2

s3

s4

s5

2

2 AppendEntries just
succeeded

3

4

3

Leader	for
term	4

3

• For a leader to decide an
entry is committed:
• Must be stored on a majority of

servers
• At least one new entry from

leader’s current term must also
be stored on majority of servers

• Once entry 4 committed:
• s5 cannot be elected leader for

term 5
• Entries 3 and 4 both safe

New Commitment Rules

1 2 3 4 5

1 1

1 1

1 1

1

2

1

1 1

s1

s2

s3

s4

s5

2

2

3

4

3

Leader	for
term	4

4

4

3

Once a log entry has been applied to a state machine, no other state
machine must apply a different value for that log entry.

• Raft safety property:
• If a leader has decided that a log entry is committed, that entry

will be present in the logs of all future leaders
• This guarantees the safety requirement
• Leaders never overwrite entries in their logs
• Only entries in the leader’s log can be committed
• Entries must be committed before applying to state machine

Safety Requirement for log consensus

Committed	→	Present	in	future	leaders’	logs

Restrictions	on
commitment

Restrictions	on
leader	election

March	3,	2013 Raft	Consensus	Algorithm Slide	40

• Respond to RPCs from candidates and leaders.
• Convert to candidate if election timeout elapses without

either:
• Receiving valid AppendEntries RPC, or
• Granting vote to candidate

Followers

• Increment currentTerm, vote for self
• Reset election timeout
• Send RequestVote RPCs to all other servers, wait for either:
• Votes received from majority of servers: become leader
• AppendEntries RPC received from new leader: step

down
• Election timeout elapses without election resolution:

increment term, start new election
• Discover higher term: step down

Candidates

Each server persists the following to stable storage
synchronously before responding to RPCs:
currentTerm latest term server has seen (initialized to 0

on first boot)
votedFor candidateId that received vote in current

term (or null if none)
log[] log entries

Persistent	State

term term when entry was received by leader
index position of entry in the log
command command for state machine

Log	Entry

Invoked by candidates to gather votes.

Arguments:
candidateId candidate requesting vote
term candidate's term
lastLogIndex index of candidate's last log entry
lastLogTerm term of candidate's last log entry

Results:
term currentTerm, for candidate to update itself
voteGranted true means candidate received vote

Implementation:
1. If term > currentTerm, currentTerm← term

(step down if leader or candidate)
2. If term == currentTerm, votedFor is null or candidateId,

and candidate's log is at least as complete as local log,
grant vote and reset election timeout

RequestVote RPC

Invoked by leader to replicate log entries and discover
inconsistencies; also used as heartbeat .

Arguments:
term leader's term
leaderId so follower can redirect clients
prevLogIndex index of log entry immediately preceding

new ones
prevLogTerm term of prevLogIndex entry
entries[] log entries to store (empty for heartbeat)
commitIndex last entry known to be committed

Results:
term currentTerm, for leader to update itself
success true if follower contained entry matching

prevLogIndex and prevLogTerm

Implementation:
1. Return if term < currentTerm
2. If term > currentTerm, currentTerm← term
3. If candidate or leader, step down
4. Reset election timeout
5. Return failure if log doesn’t contain an entry at

prevLogIndex whose term matches prevLogTerm
6. If existing entries conflict with new entries, delete all

existing entries starting with first conflicting entry
7. Append any new entries not already in the log
8. Advance state machine with newly committed entries

AppendEntries RPC

Raft	Protocol	Summary

• Initialize nextIndex for each to last log index + 1
• Send initial empty AppendEntries RPCs (heartbeat) to each

follower; repeat during idle periods to prevent election
timeouts

• Accept commands from clients, append new entries to local
log

• Whenever last log index ≥ nextIndex for a follower, send
AppendEntries RPC with log entries starting at nextIndex,
update nextIndex if successful

• If AppendEntries fails because of log inconsistency,
decrement nextIndex and retry

• Mark log entries committed if stored on a majority of
servers and at least one entry from current term is stored on
a majority of servers

• Step down if currentTerm changes

Leaders

• Link on the course website.

• The concepts covered Section 6 and beyond are not in
your syllabus.

• Play with the visualization at raft.github.io

More details in Raft paper

