Distributed Systems

CS425/ECE428

Feb 6 2023

Instructor: Radhika Mittal



Logistics Related

* HW?2 release date has been pushed to Mon, Feb 20™.
Accordingly, its due date has been pushed to Mon. Mar 6™,

* MPO due on Wednesday.

* Note about exams on CampusWire:
* Midterm: Mar 22-24, Finals: May 4
* Reservation via Prairie Test.
* You can reserve a slot for Midterms starting Mar 2nd
* If you need DRES accommodations, please upload your Letter of
Accommodations on the CBTF website.



Today’s agenda

* Global State
e Chapter [4.5

* Goal reason about how to capture the state across all processes of
a distributed system without requiring time synchronization.

* Multicast (if time)



Recap

* State of each process (and each channel) in the system at a
given instant of time.,
* Difficult to capture -- requires precisely synchronized time.

* Relax the problem: find a consistent global state.

* Chandy-Lamport algorithm to calculate global state.
* Obeys causality (creates a consistent cut).
* Does not interrupt the running distributed application.
* Can be used to detect global properties.



More notations and definitions

* history(p) = h.=<ef%el,... >
* global history: H = Ui (h,)

* A run is a total ordering of events in H that Is consistent
with each h/'s ordering.

* A linearization is a run consistent with happens-before
(—) relation in H.
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More notations and definitions

* history(p) = h.=<ef%el,... >
* global history: H = Ui (h,)

* A run is a total ordering of events in H that Is consistent
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* A linearization is a run consistent with happens-before
(—) relation in H.
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More notations and definitions

* Linearizations pass through consistent global states.

* A global state S, is reachable from global state S, if there Is
a linearization that passes through S. and then through S,.

* [he distributed system evolves as a series of transitions
between global states 5y, 5 ...



State Transitions: Example
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Many linearizations:

<p0,pl,p2,q0,ql,g2>
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<q0,p0,pl,ql,p2,q2 >
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e (Causal order:
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Execution Lattice. Each path represents a linearization.
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More notations and definitions

* A run is a total ordering of events in H that Is consistent
with each h/'s ordering.

* A linearization is a run consistent with happens-before (—)
relation in H.

* Linearizations pass through consistent global states.

* A global state S, Is reachable from global state S, if there Is
a linearization that passes through S. and then through §,.

* The distributed system evolves as a series of transitions
between global states Sy, S, ...



Global State Predicates

* A global-state-predicate Is a property that is true or false
for a global state.
* |s there a deadlock!?
* Has the distributed algorithm terminated?

* Two ways of reasoning about predicates (or system
properties) as global state gets transformed by events.
* Liveness
* Safety



Liveness

* Liveness = guarantee that something good will happen,
eventually

* Examples:
* A distributed computation will terminate.
* "Completeness” in fallure detectors: the failure will be detected.
* All processes will eventually decide on a value.

* A global state S, satisfies a liveness property P iff:
* For all linearizations starting from Sy, P Is true for some state S,
reachable from S,

* liveness(P(Sy)) = VL0Le linearizations from Sy, L passes through a
S, & P(S)) = true



Liveness Example

If predicate Is true only in the marked states, does It satisfy liveness!
Yes
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Liveness

* Liveness = guarantee that something good will happen,
eventually

* Examples:
* A distributed computation will terminate.
* "Completeness” in fallure detectors: the failure will be detected.

* All processes will eventually decide on a value.

* A global state S, satisfies a liveness property P iff:
* liveness(P(Sy)) = VL0Le linearizations from Sy, L passes through a
S| & P(5)) = true
* For any linearization starting from S, P Is true for some state S,
reachable from S,



Safety

* Safety = guarantee that something bad will never happen.

* Examples:
* There is no deadlock in a distributed transaction system.

* "Accuracy’ in fallure detectors: an alive process is not detected as
falled.

* No two processes decide on different values.

* A global state S, satisfies a safety property P iff:

* For all states S reachable from S, P(S) I1s true.
* safety(P(Sy)) = VS reachable from S, P(S) = true.



Safety Example

If predicate Is true only in the mar|<ed states, does It satisfy safety!
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Safety Example

If predicate Is true only in the unmarked states, does it satisfy safety?
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Safety

* Safety = guarantee that something bad will never happen.

* Examples:
* There is no deadlock in a distributed transaction system.

* "Accuracy’ in fallure detectors: an alive process is not detected as
falled.

* No two processes decide on different values.

* A global state S, satisfies a safety property P iff:
* safety(P(Sy)) = VS reachable from S, P(S) = true.
* For all states S reachable from S, P(5) I1s true.



Liveness Example

Technically satisfies liveness, but difficult to capture or reason about.
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Stable Global Predicates

* once true, stays true forever afterwards (for stable liveness)



Stable Global Predicates

It predicate is true only in the marked states, Is 1t stable?
No
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Stable Global Predicates

It predicate is true only in the marked states, Is 1t stable?
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Stable Global Predicates

* once true for a state S, stays true for all states reachable from
S (for stable liveness)

* once false for a state S, stays false for all states reachable from
S (for stable non-safety)
* Stable liveness examples (once true, always true)
* Computation has terminated.

* Stable non-safety examples (once false, always false)
* There Is no deadlock.

* An object I1s not orphaned.
* All stable global properties can be detected using the Chandy-
Lamport algorithm.



Global Snapshot Summary

* The ability to calculate global snapshots in a distributed
system Is very important.

* But don't want to interrupt running distributed application.
* Chandy-Lamport algorithm calculates global snapshot.

* Obeys causality (creates a consistent cut).

* Can be used to detect global properties.

* Safety vs. Liveness.



Rest of today’s agenda

* Multicast
* Chapter 154

* Goal: reason about desirable properties for
message delivery among a group of processes.



Communication modes

e Unicast
* Messages are sent from exactly one process to one process.

* Broadcast
* Messages are sent from exactly one process to all processes on
the network.
* Multicast
* Messages broadcast within a group of processes.

* A multicast message Is sent from any one process to a group of
processes on the network.




Where is multicast used?

* Distributed storage
* Write to an object are multicast across replica servers.

* Membership information (e.g., heartbeats) is multicast across all
servers In cluster.

* Online scoreboards (ESPN, French Open, FIFA World Cup)

* Multicast to group of clients interested in the scores.

* Stock Exchanges
* Group Is the set of broker computers.



Communication modes

e Unicast

* Messages are sent from exactly one process to one process.

* Best effort: if a message is delivered it would be intact; no reliability
guarantees.

* Reliable: guarantees delivery of messages.
* In order: messages will be delivered in the same order that they are sent.
* Broadcast
* Messages are sent from exactly one process to all processes on the
network.
* Multicast
* Messages broadcast within a group of processes.

* A multicast message is sent from any one process to the group of
processes on the network.

* How do we define (and achieve) reliable or ordered multicast? (next class)



