
Distributed Systems

CS425/ECE428

Instructor : Radhika Mittal

Acknowledgements: Indy Gupta and Nikita Borisov

Midterm exam: Feb 27-29

• Detailed instructions shared on CampusWire (post #126).
• Go over them again.
• Reserve a slot if you haven’t already.
• Submit your Letters of Accommodations to CBTF, if required.
• Syllabus: everything covered in class upto and including Multicast.
• Closed-book exam: cannot refer to any materials.

• We will provide a cheatsheet over PrairieLearn.
• CBTF will provide calculator and scratch paper.
• Practice Midterm 1 has been released on PrairieLearn.

Midterm exam

• Syllabus:
• everything up to and including Multicast.

• Exam duration: 50mins
• Extra time to check-in and settle in.

PrairieLearn

• Exam format:
• Multiple choice questions:

• Single answer correct; True/False
• Multiple answers may be correct.

• Numerical questions
• No step marking!

• Ensure all your responses are “saved” and none are “invalid”.

Today’s agenda

• Exam Review

Disclaimer for our agenda today

• Quick reminder of the relevant topics we covered in class, that are
included in your midterm.

• Not meant to be an exhaustive review!

• Go over the slides for each class.
• Refer to lecture videos and textbook to fill in gaps in understanding.

Topics for your midterm

• System model and Failures
• Failure Detection
• Clock Synchronization
• Event ordering and Logical Timestamps
• Global Snapshot
• Multicast

• System Model

• Failure Detection

• Time and Clocks

• Logical Clocks and Timestamps

• Global State

• Multicast

What is a distributed system?

Independent components or elements that are connected by
a network and communicate by passing messages to achieve a

common goal, appearing as a single coherent system.

Relationship between processes

• Two main categories:

• Client-server

• Peer-to-peer

Two ways to model

• Synchronous distributed systems:
• Known upper and lower bounds on time taken by each step in a

process.
• Known bounds on message passing delays.
• Known bounds on clock drift rates.

• Asynchronous distributed systems:
• No bounds on process execution speeds.
• No bounds on message passing delays.
• No bounds on clock drift rates.

• System Model

• Failure Detection

• Time and Clocks

• Logical Clocks and Timestamps

• Global State

• Multicast

Types of failure

• Omission: when a process or a channel fails to perform
actions that it is supposed to do.

• Process may crash.
• Detected using ping-ack or heartbeat failure detector.
• Completeness and accuracy in synchronous and asynchronous systems.
• Worst case failure detection time.

• Communication omission: a message sent by process was
not received by another.

• Message drops (or omissions) can be mitigated by network
protocols.

k

How to detect a crashed process?

p q
Periodic ping

ack

p sends pings to q every T seconds.
∆1	is the timeout value at p.

If ∆1 time elapsed after sending ping, and no ack, report q crashed.

If synchronous, ∆1 = 2(max network delay)
If asynchronous, ∆1 = (max observed round trip time)

How to detect a crashed process?

q sends heartbeats to p every T seconds.
(T + ∆2) is the timeout value at p.

If (T + ∆2) time elapsed since last heartbeat, report q crashed.

If synchronous, ∆2 = max network delay – min network delay
If asynchronous, ∆2 = k(observed delay)

p q
Periodic

heartbeats

Correctness of failure detection

• Completeness
• Every failed process is eventually detected.

• Accuracy
• Every detected failure corresponds to a crashed process

(no mistakes).

Metrics for failure detection

• Worst case failure detection time
• Ping-ack: T + ∆1- ∆	(where ∆ is time taken for previous ping from p to reach q)

• Heartbeat: T + ∆2+	∆	(where ∆	is time taken for last heartbeat from q to reach p)

• Bandwidth usage:
• Ping-ack: 2 messages every T units
• Heartbeat: 1 message every T units.

Types of failure

• Omission: when a process or a channel fails to perform
actions that it is supposed to do, e.g. process crash and
message drops.

• Arbitrary (Byzantine) Failures: any type of error, e.g. a
process executing incorrectly, sending a wrong message, etc.

• Timing Failures: Timing guarantees are not met.
• Applicable only in synchronous systems.

• System Model

• Failure Detection

• Time and Clocks

• Logical Clocks and Timestamps

• Global State

• Multicast

Clock Skew and Drift Rates

• Each process has an internal clock.
• Clocks between processes on different computers differ :

• Clock skew: relative difference between two clock values.
• Clock drift rate: change in skew from a perfect reference clock per

unit time (measured by the reference clock).
• Depends on change in the frequency of oscillation of a crystal in the

hardware clock.

• Synchronous systems have bound on maximum drift rate.

Two forms of synchronization

• External synchronization
• Synchronize time with an authoritative clock.
• When accurate timestamps are required.

• Internal synchronization
• Synchronize time internally between all processes in a distributed

system.
• When internally comparable timestamps are required.

• If all clocks in a system are externally synchronized, they are
also internally synchronized.

Synchronization Bound
• Synchronization bound (D) between two clocks A and B over

a real time interval I.
• |A(t) – B(t)| < D, for all t in the real time interval I.

• Skew(A, B) < D during the time interval I.
• A and B agree within a bound D.

• If A is authoritative, D can also be called accuracy bound.
• B is accurate within a bound of D.

• Synchronization/accuracy bound (D) at time ‘t’
• worst-case skew between two clocks at time ‘t’

• Skew(A, B) < D at time t

Synchronization in synchronous systems

Let max and min be maximum and minimum network delay.
If Tc = (Ts + (min + max)/2), skew(client,server) ≤	(max – min)/2

What time Tc should client adjust its local clock to after receiving ms ?

client server

mr: What is the time?

ms : It is Ts

Cristian Algorithm

client server

mr: What is the time?

What time Tc should client adjust its local clock to after receiving ms ?

ms : It is Ts

Client measures the round trip time (Tround).
Tc = Ts + (Tround / 2)

skew ≤	(Tround / 2) – min
										≤	(Tround / 2)
(min is minimum one way network delay which is atleast zero).

Berkeley Algorithm

1. Server periodically polls clients:
“what time do you think it is?”

2. Each client responds with its local
time.

3. Server uses Cristian algorithm to
estimate local time at each client.

4. Average all local times (including
its own) – use as updated time.

5. Send the offset (amount by
which each clock needs
adjustment).

Only supports internal synchronization.

Server
Client

Client Client

Client
Client

𝑜1 𝑜2

𝑜3

𝑜4

𝑜5

Strata 3,
synched by
secondary

Network Time Protocol

Time service over the Internet for synchronizing to UTC.

1

2 2 2

3 3 3 3 3 3

Hierarchical structure for scalability.
Multiple lower strata servers for robustness.
Authentication mechanisms for security.
Statistical techniques for better accuracy.

Primary, UTC synch

Secondary,
synched with
primary

A
ccuracy

Network Time Protocol

How clocks get synchronized:
• Servers may multicast timestamps within a LAN. Clients

adjust time assuming a small delay. Low accuracy.
• Procedure-call (Cristian algorithm). Higher accuracy.
• Symmetric mode used to synchronize lower strata

servers. Highest accuracy.

Strata 3,
synched by the
secondary

1

2 2 2

3 3 3 3 3 3

Primary, UTC synch

Secondary,
synched primary

NTP Symmetric Mode

• A and B exchange messages and record the send and receive
timestamps.
• TBr and TBs are local timestamps at B.
• TAr and TAs are local timestamps at A.
• A and B exchange their local timestamp with eachother.

• Use these timestamps to compute offset with respect to one another.

TAr

TBsTBr

TAs

Server B

Server A

Time

m m'

Time

NTP Symmetric Mode

• t and t’: actual transmission times
for m and m’(unknown)

• o: true offset of clock at B
relative to clock at A (unknown)

• oi: estimate of actual offset
between the two clocks

• di: estimate of accuracy of oi ;
total transmission times for m
and m’. di=t+t’

TBr = TAs + t + o
TAr = TBs + t’ – o
o = ((TBr - TAs) - (TAr -TBs)+ (t’ – t))/2
oi = ((TBr - TAs) - (TAr -TBs))/2
o = oi + (t’ – t)/2
di = t + t’ = (TBr - TAs) + (TAr - TBs)

TAr

TBsTBr

TAs

Server B

Server A

Time

m m'

Time

NTP Symmetric Mode

• t and t’: actual transmission times
for m and m’(unknown)

• o: true offset of clock at B
relative to clock at A (unknown)

• oi: estimate of actual offset
between the two clocks

• di: estimate of accuracy of oi ;
total transmission times for m
and m’. di=t+t’

TBr = TAs + t + o
TAr = TBs + t’ – o
o = ((TBr - TAs) - (TAr -TBs)+ (t’ – t))/2
oi = ((TBr - TAs) - (TAr -TBs))/2
o = oi + (t’ – t)/2
di = t + t’ = (TBr - TAs) + (TAr - TBs)

TAr

TBsTBr

TAs

Server B

Server A

Time

m m'

Time

(oi – di / 2) ≤ o ≤ (oi + di / 2) given t, t’ ≥ 0

• System Model

• Failure Detection

• Time and Clocks

• Logical Clocks and Timestamps

• Global State

• Multicast

Happened-Before Relationship
• Happened-before (HB) relationship denoted by →.

• e → e’ means e happened before e’.
• e →i e’ means e happened before e’, as observed by pi.

• HB rules:
• If ∃ pi , e →i e’ then e → e’.
• For any message m, send(m) → receive(m)
• If e → e’ and e’ → e” then e → e’’

• Also called “causal” or “potentially causal” ordering.

Lamport’s Logical Clock

• Logical timestamp for each event that captures the
happened-before relationship.

• Algorithm: Each process pi

1. initializes local clock Li = 0.
2. increments Li before timestamping each event.
3. piggybacks Li when sending a message.
4. upon receiving a message with clock value t

• sets Li = max(t, Li)
• increments Li before timestamping the receive event (as per

step 2).

Vector Clocks
• Each event associated with a vector timestamp.
• Each process pi maintains vector of clocks Vi

• The size of this vector is the same as the no. of processes.
• Vi[j] is the clock for process pj as maintained by pi

• Algorithm: each process pi:
1. initializes local clock Vi[j] = 0
2. increments Vi[i] before timestamping each event.
3. piggybacks Vi when sending a message.
4. upon receiving a message with vector clock value v

• setsVi[j] = max(Vi[j], v[j]) for all j=1…n.
• increments Vi[i] before timestamping receive event

(as per step 2).

• System Model

• Failure Detection

• Time and Clocks

• Logical Clocks and Timestamps

• Global State

• Multicast

Some more notations and definitions
• For a process pi , where events ei

0, ei
1, … occur:

history(pi) = hi = <ei
0, ei

1, … >
prefix history(pi

k) = hi
k = <ei

0, ei
1, …,ei

k >
si

k : pi’s state immediately after kth event.
• For a set of processes <p1, p2, p3, …., pn>:

global history: H = Èi (hi)
global state: S = Èi (si

ci)
a cut C Í H = h1

c1 È h2
c2 È … È hn

cn

the frontier of C = {ei
ci, i = 1,2, … n}

global state S that corresponds to cut C = Èi (si
ci)

Consistent cuts and snapshots

• A cut C is consistent if and only if
"e Î C (if f ® e then f Î C)

• A global state S is consistent if and only if it corresponds
to a consistent cut.

Chandy-Lamport Algorithm

• Goal:
• Record a global snapshot

• Process state (and channel state) for a set of processes.
• The recorded global state is consistent.

• Identifies a consistent cut.

• Records corresponding state locally at each process.

Chandy-Lamport Algorithm

• System model and assumptions:
• System of n processes: <p1, p2, p3, …., pn>.
• There are two uni-directional communication channels between

each ordered process pair : pj to pi and pi to pj.
• Communication channels are FIFO-ordered (first in first out).
• All messages arrive intact, and are not duplicated.
• No failures: neither channel nor processes fail.

• Requirements:
• Snapshot should not interfere with normal application actions,

and it should not require application to stop sending messages.
• Any process may initiate algorithm.

Chandy-Lamport Algorithm

• First, initiator pi:
• records its own state.
• creates a special marker message.
• for j=1 to n except i

• pi sends a marker message on outgoing channel cij
• starts recording the incoming messages on each of the

incoming channels at pi : cji (for j=1 to n except i).

Chandy-Lamport Algorithm
Whenever a process pi receives a marker message on an incoming
channel cki

• if (this is the first marker pi is seeing)
• pi records its own state first
• marks the state of channel cki as “empty”
• for j=1 to n except i

• pi sends out a marker message on outgoing channel cij
• starts recording the incoming messages on each of the incoming

channels at pi : cji (for j=1 to n except i and k).
• else // already seen a marker message

• mark the state of channel cki as all the messages that have arrived
on it since recording was turned on for cki

Chandy-Lamport Algorithm

The algorithm terminates when
• All processes have received a marker

• To record their own state
• All processes have received a marker on all the (n-1) incoming

channels
• To record the state of all channels

More notations and definitions

• A run is a total ordering of events in H that is consistent
with each hi’s ordering.

• A linearization is a run consistent with happens-before
(®) relation in H.

Global State Predicates

• A global-state-predicate is a property that is true or false
for a global state.

• Is there a deadlock?
• Has the distributed algorithm terminated?

• Two ways of reasoning about predicates (or system
properties) as global state gets transformed by events.

• Liveness
• Safety

Liveness
• Liveness = guarantee that something good will happen,

eventually

• Examples:
• Guarantee that a distributed computation will terminate.
• “Completeness” in failure detectors.
• All processes eventually decide on a value.

• A global state S0 satisfies a liveness property P iff:
• liveness(P(S0)) º "LÎ linearizations from S0, L passes through a

SL & P(SL) = true
• For any linearization starting from S0, P is true for some state SL

reachable from S0.

Safety

• Safety = guarantee that something bad will never happen.

• Examples:
• There is no deadlock in a distributed transaction system.
• “Accuracy” in failure detectors.
• No two processes decide on different values.

• A global state S0 satisfies a safety property P iff:
• safety(P(S0)) º "S reachable from S0, P(S) = true.
• For all states S reachable from S0, P(S) is true.

Stable Global Predicates

• once true for a state S, stays true for all states reachable from
S (for stable liveness)

• once false for a state S, stays false for all states reachable from
S (for stable non-safety)

• Stable liveness examples (once true, always true)
• Computation has terminated.

• Stable non-safety examples (once false, always false)
• There is no deadlock.
• An object is not orphaned.

• All stable global properties can be detected using the Chandy-
Lamport algorithm.

• System Model

• Failure Detection

• Time and Clocks

• Logical Clocks and Timestamps

• Global State

• Multicast

Basic Multicast (B-Multicast)

• Straightforward way to implement B-multicast:
• use a reliable one-to-one send (unicast) operation:

B-multicast(group g, message m):
for each process p in g, send (p,m).

receive(m): B-deliver(m) at p.
• Guarantees: message is eventually delivered to the group if:

• Processes are non-faulty.
• The unicast “send” is reliable.
• Sender does not crash.

• Can we provide reliable delivery even after sender crashes?
• What does this mean?

Reliable Multicast (R-Multicast)

• Integrity: A correct (i.e., non-faulty) process p delivers a message m at
most once.

• Assumption: no process sends exactly the same message twice

• Validity: If a correct process multicasts (sends) message m, then it will
eventually deliver m to itself.

• Liveness for the sender.

• Agreement: If a correct process delivers message m, then all the other
correct processes in group(m) will eventually deliver m.

• All or nothing.

• Validity and agreement together ensure overall liveness: if some
correct process multicasts a message m, then, all correct processes
deliver m too.

Implementing R-Multicast

On initialization
Received := {};

For process p to R-multicast message m to group g
B-multicast(g,m); (p∈ g is included as destination)

On B-deliver(m) at process q in g = group(m)
if (m ∉ Received):

Received := Received ∪ {m};
if (q ≠ p): B-multicast(g,m);
R-deliver(m)

Ordered Multicast

• FIFO ordering: If a correct process issues multicast(g,m) and
then multicast(g,m’), then every correct process that delivers
m’ will have already delivered m.

• Causal ordering: If multicast(g,m) à multicast(g,m’) then any
correct process that delivers m’ will have already delivered m.

• Note that à counts messages delivered to the application, rather
than all network messages.

• Total ordering: If a correct process delivers message m before
m’ (independent of the senders), then any other correct
process that delivers m’ will have already delivered m.

Implementing FIFO order multicast

• On FO-multicast(g,m) at process Pj:
set Pj[j] = Pj[j] + 1
piggyback Pj[j] with m as its sequence number.
B-multicast(g,{m, Pj[j]})

• On B-deliver({m, S}) at Pi from Pj: If Pi receives a multicast from Pj
with sequence number S in message

if (S == Pi[j] + 1) then
FO-deliver(m) to application
set Pi[j] = Pi[j] + 1

else buffer this multicast until above condition is true

Implementing causal order multicast
• CO-multicast(g,m) at Pj:

set Pj[j] = Pj[j] + 1
piggyback entire vector Pj[1…N] with m as its sequence no.
B-multicast(g,{m, Pj[1…N]})

• On B-deliver({m, V[1..N]}) at Pi from Pj: If Pi receives a multicast from
Pj with sequence vector V[1…N], buffer it until both:

1.This message is the next one Pi is expecting from Pj, i.e.,
V[j] = Pi[j] + 1

2.All multicasts, anywhere in the group, which happened-before
m have been received at Pi, i.e.,

For all k ≠ j: V[k] ≤ Pi[k]
When above two conditions satisfied,

CO-deliver(m) and set Pi[j] = V[j]

Sequencer based total ordering
• Special process elected as leader or sequencer.
• TO-multicast(g,m) at Pi:

• Send multicast message m to group g and the sequencer

• Sequencer:
• Maintains a global sequence number S (initially 0)
• When a multicast message m is B-delivered to it:

• sets S = S + 1, and B-multicast(g,{“order”, m, S})

• Receive multicast at process Pi:
• Pi maintains a local received global sequence number Si (initially 0)
• On B-deliver(m) at Pi from Pj, it buffers it until both conditions satisfied

1. B-deliver({“order”, m, S}) at Pi from sequencer, and
2. Si + 1 = S
• Then TO-deliver(m) to application and set Si = Si + 1

ISIS algorithm for total ordering

2

1

1

2

2

1 Message
P2

P3

P1

P4

3 Agreed Seq

3

3

• Sender multicasts message to everyone.
• Receiving processes:

• reply with proposed priority (sequence no.)
• larger than all observed agreed priorities
• larger than any previously proposed (by self) priority

• store message in priority queue
• ordered by priority (proposed or agreed)

• mark message as undeliverable
• Sender chooses agreed priority, re-multicasts message with agreed priority

• maximum of all proposed priorities
• Upon receiving agreed (final) priority

• reorder messages based on final priority.
• mark the message as deliverable.
• deliver any deliverable messages at front of priority queue.

Topics for your midterm

• System model and Failures
• Failure Detection
• Clock Synchronization
• Event ordering and Logical Timestamps
• Global Snapshot
• Multicast

Good luck!

