
Welcome to
CS425/ECE428!

Distributed Systems

Instructor: Radhika Mittal

Today’s agenda

• Course overview

• Logistics

• Distributed System Model (if time)
• Chapter 2.4 (except 2.4.3), parts of Chapter 2.3 from your textbook.

Today’s agenda

• Course overview

• Logistics

•Distributed System Model (if time)
• Chapter 2.4 (except 2.4.3), parts of Chapter 2.3

What is a distributed system?

Hardware or software components located at
networked computers that communicate or
coordinate their actions only by passing
messages.

- Your textbook
(Coulouris, Dollimore, Kindberg, Blair)

What is a distributed system?

A collection of autonomous computing
elements, connected by a network, which appear
to its users as a single coherent system.

- Steen and Tanenbaum

What is a distributed system?

A system in which components located on
networked computers communicate and
coordinate their actions by passing messages.
The components interact with each other in order to
achieve a common goal.

- Wikipedia

What is a distributed system?

Independent components or elements
(software processes or any piece of hardware used to run a

process, store data, etc)

What is a distributed system?

Independent components or elements that are connected by
a network.

What is a distributed system?

Independent components or elements that are connected by
a network and communicate by passing messages.

What is a distributed system?

Independent components or elements that are connected by
a network and communicate by passing messages to achieve a

common goal, appearing as a single coherent system.

What is a distributed system?

A distributed system is one in which the failure of a
computer you didn't even know existed can render
your own computer unusable.

- Leslie Lamport

Examples of distributed systems

• World Wide Web

• A cluster of nodes on the cloud (AWS, Azure, GCP)

• Multi-player games

• BitTorrent

• Online banking

• Bitcoin

• ….

Why distributed systems?
• Nature of the application
• Multiplayer games, P2P file sharing, client requesting a service.

• Availability despite unreliable components
• A service shouldn’t fail when one computer does.

• Conquer geographic separation
• A web request in India is faster served by a server in India than

by a server in US.
• Scale up capacity
• More CPU cycles, more memory, more storage, etc.

• Customize computers for specific tasks
• E.g. for storage, email, backup.

Example: scaling up Facebook (Meta)

• 2004: Facebook started on a single server
• Web server front end to assemble each user’s page.
• Database to store posts, friend lists, etc.

• 2008: 100M users
• 2010: 500M users
• 2012: 1B users
• 2019: 2.5B users
• 2023: 3B users

How do we scale up?

Example: scaling up Facebook (Meta)

• One server running both webserver and DB

• Two servers: one for webserver, and one for DB
– System is offline 2x as often!

• Server pair for each social community
– E.g., school or college
– What if server fails?
– What if friends cross servers?

Example: scaling up Facebook (Meta)

• Scalable number of front-end web servers.
• Stateless: if crash can reconnect user to another server.
• Use various policies to map users to front-ends.

• Scalable number of back-end database servers.
• Run carefully designed distributed systems code.
• If crash, system remains available.

Challenging properties

Multiple computers
• Concurrent execution.
• Independent failure.
• Autonomous

administration.
• Heterogeneous.
• Large numbers.

Networked communication
• Asynchronous
• Unreliable
• Insecure

Challenging properties

Common goal
• Consistency
• Transparency

Challenging properties

Common goal
• Consistency
• Transparency

Challenging properties
Multiple computers
• Concurrent execution.
• Independent failure.
• Autonomous

administration.
• Heterogeneous.
• Large numbers.

Networked communication
• Asynchronous
• Unreliable
• Insecure

Common goal
• Consistency
• Transparency

Challenging properties
Multiple computers
• Concurrent execution.
• Independent failure.
• Autonomous

administration.
• Heterogeneous.
• Large numbers.

Networked communication
• Asynchronous
• Unreliable
• Insecure

What you will learn in this course
• Distributed system concepts and algorithms
• How can failures be detected?
• How do we reason about timing and event ordering?
• How do concurrent processes share a common resource?
• How do they elect a “leader” process to do a special task?
• How do they agree on a value? Can we always get them to agree?
• How to handle distributed concurrent transactions?
• ….

• Real-world case studies
• Distributed key-value stores
• Distributed file servers
• Blockchains
• …

Today’s agenda

• Course overview

• Logistics

•Distributed System Model (if time)
• Chapter 2.4 (except 2.4.3), parts of Chapter 2.3

Course Staff

Siddharth Lal

Sanjit KumarAman Khinvasara

Radhika Mittal
Asst. Prof.

ECE and CS

Sarthak Moorjani

Sources of information

• Course website
• https://courses.grainger.illinois.edu/ece428/sp2024/

• https://courses.grainger.illinois.edu/cs425/sp2024/ also works.
• Time slots and locations for office hours
• Homeworks, MPs
• Lecture schedule, readings, and slides

• Campuswire
• Announcements, questions, clarifications

Books
• Distributed Systems: Concepts and Design, Coulouris et al., 5th

edition.
• Earlier editions may be acceptable.
• Your responsibility to find correct reading sections.

• Other texts
• Distributed Systems: An Algorithmic Approach, Ghosh
• Distributed Systems: Principles and Paradigms, Tanenbaum & Steen
• Distributed Algorithms, Lynch

Mode of Lecture Delivery

• In person
• 1320 Digital Computer Laboratory

• Mondays and Wednesdays, 2-3:15pm.

Lecture Videos

• Lecture videos will be uploaded to MediaSpace.

• Plan on attending classes for a better learning experience.
• Use lecture videos only to fill in gaps in understanding.

• Students with conflicts during class timings:
• Please make sure you view the lectures timely and regularly.
• Ask clarifying questions on Campuswire or during office hours.

Relevant Online Platforms

• Campuswire
• Link with access code has been shared over email.
• Reach out to Sarthak (sm106@illinois.edu) if you need access to

CampusWire.

• Gradescope
• We will add students soon……stay tuned.

• PrairieLearn and CBTF for exams
• More instructions to follow.

Grade components
• Homeworks
• 5 homeworks in total.
• Approx every 2-3 weeks.
• Will be submitted using Gradescope.
• Must be typed (hand-written diagrams are fine).
• Must be done individually.

Grade components
• Homeworks

• MPs (only for 4 credit version)
• 4 mini projects.
• First (warm-up) MP0 will be released next Wednesday!
• Groups of up to 2
• Need to fill up a form to activate VM clusters.

• MP0, MP1, and MP3 can be in any language
• Supported languages: Python, Go, C/C++, Java
• You can also use other languages (e.g. Rust), but might

get limited help from course staff.
• MP2 must be implemented in Go.

Grade components
• Homeworks

• MPs (only for 4 credit version)

• Exams via CBTF
• Two midterm

• Midterm 1: Feb 27-29
• Midterm 2: Apr 2-4
• More details to follow.

• Comprehensive final.

Grade components
• Homeworks

• MPs (only for 4 credit version)

• Exams

• CampusWire + Class participation

Grade distribution

3-credit 4-credit

Homework 33%
16%

(drop 2 worst HWs)

Midterms 33% 25%

Final 33% 25%

MPs N/A 33%

Participation 1% 1%

Late Policy
• For homeworks:
• Can use a total of 48 late hours across the entire semester.

• For MPs
• Can use a total of 168 late hours (1 week) across the entire

semester.
• Counted individually for each student, so keep your late hours in

mind if you end up changing groups over the course of the
semester.

Switching between credits

• If you’d like to switch between 3 and 4 credits, you
should be able to do so using self-service.

• If you are unable to make the switch, reach out to CS
advising office for help.

Integrity
• Academic integrity violations have serious consequences.
• Min: 0% on assignment
• Max: expulsion
• All cases are reported to CS, your college, and senate committee.

• As students, it is your responsibility to uphold
academic integrity.
• Example of violations:
• Sharing of code outside group.
• Copying homework solutions (from colleagues, from previous

years’, from the web).
• Collaborating in exams.
• ……

Questions?

Today’s agenda

• Course overview

• Logistics

•Distributed System Model
• Chapter 2.4 (except 2.4.3), parts of Chapter 2.3

What is a distributed system?

Independent components that are connected by a network
and communicate by passing messages to achieve a common

goal, appearing as a single coherent system.

process
thread,
node,
....

Relationship between processes

• Two main categories:

• Client-server

• Peer-to-peer

Relationship between processes

•Client-server

Client Server

Request

Response

Clear difference in roles.

Relationship between processes

•Client-server

Client X

1. Request

4. Response

Server

2. Request

3. Response

Relationship between processes

•Peer-to-peer

Peer

Peer Peer

Similar roles.
Run the same program/algorithm.

Relationship between processes

Client
Server

Client

Server

Server

...…

peer-to-peer

Relationship between processes

• Two broad categories:

• Client-server

• Peer-to-peer

Distributed algorithm

• Algorithm on a single process
• Sequence of steps taken to perform a computation.
• Steps are strictly sequential.

• Distributed algorithm
• Steps taken by each of the processes in the system (including

transmission of messages).
• Different processes may execute their steps concurrently.

Key aspects of a distributed system

• Processes must communicate with one another to
coordinate actions. Communication time is variable.

• Different processes (on different computers) have different
clocks!

• Processes and communication channels may fail.

Key aspects of a distributed system

• Processes must communicate with one another to
coordinate actions. Communication time is variable.

• Different processes (on different computers) have different
clocks!

• Processes and communication channels may fail.

How processes communicate

•Directly using network sockets.

• Abstractions such as remote procedure calls,
publish-subscribe systems, or distributed share
memory.

•Differ with respect to how the message, the sender
or the receiver is specified.

How processes communicate

p qm

communication channel

Communication channel properties

p qm

• Latency (L): Delay between the start of m’s transmission at p and the
beginning of its receipt at q.
• Time taken for a bit to propagate through network links.
• Queuing that happens at intermediate hops.
• Overheads in the operating systems in sending and receiving

messages.
• …..

L

communication channel

Communication channel properties

p qm

• Latency (L): Delay between the start of m’s transmission at p and the
beginning of its receipt at q.

• Bandwidth (B): Total amount of information that can be transmitted
over the channel per unit time.

size(m)/B

Communication channel properties

p qm

• Total time taken to pass a message is governed by latency and
bandwidth of the channel.
• Both latency and available bandwidth may vary over time.

• Sometimes useful to measure “bandwidth usage” of a system as amount of
data being sent between processes per unit time.

Key aspects of a distributed system

• Processes must communicate with one another to
coordinate actions. Communication time is variable.

• Different processes (on different computers) have different
clocks!

• Processes and communication channels may fail.

Differing clocks

• Each computer in a distributed system has its own
internal clock.

• Local clock of different processes show different time
values.

• Clocks drift from perfect times at different rates.

Key aspects of a distributed system

• Processes must communicate with one another to
coordinate actions. Communication time is variable.

• Different processes (on different computers) have different
clocks!

• Processes and communication channels may fail.

Two ways to model

• Synchronous distributed systems:
• Known upper and lower bounds on time taken by each step in a

process.
• Known bounds on message passing delays.
• Known bounds on clock drift rates.

• Asynchronous distributed systems:
• No bounds on process execution speeds.
• No bounds on message passing delays.
• No bounds on clock drift rates.

Synchronous and Asynchronous

• Most real-world systems are asynchronous.
• Bounds can be estimated, but hard to guarantee.
• Assuming system is synchronous can still be useful.

• Possible to build a synchronous system.

Key aspects of a distributed system

• Processes must communicate with one another to
coordinate actions. Communication time is variable.

• Different processes (on different computers) have different
clocks!

• Processes and communication channels may fail.

Lecture Summary

• Distributed System
• Multiple computers (or processes)
• Networked communication
• Common goal

• Distributed systems are fundamentally needed.

• They are challenging to build.
• Variable communication time, clock drifts, failures.

• Course goals: concepts, designs, case studies

Acknowledgements

• Arvind Krishnamurthy
• Nikita Borisov

Questions?

