Distributed Systems

CS425/ECE428

Feb 132023

Instructor: Radhika Mittal

Acknowledgements for some of materials: Indy Gupta and Nikita Borisov

Logistics

e MP| has been released.
* Due on March 6th, | 1:59pm.

* HW 1 Is due on VWednesday.

Today’s agenda

* Multicast
* Chapter 154

* Goal: reason about desirable properties for
message delivery among a group of processes.

Recap: Multicast

* Useful communication mode in distributed systems:
* Writing an object across replica servers.
* Group messaging.

* Basic multicast (B-multicast): unicast send to each process in the group.
* Does not guarantee consistent message delivery if sender falils.

* Reliable multicast (R-mulicast):

* Defined by three properties: integrity, validity, agreement.
* |f some correct process multicasts a message m, then all other correct processes

deliver m (exactly once).
* When a process receives a message ‘m' for the first time, it re-multicasts it again

to other processes in the group.

Recap: Ordered Multicast

* FIFO ordering: If a correct process Issues multicast(g,m) and
then multicast(g,m’), then every correct process that delivers
m’ will have already delivered m.

* Causal ordering: If multicast(g,m) = multicast(g,m’) then any
correct process that delivers m’ will have already delivered m.

* Note that = counts multicast messages delivered to the application,
rather than all network messages.

* Total ordering: If a correct process delivers message m before
m’, then any other correct process that delivers m’ will have
already delivered m.

Example

Pl

1:1 M1:2

Time

P2

M3:

P3

P4

Does this satisfy causal (and FIFO) order?
Yes

Example

Pl

1:1 M1:2

Time

P2

M3:

P3

P4

Does this satisfy total order?
No

Example

—
—— —
-
-

Pl

P2

1:1 M1:2

Time

P3

M3:

P4

Does this satisfy total order?
Yes

Next Question

How do we implement ordered multicast?

Ordered Multicast

* FIFO ordering

* If a correct process issues multicast(g,m) and then multicast(g,m’),
then every correct process that delivers m’ will have already
delivered m.

Implementing FIFO order multicast

Application
(at process p)

Incoming
messages

Implementing FIFO order multicast

* Fach receiver maintains a per-sender sequence number
* Processes P | through PN

* Pi maintains a vector of sequence numbers Pi[| ...N] (inrtially all
zeroes)

* Pi[j]] is the latest sequence number Pi has received from Pj

Implementing FIFO order multicast
o 24/

* On FO-multicast(g,m) at process Pj: @

set PIj] = Pj[j] + |
piggyback Pj[j] with m as its sequence number.
B-multicast(g,{m, Pj[j]})

* On B-deliver({m, S}) at Pi from PJ: If Pi receives a multicast from Pj
with sequence number S in message

f (S==Pi[j] + 1) then
FO-deliver(m) to application
set Pi[j] = Pijj] + |
else buffer this multicast until above condition is true

FIFO order multicast execution

Pl
[0909090] Time

P2
10,0,0,0]

P3
10,0,0,0]

P4
10,0,0,0]

FIFO order multicast execution

Pl
[0909090] Time

10,0,0,0]

P3 \
10,0,0,0]
Sequence Vector

P4 Do not confuse with vector timestamps!
[0,0,0,0] Pi[i], 1s the no. of messages PI multicast (and

T delivered to itself).

Pi[]] V] # 1 1s no. of messages delivered at Pi

from P).

FIFO order multicast execution

Pl
[0909090] Time

P2
10,0,0,0]

P3
10,0,0,0]

P4
10,0,0,0]

FIFO order multicast execution

Pl
0,0,0,0] N M /Time
P2

P3

10,0,0,0] \ \

P4 .
[0,0,0,0]

Self-deliveries omitted for simplicity.

FIFO order multicast execution

[1,0,0.0]

[0,0,0,0] [1,0,0,0]
Deliver!

Pl
P2 /

P3 \
[0,0,0,0] \ \

P4)

[1,0,0,0]
10:0.0.0] Deliver!

FIFO order multicast execution

[1,0.0,0] [2,0.0,0]

Pl g
10,0,0,0] M PM /Tl'me
10,0,0,0] [1,0,0,0]
Deliver!
P3 g
10,0,0,0] 10,0,0,0]
Buffer!

P4 -) ,

[1,0,0,0]
10.0.0.0] Deliver!

FIFO order multicast execution

[1,0,0,0] [2,0,0,0]

P1
;\0,0,0,0] Time
P2
[0,0,0,0] [1,0,0,0]

Deliver!
P3 >
[/9,0,0,0] [0,0,0,0]

Buffer!

b [1,0.0,0] [1.0.0.0]

[0,0,0,0] Deliver this!

Deliver buftered <P1, seq:2>
Update [2,0,0,0]

Deliver!

FIFO order multicast execution

11.0,0.0] [2.0,0.0]

[2,0,1,0]

P1
[0,0,0,0]

eliver!
12,0,0.0] /" Time
ehver' 2 O 1

P2
[0,0,0,0]

/Dehver'
seq: 1

P3
10,0,0,0]

0.0,0,0]
Bufter!

K,I,O

P4
10,0,0,0]

[1,0,0,0]
Deliver!

[1 0,0,0]

Deliver this!

Deliver buffered <P1, seq:2>
Update [2,0,0,0]

FIFO order multicast execution

[1,0,0,0] [2,0,0,0] [2,0,1,0]
Pl eliver!

[0,0,0,0] 12,0.0.01/ Time
eliver! [2,0, 1 ,O]
P[%,O,O,O] eliver!
[1,0,1,0]
3 PA. seq:] Deliver!
[0,0,0,0] [0,0,0,0] 000 1o
Buffer! 120,101
P4 \ Deliver!

[1,0,0,0] [1,0,0,0]
[0,0,0,0] Deliver! Deliver this!

Deliver buffered <P1, seq:2>
Update [2,0,0,0]

Implementing FIFO order multicast

* On FO-multicast(g,m) at process Pj:
set PIj] = Pj[j] + |
piggyback Pj[j] with m as its sequence number.
B-multicast(g, {m, Pj[j]})

* On B-deliver({m, S}) at Pi from PJ: If Pi receives a multicast from Pj
with sequence number S in message

f (S==Pi[j] + 1) then
FO-deliver(m) to application
set Pi[j] = Pijj] + |
else buffer this multicast until above condition is true

Implementing FIFO reliable multicast

* On FO-multicast(g,m) at process Pj:
set PIj] = Pj[j] + |
piggyback Pj[j] with m as its sequence number.
R-multicast(g,{m, Pj[j]})

* On R-deliver({m, S}) at Pi from Pj: If Pi receives a multicast from P
with sequence number S in message

f (S==Pi[j] + 1) then
FO-deliver(m) to application
set Pi[j] = Pijj] + |
else buffer this multicast until above condition is true

Ordered Multicast

* Total ordering: If a correct process delivers message m before
m’ then any other correct process that delivers m’ will have
already delivered m.

Implementing total order multicast

* Basic idea:
* Same sequence number counter across different processes.
* |Instead of different sequence number counter for each process.

* Two types of approach
* Using a centralized sequencer
* A decentralized mechanism (ISIS)

Implementing total order multicast

* Basic idea:
* Same sequence number counter across different processes.
* |Instead of different sequence number counter for each process.

* Two types of approach
* Using a centralized sequencer
* A decentralized mechanism (ISIS)

Sequencer based total ordering

* Special process elected as leader or sequencer.
e TO-multicast(gm) at Pi:

* B-multicast message m to group g and the sequencer

* Sequencer:
* Maintains a global sequence number S (initially 0)

* When a multicast message m is B-delivered to it:
* sets S =S+ |,and B-multicast(g{ order”, m, S})

* Recelve multicast at process Pi
* Pimaintains a local received global sequence number Si (initially 0)
* On B-deliver(m) at Pi from P}, it buffers it until both conditions satisfied
|, B-deliver({“order”, m, S}) at Pi from sequencer, and
2. Si+ 1 =S
* Then TO-deliver(m) to application and set Si = Si + |

Implementing total order multicast

* Basic idea:
* Same sequence number counter across different processes.
* |Instead of different sequence number counter for each process.

* Two types of approach
* Using a centralized sequencer
* A decentralized mechanism (ISIS)

ISIS algorithm for total ordering

1 Message

ISIS algorithm for total ordering

* Sender multicasts message to everyone.

* Recelving processes:
* reply with proposed priority (sequence no.)
* larger than all observed agreed priorities
* larger than any previously proposed (by self) priority
* store message In priority queue
* ordered by priority (proposed or agreed)
* mark message as undeliverable

* Sender chooses agreed priority, re-multicasts message i1d with agreed priority
* maximum of all proposed priorities

* Upon receiving agreed (final) priority for a message 'm’
* Update m’s priority to final, and accordingly reorder messages in queue.
* mark the message m as deliverable.
* deliver any deliverable messages at front of priority queue.

Example: ISIS algorithm

A

P1

P2

P3

Please refer to lecture recordings/pptx shared over CampusWire

for the correct, animated version of this slide.

- C:2 B:3
B:1 A:2 | C:3
B:1 | A:2 C:3

How do we break ties?

* Problem: priority queue requires unique priorities.

* Solution: add process # to suggested priority.
* priority.(id of the process that proposed the priority)
* le, 3.2 == process 2 proposed priority 3

* Compare on priority first, use process # to break ties.
e 2.1 > 13
¢ 32> 3.1

Example: ISIS algorithm

v’
P14 7 - ci2d

B:3.1

C:3.3

// /// “
P2 \ B:3.1 A23

,’ p) “
/ | "4
P3 i B:3.1 | A:2.3 c:_;i
B

Please refer to lecture recordings/pptx shared over CampusWire
for the correct, animated version of this slide.

Proof of total order with ISIS

* Consider two messages, m; and m,, and two processes, p and p.
* Suppose that p delivers m, before m,.

* When p delivers m,, it is at the head of the queue. m, is either:
* Already In p’s queue, and deliverable, so
* finalpriority(m,) < finalpriority(m,)
* Already In p’s queue, and not deliverable, so
* finalpriority(m,) < proposedpriority(m,) <= finalpriority(m,)
* Not yet in p's queue:
* same as above, since proposed priority > priority of any
delivered message
* Suppose p’ delivers m, before m,, by the same argument:
* finalpriority(m,) < finalpriority(m,)
* Contradiction!

MP1: Event Ordering

* https://courses.grainger.illinois.edu/ece428/sp2023/mps/mp | .html

* Lead TA: Eashan Gupta

e Task:

* Collect transaction events on distributed nodes.

* Multicast transactions to all nodes while maintaining total order.
* Ensure transaction validity.

* Handle failure of arbitrary nodes.

* Objective:
* Build a decentralized multicast protocol to ensure total ordering
and handle node failures.

MPI Architecture Setup

node 1D node 1D node 1D
config_file config_file config_file

< J

J

* Example input arguments for first node:
./mpl node nodel config.txt

* configitxt looks like this:

3

nodel sp23-cs425-0101.cs.illinois.edu 1234
node2 sp23-cs425-0102.cs.illinois.edu 1234
node3 sp23-cs425-0103.cs.illinois.edu 1234

MPI Architecture Setup

node ID node ID node ID
Conﬁg_ﬁle Conﬂg_ﬁ|e COﬂﬁg_ﬁ'G

< J <

EXl EX3 KN

- - i E z: 'i

EXl EX3 KN

MPI| Architecture

TXA; TXB TX C; TXD TXE; TXF

B 3N
Multicast protocol

TXA; TXC, TXB; TXE; TXF; TXD

Total ordering

Transaction Validity

DEPOSIT abc 100

TRANSFER abc -> def 75

TRANSFER abc -> ghi 30

Adds 100 to account
(or creates a new account)

Transfers 75 from account to
account (creating if needed)

Invalid transaction, since only
has 25 left

Transaction Validity: ordering matters

DEPOSIT xyz 50 DEPOSIT xyz 50

TRANSFER xyz ->wqr 40 TRANSFER xyz -> hjk 30

TRANSFER xyz -> hjk 30 TRANSFER xyz -> waqr 40
[invalid TX] [invalid TX]

BALANCES xyz:10 wqr:40 BALANCES xyz:20 hjk:30

Graph

* Compute the “processing time” for each transaction:
* Time difference between when 1t was generated (read) at a node,
and when it was processed by the last (alive) node.

* Plot the CDF (cumulative distribution function) of the
transaction processing time for each evaluation scenario.

MP1: Logistics

* Due on Monday, March 6th.

* Late policy: Can use part of your |68hours of grace period
accounted per student over the entire semester.

* You are allowed to reuse code from MPO.
* Note: MP| requires all nodes to connect to each other; as opposed
to each node connecting to a central logger.

* Read the specification carefully. Start early!!

