Distributed Systems

CS425/ECE428

Feb 6 2023

Instructor: Radhika Mittal

Logistics Related

* HW?2 release date has been pushed to Mon, Feb 20™.
Accordingly, its due date has been pushed to Mon. Mar 6™,

* MPO due on Wednesday.

* Note about exams on CampusWire:
* Midterm: Mar 22-24, Finals: May 4
* Reservation via Prairie Test.
* You can reserve a slot for Midterms starting Mar 2nd
* If you need DRES accommodations, please upload your Letter of
Accommodations on the CBTF website.

Today’s agenda

* Global State
e Chapter [4.5

* Goal reason about how to capture the state across all processes of
a distributed system without requiring time synchronization.

* Multicast (if time)

Recap

* State of each process (and each channel) in the system at a
given instant of time.,
* Difficult to capture -- requires precisely synchronized time.

* Relax the problem: find a consistent global state.

* Chandy-Lamport algorithm to calculate global state.
* Obeys causality (creates a consistent cut).
* Does not interrupt the running distributed application.
* Can be used to detect global properties.

More notations and definitions

* history(p) = h.=<ef%el,... >
* global history: H = Ui (h,)

* A run is a total ordering of events in H that Is consistent
with each h/'s ordering.

* A linearization is a run consistent with happens-before
(—) relation in H.

Example

P4
my
“o) -~ Physical

P2 0 1 time

Orderatp;:<elel e?e?> Orderatp, < ezo, e, e,’>
Causal order across p; and p,: <e/% ¢/l e,0 e, e,%,e°>

Run:<e%ele?e?, 06 2>
Linearization: < e\% ¢,!,e,%,e,% ¢,' €,%2,¢3>

Example

P4
my
“o) -~ Physical

P2 0 1 time

Orderatp;:<elel e?e?> Orderatp, < ezo, e, e,’>
Causal order across p; and p,: <e/% ¢/l e,0 e, e,%,e°>

Run: < e|0, e||, e|2, e|39e20a e2| e22>
Linearization: < e /% e ', e % e)% e, e,%2,¢,%>

Example

P4
my
“o) -~ Physical

P2 0 1 time

Orderatp;:<elel e?e?> Orderatp, < ezo, e, e,’>
Causal order across p; and p,: <e/% ¢/l e,0 e, e,%,e°>

< eIO’ e I’ e20’ e2I : eIZ’ 622, e|3 >

Example

P4
my
“o) -~ Physical

P2 0 1 time

Orderatp;:<elel e?e?> Orderatp, < ezo, e, e,’>
Causal order across p; and p,: <e/% ¢/l e,0 e, e,%,e°>

<elelele,, e?e,?, e3> Linearization
<ebe el el e?e’ e3>

Example

P4
my
“o) -~ Physical

P2 0 1 time

Orderatp;:<elel e?e?> Orderatp, < ezo, e, e,’>
Causal order across p; and p,: <e/% ¢/l e,0 e, e,%,e°>

<elelele,, e?e,?, e3> Linearization
<ebe e0e!e?e? e3> Notevenarun

More notations and definitions

* history(p) = h.=<ef%el,... >
* global history: H = Ui (h,)

* A run is a total ordering of events in H that Is consistent
with each h/'s ordering.

* A linearization is a run consistent with happens-before
(—) relation in H.

* Linearizations pass through consistent global states.

Example

“o) -~ Physical

0 1 2 time
€ € e

P2

Orderatp;:<eel e?e?> Orderatp,;<eV’ele?>
Causal order across p; and p,: <e/% ¢/l e,0 e, e,%,e°>

Linearization:< e\% ¢ 'le, %, e, ¢,' e,2,¢3>

Example

0 1 2 3
e, e e, e,
@ @ @ >
P4
my m,
\ [
“o @ -~ Physical
P2 i
0 1 p) ime
€o €o €o

Orderatp;:<eel e?e?> Orderatp,;<eV’ele?>
Causal order across p, and p,: <e\% ¢!, e)% e, e,2,¢3>

Linearization: < e|°, e |, e|2162°, e2' e22,e|3 >

Example

0 1 2 3
e, e e, e,
@ @ @ >
P4
my m,
“o @ -~ Physical
P2 i
0 1 p) ime
€o €o €o

Orderatp;:<eel e?e?> Orderatp,;<eV’ele?>
Causal order across p, and p,: <e\% ¢!, e)% e, e,2,¢3>

Linearization:< e /% ¢!, e,%, &,%e,' e,2,¢,°>

Example

0 1 2 3
e, e, e, e,
@ @ @ >
P4
\ \ m
p ~0) -~ Physical
2 0 1 \) time
€o eo)

Orderatp;:<eel e?e?> Orderatp,;<eV’ele?>
Causal order across p, and p,: <e\% ¢!, e)% e, e,2,¢3>

Linearization:< e % ¢,!,e,%, &% ¢,'|e,%, ¢, >

Example

“o) -~ Physical
0 1 2 \ time
€o eo)
Orderatp;:<eel e?e?> Orderatp,;<eV’ele?>
Causal order across p, and p,: <e\% ¢!, e)% e, e,2,¢3>

P2

Linearization:< e/% ¢!, e/, &% &,/ ezzleﬁ >

Example

0 1 2 3
e, e, e, e
@ @ o >
P4 \
mjy m,
o
0 1 2
€eo

=~ Physical
Po y

time
€ e

Orderatp;:<eel e?e?> Orderatp,;<eV’ele?>
Causal order across p, and p,: <e\% ¢!, e)% e, e,2,¢3>

Linearization:< e /% ¢,!,e,%, &% ¢,' ,2, ¢

Example

0 1 2 3
e, e, e, e,
® @ o >
P+
p ki) ~ Physical
2 0 \ 1 o time
€o €»o €o

Orderatp;:<eel e?e?> Orderatp,;<eV’ele?>
Causal order across p, and p,: <e\% ¢!, e)% e, e,2,¢3>

Linearization:< e\% e ', e /% e, e,' e,2,¢3>
Linearization <e%e,',e’)e,',e%e,2,e3>

More notations and definitions

* Linearizations pass through consistent global states.

* A global state S, is reachable from global state S, if there Is
a linearization that passes through S. and then through S,.

* [he distributed system evolves as a series of transitions
between global states 5y, 5 ...

State Transitions: Example

p0 {1,0}

C,

q0 {0,1}

pl {2,0} p2 {3,0}
Py o

\J \J

'
'
v M
.

q13{2,2} q2 {2.3}
.\

7/ \J

Many linearizations:

<p0,pl,p2,q0,ql,g2>
<p0,q0,pl,ql,p2,q2>
<q0,p0,pl,ql,p2,q2 >
<q0,p0,pl,p2,ql,g2 >

e (Causal order:

pO = pl —p2
q0 - gl - g2

p0 »pl »qgl - g2

e Concurrent:

pO

o]
p2

q0
qo
q0,p2 || gql,p2 || g2

State Transitions: Example

Execution Lattice. Each path represents a linearization.

p0 pl p2
start »

q0 q0 q0 q0
@ p0 @ p1 @ p2 @
ql al
p0 {1,0} pl {2,0} p2 {3,0} q2
G S © g2 -
q0 {0,1} ql“:,{2,2} a2 {2.3}
.\ ya\

O \J \J

State Transitions: Example

Execution Lattice. Each path represents a linearization.

— N S
-

- =~
- p0 pl p2 \™ ~
start » N
N\
q0 q0 q0 q0 N\
\
OxdOxdOxdON
p0 pl p2 N
1 \
1 RN
\
p2 \
(on)— (o) s
p0 {1,0} pl {20} p2 {3,0} q2\
€, S © > q2 LR |

q0 {0,1} ql“:,{2,2} q2 {2,3}
Fa\

C \J \J

State Transitions: Example

Execution Lattice. Each path represents a linearization.

p0 pl p2
start »

\ q0 q0 q0 q0
\
\
\ p0 pl p2
~ —_— —— W
~
N p2
N\
0 {1,0} 1{2,0} 2 {3,0}
C—— & ; \ q2 a2
\
\ p2
~
A} - _>
q0 {0,1} ql“:,{2,2} q2 {2,3}
Fa\ Fa\

C \J \J

State Transitions: Example

Execution Lattice. Each path represents a linearization.

(o) (o) (o) (o
start »
- oy,

\ q0 q0

~

q0 q0
-~ — oy
. p0 ' pl @ p2 @
gl
\ 1
~
— P2 -
p0 {1,0} pl {20} p2 {3,0} q2\
G S © q2 o
\
q0 {0,1} ql“:,{2,2} q2 {2,3}
FaY ya\

C \J \J

State Transitions: Example

- . gy,
_—

\
\
start »
\
C ON
\ ‘ @ @ p2
~
p0 {1 0} pl {2 0} p2 {3 0}
q0 {0 1} q1q{2 2} q2 {2,3}
Fa\

State Transitions: Example

p0 {1,0} pl {2,0} , p2 {3,0}
7\ 7\

C,

State Transitions: Example

(o)== (oo Com}—2 (o)
start »
q0 0 q0
pl

P
C q0
@ PO . @ p2 @
1

p0 {10} pl {2,0} \pz (3.0}
7\ 7\

€, \w \w >
q0 {0,1} q13{2,2} q2 {2,3}
C FaY ya\ I

\J \J \ -

State Transitions: Example

q0

P
q0
. . pl @ p2 @
1

p0 {1,0} pl {20} p2 {3.0} ‘

© & o >
q0 {0,1} al¥{2,2} qzh
€, S | »

.
\J

(o)== (oo Com}—2 (o)
start »
q0 q0
p0

More notations and definitions

* A run is a total ordering of events in H that Is consistent
with each h/'s ordering.

* A linearization is a run consistent with happens-before (—)
relation in H.

* Linearizations pass through consistent global states.

* A global state S, Is reachable from global state S, if there Is
a linearization that passes through S. and then through §,.

* The distributed system evolves as a series of transitions
between global states Sy, S, ...

Global State Predicates

* A global-state-predicate Is a property that is true or false
for a global state.
* |s there a deadlock!?
* Has the distributed algorithm terminated?

* Two ways of reasoning about predicates (or system
properties) as global state gets transformed by events.
* Liveness
* Safety

Liveness

* Liveness = guarantee that something good will happen,
eventually

* Examples:
* A distributed computation will terminate.
* "Completeness” in fallure detectors: the failure will be detected.
* All processes will eventually decide on a value.

* A global state S, satisfies a liveness property P iff:
* For all linearizations starting from Sy, P Is true for some state S,
reachable from S,

* liveness(P(Sy)) = VL0Le linearizations from Sy, L passes through a
S, & P(S)) = true

Liveness Example

If predicate Is true only in the marked states, does It satisfy liveness!
Yes

CadCad D ad
start »
q0 q0 q0 q0

ql gl

(g} (o)
p0 {1,0} pl {2,0} p2 {3,0}

€] S S > q2

q0 {0,1} ql“:,{2,2} a2 {2.3}
.\

G © S

Liveness Example

If predicate Is true only in the marked states, does It satisfy liveness!
No

CadCad Oend D
start »
q0 q0 q0 q0

ql gl

p0 {1,0} pl {2,0} p2 {3,0}

€] S S > q2

q0 {0,1} ql“:,{2,2} a2 {2.3}
.\

G © S

Liveness Example

If predicate Is true only in the marked states, does It satisfy liveness!

Yes
CadPadOmd®
start »
q0 q0 q0 q0

p0 {1,0} pl {2,0} p2 {3,0}

€] S S > q2

q0 {0,1} ql“:,{2,2} a2 {2.3}
.\

G © S

Liveness

* Liveness = guarantee that something good will happen,
eventually

* Examples:
* A distributed computation will terminate.
* "Completeness” in fallure detectors: the failure will be detected.

* All processes will eventually decide on a value.

* A global state S, satisfies a liveness property P iff:
* liveness(P(Sy)) = VL0Le linearizations from Sy, L passes through a
S| & P(5)) = true
* For any linearization starting from S, P Is true for some state S,
reachable from S,

Safety

* Safety = guarantee that something bad will never happen.

* Examples:
* There is no deadlock in a distributed transaction system.

* "Accuracy’ in fallure detectors: an alive process is not detected as
falled.

* No two processes decide on different values.

* A global state S, satisfies a safety property P iff:

* For all states S reachable from S, P(S) I1s true.
* safety(P(Sy)) = VS reachable from S, P(S) = true.

Safety Example

If predicate Is true only in the mar|<ed states, does It satisfy safety!

start »
q0 q0 q0

p0 {1,0} pl {2,0} p2 {3,0}

€] S S > q2

q0 {0,1} ql“:,{2,2} a2 {2.3}

Safety Example

If predicate Is true only in the unmarked states, does it satisfy safety?

Yes
start »
q0 q0 q0 q0

p0 {1,0} pl {2,0} p2 {3,0}

G S S > q2

q0 {0,1} ql“:,{2,2} a2 {2.3}
.\

G © S/

Safety

* Safety = guarantee that something bad will never happen.

* Examples:
* There is no deadlock in a distributed transaction system.

* "Accuracy’ in fallure detectors: an alive process is not detected as
falled.

* No two processes decide on different values.

* A global state S, satisfies a safety property P iff:
* safety(P(Sy)) = VS reachable from S, P(S) = true.
* For all states S reachable from S, P(5) I1s true.

Liveness Example

Technically satisfies liveness, but difficult to capture or reason about.

q0 q0

ql gl

p0 {1,0} pl {2,0} p2 {3,0}

€] S S > q2

(o) (o= (oot (Gony
start »
q0 q0

q0 {0,1} ql“:,{2,2} a2 {2.3}
.\

G © S

Stable Global Predicates

* once true, stays true forever afterwards (for stable liveness)

Stable Global Predicates

It predicate is true only in the marked states, Is 1t stable?
No

p0 pl p2
start »

q0 q0 q0 q0

ql gl
p0 {1,0} pl {2,0} p2 {3,0}

€] S S > q2

g2

q0 {0,1} ql“:,{2,2} a2 {2.3}
.\

G © S/

Stable Global Predicates

It predicate is true only in the marked states, Is 1t stable?

No
CadPadOmd®
start »
q0 q0 q0 q0

p0 {1,0} pl {2,0} p2 {3,0}

€] S S > q2

q0 {0,1} ql“:,{2,2} a2 {2.3}
.\

G © S/

Stable Global Predicates

It predicate is true only in the marked states, Is 1t stable?

Yes
CadPadOmd®
start »
q0 q0 q0 q0
ql

gl
> (o)
p0 {1,0} pl {2,0} p2 {3,0}

€] S S > q2

q0 {0,1} ql“:,{2,2} a2 {2.3}
.\

G © S

Stable Global Predicates

* once true for a state S, stays true for all states reachable from
S (for stable liveness)

* once false for a state S, stays false for all states reachable from
S (for stable non-safety)
* Stable liveness examples (once true, always true)
* Computation has terminated.

* Stable non-safety examples (once false, always false)
* There Is no deadlock.

* An object I1s not orphaned.
* All stable global properties can be detected using the Chandy-
Lamport algorithm.

Global Snapshot Summary

* The ability to calculate global snapshots in a distributed
system Is very important.

* But don't want to interrupt running distributed application.
* Chandy-Lamport algorithm calculates global snapshot.

* Obeys causality (creates a consistent cut).

* Can be used to detect global properties.

* Safety vs. Liveness.

Rest of today’s agenda

* Multicast
* Chapter 154

* Goal: reason about desirable properties for
message delivery among a group of processes.

Communication modes

e Unicast
* Messages are sent from exactly one process to one process.

* Broadcast
* Messages are sent from exactly one process to all processes on
the network.
* Multicast
* Messages broadcast within a group of processes.

* A multicast message Is sent from any one process to a group of
processes on the network.

Where is multicast used?

* Distributed storage
* Write to an object are multicast across replica servers.

* Membership information (e.g., heartbeats) is multicast across all
servers In cluster.

* Online scoreboards (ESPN, French Open, FIFA World Cup)

* Multicast to group of clients interested in the scores.

* Stock Exchanges
* Group Is the set of broker computers.

Communication modes

e Unicast

* Messages are sent from exactly one process to one process.

* Best effort: if a message is delivered it would be intact; no reliability
guarantees.

* Reliable: guarantees delivery of messages.
* In order: messages will be delivered in the same order that they are sent.
* Broadcast
* Messages are sent from exactly one process to all processes on the
network.
* Multicast
* Messages broadcast within a group of processes.

* A multicast message is sent from any one process to the group of
processes on the network.

* How do we define (and achieve) reliable or ordered multicast? (next class)

