Distributed Systems

CS425/ECE428

Instructor: Radhika Mittal

Logistics

* Midterm | I1s ongoing.
* MPI i1s due on Monday, March 4th.

* HW?2 is due on Wednesday, March 6™,

Agenda for today

* Consensus

* Good enough consensus algorithm for asynchronous systems:
* Paxos made simple, Leslie Lamport, 2001

* Other forms of consensus algorithm
* Raft (log-based consensus)

Recap

* Consensus Is a fundamental problem in distributed
systems.

* Possible to solve consensus in synchronous systems.
* Algorithm based on time-synchronized rounds.
* Need at least (f+1) rounds to handle up to f failures.

* Impossible to solve consensus Is asynchronous systems.
* Cannot distinguish between a timeout and a very very slow
process.

* Paxos algorithm:
* Guarantees safety but not liveness.
* Hopes to terminate if under good enough conditions.

Paxos Algorithm

* Three types of roles:
* Proposers: propose values to acceptors.
* All or subset of processes.
* Having a single proposer (leader) may allow faster termination.
* Acceptors: accept proposed values (under certain conditions).
* All or subset of processes.

* Learners: learns the value that has been accepted by majority of
acceptors.

* All processes.

Paxos Algorithm: Try I: Single Phase

* A proposer multicasts its proposed value to a large enough set
(larger than majority) of acceptors.

* An acceptor accepts the first proposed value it receives.

* If majority of acceptors have accepted the same value v, then v is the
decided value.

* What can go wrong here’?

Paxos Algorithm:Try |:Single phase

g Ml ¥
3
g- P2 \\
o =
\ \\
v P3 I
2 Accepts red value \
g I
I P4

Accepts purple value

0 1 2 3 4 5 6 7 3 9 10 11 12

No decision reached!

Paxos Algorithm: Proposal humbers

* Allow an acceptor to accept multiple proposals.

* Accepting Is different from deciding.

* Distinguish proposals by assigning unique ids (a proposal number) to
each proposal.

* Configure a disjoint set of possible proposal numbers for
different processes.

* Proposal number is different from proposed value!

* A higher number proposal overwrites and pre-empts a lower
number proposal.

Paxos Algorithm

* Key condrtion:
* When majority of acceptors accept a single proposal with a
value v, then that value v becomes the decided value.
* Thisis an implicit decision. Learners may not know about it
right-away.
* Any higher-numbered proposal that gets accepted by majority of

acceptors after the implicit decision must propose the same
decided value.

Paxos Algorithm

P1

Proposers

P2

P3

Acceptors

P4

Proposal #1

Proposal #3

Value =10

Proposal #2

lalue =36 10

A
2

\

\

v

Value =510 \

Accepts
\ Nroposal #3

ts prom

Accepts\pf‘»posal #1 Accepts proposal #2
Accep ftl\ Accepts proposal #2

Accepts 3oroposal #3

4\7\89 10 11 12

1 2 3

Point of no return!

Any proposal accepted by majority of acceptors after this
must propose the same value as proposal #1 (i.e. [0).

Paxos Algorithm: Two phases

* Phase I:

* A proposer selects a proposal number (n) and sends a prepare
request with n to at least a majority of acceptors, requesting:

* Promise me you will not reply to any other proposal with a lower
number.

* Promise me you will not accept any other proposal with a lower
number.

* If an acceptor receives a prepare request for proposal #n, and it
has not responded to a prepare request with a higher number; it
replies back saying:

* OKI'l will make that promise for any request | receive in the future.

* (If applicable) | have already accepted a value v from a proposal with
lower number m < n. The proposal has the highest number among the
ones | accepted so far.

,a:')/'?& -/ &f
Paxos Algorithm: TV\(Q phases /j y

4{,({
* Phase 2: & T /M/q/x

* |If a proposer receives an OK response for its prepare request
#n from a majority of acceptors, then it sends an accept request
with a proposed value.What is the proposed value!?

* The value v of the highest numbered proposal among the received
responses.

* Any value if no previously accepted value in the received responses.
* |f an acceptor receives an accept request for proposal #n, and it

has not responded a prepare request with a higher number; it
accepts the proposal.

Paxos Algorithm: Two phases

" B/ Accept #1
§ - Prepare #1 Propaseq value = 10 X
g | P LN Prepare #2
2 A \ (intends to propose 12) Accept #2
(a y >

P2 \ 71 \ _ >

i 1! / /
2 [1 ! \ . A / -
o | P3 \ 1 AN 74 ¥ >
45_ / / \X /
8 \ / \/ \ /e
o 1 P4 7 4 7 >
< \ / \ /
/ \
P5

Reply from P4:value 10 from proposal #I}
Reply from P5: value 10 from proposal #|

Value proposed in accept request of proposal #2: 10

Proposers

Acceptors

Paxos Algorithm: Two phases

P1

P2

P3

P5

Accept #1
Prepare #1 Proposed value = 10
LN Prepare #2 >
1! (intends to propose 12) Accept #2
77
\\ Ly
;!
I
/
N\
7
/

Reply from P4: value 10 from proposal #l

Reply from P5: no value

Value proposed in accept request of proposal #2: 10

P5 will ignore Pl’s accept request.

Paxos Algorithm: Two phases

é_
o) P1
o
S -
| P2
o
[° P3
o
(]
o < P4
<

P5

Accept #1
Prepare #1 Proposed value = 10

;o Prepare|#2 g
;! \\\ (intends ot #2 R
\ T 7 (= \ AN >

1! f
\ ;! L \\ N N

N\ B
;!

v

Reply from P3: no value

Reply from P4: value 10 from proposal #|

Value proposed in accept request of proposal #2: 10

v

Paxos Algorithm

* When majority of acceptors accept a single proposal with a value v,
then that value v becomes the decided value.
* Suppose this proposal has a number m.

* By design of the algorithm: any subsequent proposal with a number n higher than
m will propose a value v.

* Proof by induction:

* Induction hypothesis: every proposal with number in [m,....n-1] proposes
value v.

* Consider a set C with majority of acceptors that have accepted m’s
proposal (and value v).

* Every acceptor in C has accepted a proposal with number in [m,....n-1].
* Every acceptor in C has accepted a proposal with value v.

* Any set consisting of a majority of acceptors has at least one member in
C.

* Proposal #n's prepare request will receive an OK reply with value v.

Paxos Algorithm

* When majority of acceptors accept a single proposal with a value v,
then that value v becomes the decided value.

e How do learners learn about it?

* Every time an acceptor accepts a value, send the value and proposal # to a
distinguished learner.

* This distinguished learner will check if a decision has been reached and will
inform other learners.

* When it receives the same value and proposal # from a majority of
acceptors.

* Use a set of distinguished learners to better handle failures.
* What happens if a message is lost or all distinguished learners fail?
* May not know that a decision has been reached.

* A proposer will issue a new request (and will propose the same value).
Acceptors will accept the same value and will notify the learner again.

Paxos Algorithm

* Best strategy: elect a single leader who proposes values.

* Assume this leader Is also the distinguished learner. A. L

Mv\ /\/\/\

N/
WA

* What if we have multiple proposers? (leader election is not perfect is

asynchronous systems)

* May have a livelock! Two proposers may keep pre-empting each-other's
requests by constantly sending new proposals with higher numbers.

 Safety is still guaranteed!

Paxos Algorithm

* What if majority of acceptors fall before a value I1s decided?
* Algorithm does not terminate.
* Safety is still guaranteed!

* What if a process fails and recover again?
* Ifitis an acceptor, it must remember highest number proposal it has accepted.
* Acceptors log accepted proposal on the disk.

* As long as this state can be retrieved after fallure and recovery, algorithm
works fine and safety is still guaranteed.

* Exercise: think about what else can go wrong and how would Paxos
handle that situation?

Log Consensus

* Paxos algorithm (discussed so far) is used for deciding on a
single value.

* Many practical systems need to decide on a sequence of
values (log).

Replicated Log
CEEEEEE

N

/ Consensus

Module

i o

St=* .
Machine

add

jmp

mov sh.—|

J

/" Consensus
Module

N

i o

~
Skaie . / Conc ~nsus

Machine

add

jmp

mov sh.—|

J

N

Mo Jule

S ate

Mac hine

2

add|jmp

mov

sh.—|

~

J

* Replicated log => replicated state machine
e All servers execute same commands in same order

* Consensus module ensures proper log replication

Clients

Servers

Log Consensus

* Paxos algorithm (discussed so far) is used for deciding on a
single value.

* Many practical systems need to decide on a sequence of
values (log).

* Multi-Paxos: run Paxos repeatedly for each log entry.

* Quickly becomes very complex.
* Performance optimizations further increase the complexity.

Paxos is difficult to understand

“The dirty little secret of the NSDI* community is that at most
five people redlly, truly understand every part of Paxos ;-).*
— Anonymous NSDI reviewer

*The USENIX Symposium on Networked Systems
Design and Implementation

Paxos is difficult to implement

““There are significant gaps between the description of the
Paxos algorithm and the needs of a real-world system. ..the
final system will be based on an unproven protocol.”

— Chubby authors

Agenda for today

* Consensus

* Other forms of consensus algorithm
* Raft (log-based consensus)

Raft: A Consensus
Algorithm
for Replicated Logs

Slides from Diego Ongaro and John Ousterhout, Stanford University

Goal: Replicated Log
CEEEEEE

=)
[Consensus Sttt K Con< >nsus S ate

f Consensus St=2C
Module Machine

1‘ @

add jmp mov sh.—|

J

Module Machine

DD

Replicated log =>

Mo Jule Mac hine

DD

add|jmp |[mov sh.—|

J

add|jmp |[mov sh.—|

~

J

o All servers execute same commands in same order

Consensus module ensures proper log replication

Clients

Servers

System makes progress as long as any majority of servers are up

Failure model: fail-stop (not Byzantine), delayed/lost messages

Goal: Design for understandability

* Main objective of Raft's design

* Whenever possible, select the alternative that is the
easlest to understand.

* Techniques that were used include
* Dividing problems into smaller problems.
* Reducing the number of system states to consider.

Approach

ITwo general approaches to solving distributed systems problems:

* Symmetric, leader-less:
* All servers have equal roles
* Clients can contact any server

* Asymmetric, leader-based:
* At any given time, one server Is In charge, others accept its decisions
* Clients communicate with the leader

* Raft uses a leader:
* Decomposes the problem (normal operation, leader changes)
* Simplifies normal operation (no conflicts)
* More efficient than leader-less approaches

Raft Overview

|. Leader election:
* Select one of the servers to act as leader
e Detect crashes, choose new leader

2. Neutralizing old leaders
3. Normal operation (basic log replication)

4. Safety and consistency after leader changes

Raft Overview

|. Leader election:
e Select one of the servers to act as leader
e Detect crashes, choose new leader

Server States

* At any given time, each server Is erther:

* Leader: handles all client interactions, log replication
e At most | viable leader at a time

* Follower: completely passive: issues no RPCs (requests),
responds to incoming RPCs

e Candidate: used to elect a new leader

* Normal operation: | leader, N-1 followers

Quick Detour: RPCs

e Raft servers communicate via RPCs.
* What are RPCs?

* Remote Procedure Calls: procedure call between functions
on different processes

* Convenient programming abstraction.

|."foo"’, args

Pl 3 reply P2

2. foo(args) {

return reply
P2.call("foo”, args, reply) }

Server States

* At any given time, each server Is erther:
* Leader: handles all client interactions, log replication

At most | viable leader at a time

* Follower: completely passive: issues no RPCs, responds to
incoming RPCs

e Candidate: used to elect a new leader

* Normal operation: | leader, N-1 followers

timeout,
timeout, new election receive votes from

start start election m majority of servers
Follower > <Candidate > <Leader >/
“step ‘\/
down”) .
discover server with

discover current server higher term
or higher term

Terms <o

Term 1 Term2 Term 3 Term 4 Term 5 /"::3]‘

s

time

* [ime divided Into terms:
* Election
* Normal operation under a single leader

* At most | leader per term

* Some terms have no leader (failed election)

* Fach server maintains value

* Key role of terms: identify obsolete information

To be continued....

