Distributed Systems

CS425/ECE428

Feb 15 2023

Instructor: Radhika Mittal

Today's agenda

- Wrap up Multicast
 - Chapter 15.4
 - Tree-based multicast and Gossip
- Mutual Exclusion
 - Chapter 15.2

Recap: Ordered Multicast

- FIFO ordering: If a correct process issues multicast(g,m) and then multicast(g,m), then every correct process that delivers m' will have already delivered m.
- Causal ordering: If multicast(g,m) \rightarrow multicast(g,m) then any correct process that delivers m will have already delivered m.
 - Note that \rightarrow counts multicast messages **delivered** to the application, rather than all network messages.
- **Total ordering**: If a correct process delivers message *m* before *m*′, then any other correct process that delivers *m*′ will have already delivered *m*.

ISIS algorithm: failures

- What happens if sender fails while multicasting a message?
- What happens if sender fails while multicasting the final priority of a message?
- What happens if a process fails before sending the proposed priority for a message?
- What happens if a process fails after sending the proposed priority for a message?

Ordered Multicast

FIFO ordering

• If a correct process issues multicast(g,m) and then multicast(g,m'), then every correct process that delivers m' will have already delivered m.

Causal ordering

- If multicast(g,m) \rightarrow multicast(g,m) then any correct process that delivers m will have already delivered m.
- Note that \rightarrow counts multicast messages **delivered** to the application, rather than all network messages.

Total ordering

• If a correct process delivers message m before m' then any other correct process that delivers m' will have already delivered m.

Implementing causal order multicast

- Similar to FIFO Multicast
 - What you send with a message differs.
 - Updating rules differ.
- Each receiver maintains a vector of per-sender sequence numbers (integers)
 - Processes P1 through PN.
 - Pi maintains a vector of sequence numbers Pi[1...N] (initially all zeroes).
 - Pi[j] is the latest sequence number Pi has received from Pj.

Implementing causal order multicast

• CO-multicast(g,m) at Pj:

```
set P_j[j] = P_j[j] + I
piggyback entire vector P_j[1...N] with m. B-multicast(g,{m, P_j[1...N]})
```

- On B-deliver({m, V[1..N]}) at Pi from Pj: If Pi receives a multicast from Pj with sequence vector V[1...N], buffer it until both:
 - I. This message is the next one Pi is expecting from Pj, i.e., V[j] = Pi[j] + I
 - 2. All multicasts, anywhere in the group, which happened-before m have been received at Pi, i.e.,

```
For all k \neq j:V[k] \leq Pi[k]
```

When above two conditions satisfied,

```
CO-deliver(m) and set Pi[j] = V[j]
```


Causal order multicast implementation

Only looks at multicast messages delivered to the application.

Ignores causality created due to other network messages.

Ordered Multicast

FIFO ordering

• If a correct process issues multicast(g,m) and then multicast(g,m'), then every correct process that delivers m' will have already delivered m.

Causal ordering

- If multicast(g,m) \rightarrow multicast(g,m) then any correct process that delivers m will have already delivered m.
- Note that \rightarrow counts multicast messages **delivered** to the application, rather than all network messages.

Total ordering

• If a correct process delivers message m before m', then any other correct process that delivers m' will have already delivered m.

More efficient multicast mechanisms

• Our focus so far has been on the application-level semantics of multicast.

 What are some of the more efficient underlying mechanisms for a B-multicast?

B-Multicast

other processes in the group. Sender It sends a message to only a subset of processes. Closer look at the physical network.

A process does not directly send messages to all

Transmit to b random targets.

Transmit to b random targets.

Transmit to b random targets.

Multicast Summary

- Multicast is an important communication mode in distributed systems.
- Applications may have different requirements:
 - Basic
 - Reliable
 - Ordered: FIFO, Causal, Total
 - Combinations of the above.
- Underlying mechanisms to spread the information:
 - Unicast to all receivers.
 - Tree-based multicast, and gossip: sender unicasts messages to only a subset of other processes, and they spread the message further.
 - Gossip is more scalable and more robust to process failures.

Today's agenda

- Wrap up Multicast
 - Chapter 15.4
 - Tree-based multicast and Gossip

Mutual Exclusion

- Chapter 15.2
- Goal: reason about ways in which different processes in a distributed system can safely manipulate shared resources.

Why Mutual Exclusion?

- Bank's Servers in the Cloud: Two of your customers make simultaneous deposits of \$10,000 into your bank account, each from a separate ATM.
 - Both ATMs read initial amount of \$1000 concurrently from the bank's cloud server
 - Both ATMs add \$10,000 to this amount (locally at the ATM)
 - Both write the final amount to the server
 - What's wrong?

Why Mutual Exclusion?

- Bank's Servers in the Cloud: Two of your customers make simultaneous deposits of \$10,000 into your bank account, each from a separate ATM.
 - Both ATMs read initial amount of \$1000 concurrently from the bank's cloud server
 - Both ATMs add \$10,000 to this amount (locally at the ATM)
 - Both write the final amount to the server
 - You lost \$10,000!
- The ATMs need *mutually exclusive* access to your account entry at the server
 - or, mutually exclusive access to executing the code that modifies the account entry.

More uses of mutual exclusion

- Distributed file systems
 - Locking of files and directories
- Accessing objects in a safe and consistent way
 - Ensure at most one server has access to object at any point of time
- In industry
 - Chubby is Google's locking service

Problem Statement for mutual exclusion

- Critical Section Problem:
 - Piece of code (at all processes) for which we need to ensure there is <u>at most one process</u> executing it at any point of time.
- Each process can call three functions
 - enter() to enter the critical section (CS)
 - AccessResource() to run the critical section code
 - exit() to exit the critical section

Our bank example

ATMI: enter(); // AccessResource() obtain bank amount; add in deposit; update bank amount; // AccessResource() end exit();

```
enter();

// AccessResource()

obtain bank amount;

add in deposit;

update bank amount;

// AccessResource() end

exit();
```

Mutual exclusion for a single OS

- If all processes are running in one OS on a machine (or VM):
 - Semaphores
 - Mutexes
 - Condition variables
 - Monitors
 - •

Processes Sharing an OS: Semaphores

- Semaphore == an integer that can only be accessed via two special functions
- Semaphore S=I; // Max number of allowed accessors.

Atomic operations are supported via hardware instructions such as compare-and-swap, test-and-set, etc.

Our bank example

ATMI: enter(); // AccessResource() obtain bank amount; add in deposit; update bank amount; // AccessResource() end exit();

```
enter();

// AccessResource()

obtain bank amount;

add in deposit;

update bank amount;

// AccessResource() end

exit();
```

Our bank example

Semaphore S=I;// shared

ATMI:

```
wait(S); //enter

// AccessResource()
obtain bank amount;
add in deposit;
update bank amount;

// AccessResource() end
signal(S); // exit
```

ATM2:

```
wait(S); //enter

// AccessResource()
obtain bank amount;
add in deposit;
update bank amount;

// AccessResource() end
signal(S); // exit
```

Mutual exclusion in distributed systems

- Processes communicating by passing messages.
- Cannot share variables like semaphores!
- How do we support mutual exclusion in a distributed system?

Mutual exclusion in distributed systems

- Our focus today: Classical algorithms for mutual exclusion in distributed systems.
 - Central server algorithm
 - Ring-based algorithm
 - Ricart-Agrawala Algorithm
 - Maekawa Algorithm

Mutual Exclusion Requirements

- Need to guarantee 3 properties:
 - Safety (essential):
 - At most one process executes in CS (Critical Section) at any time.
 - Liveness (essential):
 - Every request for a CS is granted eventually.
 - Ordering (desirable):
 - Requests are granted in the order they were made.

System Model

• Each pair of processes is connected by reliable channels (such as TCP).

 Messages sent on a channel are eventually delivered to recipient, and in FIFO (First In First Out) order.

- Processes do not fail.
 - Fault-tolerant variants exist in literature.

Mutual exclusion in distributed systems

- Our focus today: Classical algorithms for mutual exclusion in distributed systems.
 - Central server algorithm
 - Ring-based algorithm
 - Ricart-Agrawala Algorithm
 - Maekawa Algorithm

Central Server Algorithm

- Elect a central server (or leader)
- Leader keeps
 - A queue of waiting requests from processes who wish to access the CS
 - A special token which allows its holder to access CS
- Actions of any process in group:
 - enter()
 - Send a request to leader
 - Wait for token from leader
 - exit()
 - Send back token to leader

Central Server Algorithm

- Leader Actions:
 - On receiving a request from process Pi

```
if (leader has token)Send token to PielseAdd Pi to queue
```

On receiving a token from process Pi

```
if (queue is not empty)Dequeue head of queue (say Pj), send that process the tokenelseRetain token
```

Analysis of Central Algorithm

- Safety at most one process in CS
 - Exactly one token
- Liveness every request for CS granted eventually
 - With N processes in system, queue has at most N processes
 - If each process exits CS eventually and no failures, liveness guaranteed
- Ordering:
 - FIFO ordering guaranteed in order of requests received at leader
 - Not in the order in which requests were sent or the order in which processes enter CS!

Analysis of Central Algorithm

- Safety at most one process in CS
 - Exactly one token
- Liveness every request for CS granted eventually
 - With N processes in system, queue has at most N processes
 - If each process exits CS eventually and no failures, liveness guaranteed
- Ordering:
 - FIFO ordering guaranteed in order of requests received at leader
 - Not in the order in which requests were sent or the order in which processes call "enter"!

Analyzing Performance

Three metrics:

- Bandwidth: the total number of messages sent in each enter and exit operation.
- Client delay: the delay incurred by a process at each enter and exit operation (when no other process is in CS, or waiting)
 - We will focus on the client delay for the enter operation.
- Synchronization delay: the time interval between one process exiting the critical section and the next process entering it (when there is *only one* process waiting). Measures of the *throughput* of the system.

Analysis of Central Algorithm

- Bandwidth: the total number of messages sent in each enter and exit operation.
 - 2 messages for enter
 - I message for exit
- Client delay: the delay incurred by a process at each enter and exit operation (when no other process is in CS, or waiting)
 - 2 message latencies or I round-trip (request + grant) on enter.
- Synchronization delay: the time interval between one process exiting the critical section and the next process entering it (when there is *only one* process waiting)
 - 2 message latencies (release + grant)

Limitations of Central Algorithm

 The leader is the performance bottleneck and single point of failure.

Mutual exclusion in distributed systems

- Our focus today: Classical algorithms for mutual exclusion in distributed systems.
 - Central server algorithm
 - Ring-based algorithm
 - Ricart-Agrawala Algorithm
 - Maekawa Algorithm

Token:

Token: ●

Token:

- N Processes organized in a virtual ring
- Each process can send message to its successor in ring
- Exactly I token
- enter()
 - Wait until you get token
- exit() // already have token
 - Pass on token to ring successor
- If receive token, and not currently in enter(), just pass on token to ring successor

- Safety
 - Exactly one token
- Liveness
 - Token eventually loops around ring and reaches requesting process (no failures)
- Ordering
 - Token not always obtained in order of enter events.

- Safety
 - Exactly one token
- Liveness
 - Token eventually loops around ring and reaches requesting process (no failures)
- Ordering
 - Token not always obtained in order of enter events.

- Bandwidth
 - Per enter, I message at requesting process but up to N messages throughout system.
 - I message sent per exit.
 - Constantly consumes bandwidth even when no process requires entry to the critical section (except when a process is executing critical section).

- Client delay:
 - Best case: just received token
 - Worst case: just sent token to neighbor
 - 0 to N message transmissions after entering enter()
- Synchronization delay between one process' exit() from the CS and the next process' enter():
 - Best case: process in enter() is successor of process in exit()
 - Worst case: process in enter() is predecessor of process in exit()
 - Between I and (N-I) message transmissions.
- Can we improve upon this O(n) client and synchronization delays?
 - Next class!