
Distributed Systems

CS425/ECE428

Feb 13 2023

Instructor : Radhika Mittal

Acknowledgements for some of materials: Indy Gupta and Nikita Borisov

Logistics

• MP1 has been released.
• Due on March 6th, 11:59pm.

• HW1 is due on Wednesday.

Today’s agenda

• Multicast
• Chapter 15.4

• Goal: reason about desirable properties for
message delivery among a group of processes.

Recap: Multicast

• Useful communication mode in distributed systems:
• Writing an object across replica servers.
• Group messaging.
• …..

• Basic multicast (B-multicast): unicast send to each process in the group.
• Does not guarantee consistent message delivery if sender fails.

• Reliable multicast (R-mulicast):
• Defined by three properties: integrity, validity, agreement.
• If some correct process multicasts a message m, then all other correct processes

deliver m (exactly once).
• When a process receives a message ‘m’ for the first time, it re-multicasts it again

to other processes in the group.

Recap: Ordered Multicast

• FIFO ordering: If a correct process issues multicast(g,m) and
then multicast(g,m’), then every correct process that delivers
m’ will have already delivered m.

• Causal ordering: If multicast(g,m) à multicast(g,m’) then any
correct process that delivers m’ will have already delivered m.

• Note that à counts multicast messages delivered to the application,
rather than all network messages.

• Total ordering: If a correct process delivers message m before
m’, then any other correct process that delivers m’ will have
already delivered m.

Example

P2

Time
P1

P3

M1:1 M1:2

P4

M3:1

Does this satisfy causal (and FIFO) order?
Yes

Example

P2

Time
P1

P3

M1:1 M1:2

P4

M3:1

Does this satisfy total order?
No

Example

P2

Time
P1

P3

M1:1 M1:2

P4

M3:1

Does this satisfy total order?
Yes

Next Question

How do we implement ordered multicast?

Ordered Multicast

• FIFO ordering
• If a correct process issues multicast(g,m) and then multicast(g,m’),

then every correct process that delivers m’ will have already
delivered m.

• Causal ordering
• If multicast(g,m) à multicast(g,m’) then any correct process that

delivers m’ will have already delivered m.
• Note that à counts multicast messages delivered to the application,

rather than all network messages.
• Total ordering

• If a correct process delivers message m before m’ then any other
correct process that delivers m’ will have already delivered m.

Implementing FIFO order multicast

Application
(at process p)

FO-multicast(g,m)

Incoming
messages

FO-deliver(m)

B-multicast(g,m)

B-deliver(m)

??

Implementing FIFO order multicast

• Each receiver maintains a per-sender sequence number
• Processes P1 through PN
• Pi maintains a vector of sequence numbers Pi[1…N] (initially all

zeroes)
• Pi[j] is the latest sequence number Pi has received from Pj

Implementing FIFO order multicast

• On FO-multicast(g,m) at process Pj:
set Pj[j] = Pj[j] + 1
piggyback Pj[j] with m as its sequence number.
B-multicast(g,{m, Pj[j]})

• On B-deliver({m, S}) at Pi from Pj: If Pi receives a multicast from Pj
with sequence number S in message

if (S == Pi[j] + 1) then
FO-deliver(m) to application
set Pi[j] = Pi[j] + 1

else buffer this multicast until above condition is true

FIFO order multicast execution

P2

Time
P1

P3

P4

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

FIFO order multicast execution

P2

Time
P1

P3

P4

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

Sequence Vector
Do not confuse with vector timestamps!

Pi[i], is the no. of messages Pi multicast (and
delivered to itself).

Pi[j] ∀j ≠ i is no. of messages delivered at Pi
from Pj.

FIFO order multicast execution

P2

Time
P1

P3

P4

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

FIFO order multicast execution

P2

Time
P1

P3

P4

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

Self-deliveries omitted for simplicity.

FIFO order multicast execution

P2

Time
P1

P3

P4

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[1,0,0,0]
Deliver!

P1, seq: 1

[1,0,0,0]
Deliver!

[1,0,0,0]

FIFO order multicast execution

P2

Time
P1

P3

P4

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[1,0,0,0]
Deliver!

P1, seq: 1

[1,0,0,0]
Deliver!

[0,0,0,0]
Buffer!

P1, seq: 2

[1,0,0,0] [2,0,0,0]

FIFO order multicast execution

P2

P1

P3

P4

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[1,0,0,0]
Deliver!

P1, seq: 1

[1,0,0,0]
Deliver!

[0,0,0,0]
Buffer!

P1, seq: 2

[1,0,0,0] [2,0,0,0]

[2,0,0,0]
Deliver!

[1,0,0,0]
Deliver this!
Deliver buffered <P1, seq:2>
Update [2,0,0,0]

Time

FIFO order multicast execution

P2

P1

P3

P4

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[1,0,0,0]
Deliver!

P1, seq: 1

[1,0,0,0]
Deliver!

[0,0,0,0]
Buffer!

P1, seq: 2

[1,0,0,0] [2,0,0,0]

[2,0,0,0]
Deliver!

[1,0,0,0]
Deliver this!
Deliver buffered <P1, seq:2>
Update [2,0,0,0]

P3, seq: 1
[2,0,1,0]

[2,0,1,0]
Deliver!

[2,0,1,0]
Deliver!

Time

FIFO order multicast execution

P2

Time
P1

P3

P4

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[1,0,0,0]
Deliver!

P1, seq: 1

[1,0,0,0]
Deliver!

[0,0,0,0]
Buffer!

P1, seq: 2

[1,0,0,0] [2,0,0,0]

[2,0,0,0]
Deliver!

[1,0,0,0]
Deliver this!
Deliver buffered <P1, seq:2>
Update [2,0,0,0]

P3, seq: 1
[2,0,1,0]

[2,0,1,0]
Deliver!

[2,0,1,0]
Deliver!
[1,0,1,0]
Deliver!

[2,0,1,0]
Deliver!

Implementing FIFO order multicast

• On FO-multicast(g,m) at process Pj:
set Pj[j] = Pj[j] + 1
piggyback Pj[j] with m as its sequence number.
B-multicast(g, {m, Pj[j]})

• On B-deliver({m, S}) at Pi from Pj: If Pi receives a multicast from Pj
with sequence number S in message

if (S == Pi[j] + 1) then
FO-deliver(m) to application
set Pi[j] = Pi[j] + 1

else buffer this multicast until above condition is true

Implementing FIFO reliable multicast

• On FO-multicast(g,m) at process Pj:
set Pj[j] = Pj[j] + 1
piggyback Pj[j] with m as its sequence number.
R-multicast(g,{m, Pj[j]})

• On R-deliver({m, S}) at Pi from Pj: If Pi receives a multicast from Pj
with sequence number S in message

if (S == Pi[j] + 1) then
FO-deliver(m) to application
set Pi[j] = Pi[j] + 1

else buffer this multicast until above condition is true

Ordered Multicast

• FIFO ordering: If a correct process issues multicast(g,m) and
then multicast(g,m’), then every correct process that delivers
m’ will have already delivered m.

• Causal ordering: If multicast(g,m) à multicast(g,m’) then any
correct process that delivers m’ will have already delivered m.

• Note that à counts multicast messages delivered to the application,
rather than all network messages.

• Total ordering: If a correct process delivers message m before
m’ then any other correct process that delivers m’ will have
already delivered m.

Implementing total order multicast

• Basic idea:
• Same sequence number counter across different processes.
• Instead of different sequence number counter for each process.

• Two types of approach
• Using a centralized sequencer
• A decentralized mechanism (ISIS)

Implementing total order multicast

• Basic idea:
• Same sequence number counter across different processes.
• Instead of different sequence number counter for each process.

• Two types of approach
• Using a centralized sequencer
• A decentralized mechanism (ISIS)

Sequencer based total ordering
• Special process elected as leader or sequencer.
• TO-multicast(g,m) at Pi:

• B-multicast message m to group g and the sequencer

• Sequencer:
• Maintains a global sequence number S (initially 0)
• When a multicast message m is B-delivered to it:

• sets S = S + 1, and B-multicast(g,{“order”, m, S})

• Receive multicast at process Pi:
• Pi maintains a local received global sequence number Si (initially 0)
• On B-deliver(m) at Pi from Pj, it buffers it until both conditions satisfied

1. B-deliver({“order”, m, S}) at Pi from sequencer, and
2. Si + 1 = S
• Then TO-deliver(m) to application and set Si = Si + 1

Implementing total order multicast

• Basic idea:
• Same sequence number counter across different processes.
• Instead of different sequence number counter for each process.

• Two types of approach
• Using a centralized sequencer
• A decentralized mechanism (ISIS)

ISIS algorithm for total ordering

2

1

1

2

2

1 Message
P2

P3

P1

P4

3 Agreed Seq

3

3

ISIS algorithm for total ordering

2

1

1

2

2

1 Message
P2

P3

P1

P4

3 Agreed Seq

3

3

• Sender multicasts message to everyone.
• Receiving processes:

• reply with proposed priority (sequence no.)
• larger than all observed agreed priorities
• larger than any previously proposed (by self) priority

• store message in priority queue
• ordered by priority (proposed or agreed)

• mark message as undeliverable
• Sender chooses agreed priority, re-multicasts message id with agreed priority

• maximum of all proposed priorities
• Upon receiving agreed (final) priority for a message ‘m’

• Update m’s priority to final, and accordingly reorder messages in queue.
• mark the message m as deliverable.
• deliver any deliverable messages at front of priority queue.

A:2

Example: ISIS algorithm
A

B

C

A:1

B:1

B:1

A:2 C:3

C:2

C:3

B:3P1

P2

P3

A:2

Please refer to lecture recordings/pptx shared over CampusWire
for the correct, animated version of this slide.

How do we break ties?

• Problem: priority queue requires unique priorities.

• Solution: add process # to suggested priority.
• priority.(id of the process that proposed the priority)
• i.e., 3.2 == process 2 proposed priority 3

• Compare on priority first, use process # to break ties.
• 2.1 > 1.3
• 3.2 > 3.1

B:1.2

C:2.1

A:2.3

C:3.2

B:1.3

A:1.1

B:3.1

C:3.3B:3.1

C:3.3A:2.3

Example: ISIS algorithm
A

B

C
A:2.2

C:3.3

B:3.1P1

P2

P3

✔

✔ ✔ ✔

✔ ✔

✔ ✔

A:2.3
✔

Please refer to lecture recordings/pptx shared over CampusWire
for the correct, animated version of this slide.

Proof of total order with ISIS
• Consider two messages, m1 and m2, and two processes, p and p’.
• Suppose that p delivers m1 before m2.
• When p delivers m1, it is at the head of the queue. m2 is either :

• Already in p’s queue, and deliverable, so
• finalpriority(m1) < finalpriority(m2)

• Already in p’s queue, and not deliverable, so
• finalpriority(m1) < proposedpriority(m2) <= finalpriority(m2)

• Not yet in p’s queue:
• same as above, since proposed priority > priority of any

delivered message
• Suppose p’ delivers m2 before m1, by the same argument:

• finalpriority(m2) < finalpriority(m1)
• Contradiction!

MP1: Event Ordering

• https://courses.grainger.illinois.edu/ece428/sp2023/mps/mp1.html
• Lead TA: Eashan Gupta

• Task:
• Collect transaction events on distributed nodes.
• Multicast transactions to all nodes while maintaining total order.
• Ensure transaction validity.
• Handle failure of arbitrary nodes.

• Objective:
• Build a decentralized multicast protocol to ensure total ordering

and handle node failures.

MP1 Architecture Setup

node ID
config_file

node ID
config_file

node ID
config_file

• Example input arguments for first node:
./mp1_node node1 config.txt

• config.txt looks like this:

MP1 Architecture Setup

node ID
config_file

node ID
config_file

node ID
config_file

MP1 Architecture

Transaction Validity

Transaction Validity: ordering matters

Graph

• Compute the “processing time” for each transaction:
• Time difference between when it was generated (read) at a node,

and when it was processed by the last (alive) node.

• Plot the CDF (cumulative distribution function) of the
transaction processing time for each evaluation scenario.

MP1: Logistics

• Due on Monday, March 6th.
• Late policy: Can use part of your 168hours of grace period

accounted per student over the entire semester.

• You are allowed to reuse code from MP0.
• Note: MP1 requires all nodes to connect to each other, as opposed

to each node connecting to a central logger.

• Read the specification carefully. Start early!!

