Distributed Systems

CS425/ECE428

Feb | 2023

Instructor: Radhika Mittal



Logistics Related

e HW/ released! Due on Feb |5t

* You should be able to solve the first three questions right-away.

* You should be able to solve the fourth question by the end of this
class (hopetfully).

* You should be able to solve the fifth question by the end of next
class.

* Newly registered students:

* Please make sure you have access to Campuswire and Gradescope

* If you are in 4 credits, make sure you have been allocated a VM
cluster for the MPs.

* Email Manoj (netid: gmké) to get the required access.

* Please say your name before speaking up in class ©



Recap: Logical timestamps

* How to reason about ordering of events across processes
without synchronized clocks?

* Happened-before Relationship
* Lamport Logical Clock

e VVector Clock



Today’s agenda

* Global State
* Chapter 14.5
* Goal: reason about how to capture the state across all

processes of a distributed system without requiring time
synchronization.



Process, state, events

* Consider a system with n processes: <py, P P3s - - -+ Pp>>

n

* Fach process p; Is associated with state s..
e State includes values of all local variables, affected files, etc.

* Each channel can also be associated with a state.
* Which messages are currently pending on the channel.
* Can be computed from process’ state:
* Record when a process sends and receives messages.
* if p; sends a message that p; has not yet received, it is pending
on the channel.

* State of a process (or a channel) gets transformed when an event
occurs. 3 types of events:
* local computation, sending a message, receiving a message.



Capturing a global snapshot

* Useful to capture a global snapshot of the system:
* Checkpointing the system state.
* Reasoning about unreferenced objects (for garbage
collection).
* Deadlock detection.
* Distributed debugging.



Capturing a global snapshot

* Global state or global snapshot Is state of each process
(and each channel) in the system at a given instant of time.
* Difficult to capture a global snapshot of the system.

* Strawman:
* Fach process records its state at 2:05pm.
* We get the global state of the system at 2:05pm.
* But precise clock synchronization is difficult to achieve.

* How do we capture global snapshots without
precise time synchronization across processes?



Some more notations and definitions

* State of a process (or a channel) gets transformed when an event
occurs.

* 3 types of events:
* local computation, sending a message, receiving a message.

* e" is the n'" event at p.



Some more notations and definitions

 Fora process p;, where events €%, e/, ... occur:
history(p) = h, =<ef%e/, ... >
prefix history(p¥) = hk=<e0e!,...,ek>

s p/’s state immediately after k" event.
* For a set of processes <py, Pys P3» - -+ Pn:

global history: H = Ui, (h))



Some more notations and definitions

 Fora process p;, where events €%, e/, ... occur:
history(p) = h, =<ef%e/, ... >
prefix history(p¥) = hk=<e0e!,...,ek>

s p/’s state immediately after k" event.
* For a set of processes <py, Pys P3» - -+ Pn:

global history: H = Ui, (h))



Some more notations and definitions

 Fora process p;, where events €%, e/, ... occur:
history(p) = h, =<ef%e/, ... >
prefix history(p¥) = hk=<e0e!,...,ek>
s p/’s state immediately after k" event.
* For a set of processes <py, Pys P3» - -+ Pn:
global history: H = Ui, (h))
acutCcH=hsUh%U...UhFS%
the frontier of C = {e%,i = |,2, ... n}
global state S that corresponds to cut C = U, (s:%)



Example: Cut

0 1 2 3
e, \ e e \ e
® @ o >
P+
My m,
e ° . Physical
P2 time
0 1 2
€o €o €o
Ca Cg
Cr<ele0l> Ci<elelle?ele) e?>

Frontier of C,: Frontier of Cg:



Some more notations and definitions

 Fora process p;, where events €%, e/, ... occur:
history(p) = h, =<ef%e/, ... >
prefix history(p¥) = hk=<e0e!,...,ek>
s p/’s state immediately after k" event.
* For a set of processes <py, Pys P3» - -+ Pn:
global history: H = Ui, (h))
acutCcH=hsUh%U...UhFS%
the frontier of C = {e%,i = |,2, ... n}
global state S that corresponds to cut C = U, (s:%)



Consistent cuts and snapshots

* A cut Cis consistent if and only if
Ve e C(ff > ethenf e C)



Example: Cut

0 1 2 3
e, \ e e \ e
® @ o >
P1
My m,
e ° . Physical
P2 i
0 1 2 ime
€o \ €o €o \
Ca Cg
Cr<ele0l> Ci<elelle?ele) e?>
Frontier of C,:{e |, e,% Frontier of C;: {e,? e,%}

Inconsistent cut. Consistent cut.



Consistent cuts and snapshots

* A cut Cis consistent if and only if
Ve e C(ff > ethenf e C)

* A global state S is consistent if and only if it corresponds
to a consistent cut.



How to capture global state?

* |deally: state of each process (and each channel) in the system at a given
instant of time.
* Difficult to capture -- requires precisely synchronized time.

* Relax the problem: find a consistent global state.
* For a system with n processes <p,, py, P3, - - -+ P>, Capture the state
of the system after the ¢ ™ event at process p.
* State corresponding to the cut defined by frontier events
{eG fori=12,...n}k
* We want the state to be consistent.
* Must correspond to a consistent cut.

How to find a consistent global state that corresponds to a
consistent cut ?



Chandy-Lamport Algorithm

* Goal:
* Record a global snapshot
* Process state (and channel state) for a set of processes.
* [he recorded global state Is consistent.

 |dentifies a consistent cut.

* Records corresponding state locally at each process.



Chandy-Lamport Algorithm

* System model and assumptions:

* System of n processes: <py, Pys P3s « -« P~

e There are two uni-directional communication channels between
each ordered process pair: p;to p; and p; to p;

* Communication channels are FIFO-ordered (first in first out).
* if p; sends m before m’ to p;, then p; receives m before m'.

* All messages arrive intact, and are not duplicated.
* No fallures: nerther channel nor processes fall.



Chandy-Lamport Algorithm

* Requirements:

* Snapshot should not interfere with normal application actions,
and 1t should not require application to stop sending messages.

* Any process may Initiate algorithm.



Chandy-Lamport Algorithm Intuition

* First, initiator p;;
* records Its own state.
* creates a special marker message.
* sends the marker to all other process.

* When a process receives a marker.
e records its own state.



Chandy-Lamport Algorithm Intuition

* First, initiator p;;
* records Its own state.
* creates a special marker message.
* sends the marker to all other process.

* When a process receives a marker.
e records its own state.



Chandy-Lamport Algorithm Intuition

m \ /ﬂz

Cut frontier: {e,?, e,?}

~ Physical
time




Chandy-Lamport Algorithm Intuition

* First, initiator p;;
* records Its own state.
* creates a special marker message.
* sends the marker to all other process.

* When a process receives a marker.
e records its own state.

This captures the local state at each process.
How do we ensure the state is consistent?
What about the channel state?



Chandy-Lamport Algorithm Intuition

* First, initiator p;;
* records Its own state.
* creates a special marker message.
* sends the marker to all other process.

* When a process receives a marker.

e |f marker is received for the first time.
* records its own state.
* sends marker on all other channels.

Leads to a consistent cut (we'll get back to it)
What about the channel state’



Chandy-Lamport Algorithm Intuition

” ] W/
e / 2 / Physical

0 time

Cut frontier: {e,?, e,?}



Chandy-Lamport Algorithm Intuition

P1 ’
9 A/ -~ Physical

0 time

Cut frontier: {e,?, e,?}



Chandy-Lamport Algorithm Intuition

* First, initiator p;;

records Its own state.

creates a special marker message.

sends the marker to all other process.

start recording messages received on other channels.
* until a marker is received on a channel.

* When a process receives a marker.

e [f marker is received for the first time.
* records its own state.
* sends marker on all other channels.
* start recording messages received on other channels.

e until a marker is received on a channel.



Chandy-Lamport Algorithm

* First, initiator p;;
* records Its own state.

* creates a special marker message.
* for j=1 to n except i
* p; sends a marker message on outgoing channel ¢;
* starts recording the incoming messages on each of the
incoming channels at p;: ¢; (for j=1 to n except ).



Chandy-Lamport Algorithm

Whenever a process p; receives a marker message on an incoming
channel ¢,
* If (this is the first marker p; is seeing)

* p, records Its own state first

* marks the state of channel ¢,; as “empty”

* forj=1 to n except |

* p; sends out a marker message on outgoing channel ¢;
* starts recording the incoming messages on each of the incoming
channels at p;: ¢; (for j=1 to n except i and k).

* else // already seen a marker message

* mark the state of channel ¢, as all the messages that have arrived
on it since recording was turned on for ¢



Chandy-Lamport Algorithm

The algorithm terminates when

* All processes have received a marker
* To record their own state
* All processes have received a marker on all the (n-/) incoming
channels
* To record the state of all channels



Example

B D E
Pl A
Time
P2 G >
P3 ® !
®

Instruction or Step
~ Message




Example

B
Pl 0

P3




Example

B
Pl 0

P2 k 3

.



Example

B
Pl 0

P2 k 3

.



Example

B
Pl 0

P2 k 3

.



Example

Cy €3y C31
B D E

Pl o S

Time

F
P9 E G .
P3 I‘ J
Ci3 Cs;
C23



Example

Cy €3y C31
B D E
Pl o S
Time
F
P2 G
P3 I‘ J
Ci3 - ¢,



Example

Cy €3y C31
B D E

p — S

Time

F
P2 G >
P3 Iy J
Ci3 €32 .. Ci2



Example

Ca
€,,;€3, C31
B D E

Pl o S

Time

F

P9 E G .
P3 H - J

C

Cis C32 . 12



Example

C2i
€,,;€3, C31
B D E
Pl s S
Time
F

P2 G >
P3 Iy J

C32 Ciy

Ci3 €5
€23



Example

%)
€,,;€3, C31
B D E
Pl o S
Time
F

P9 E G .
P3 I‘ J

C3)

Ci3 €5 =
€23

Algorithm has terminated!



Example

C2
C3y
A B < C D E
P -
==/ Time
E P G/ ¢
J 12
P2 7
/’ C32
> 4
o
’r/.’ J
7z 1
P3 v, PS
C3
Ci3

Frontier for the resulting cut:
{B, G, H}

Channel state for the cut:
Only c,, has a pending message.




Example

Cyi
C3y
B D E
Pl o S
Time

P2 A G ik :

C32
P3 H - J

C23

Global snapshots pieces can be
collected at a central location.



Chandy-Lamport Algorithm: Properties

* Any run of the Chandy-Lamport Global Snapshot
algorithm creates a consistent cut.

* Let ; and g, be events occurring at p; and p;, respectively
such that

*e > e (ehappensbefore e)

j
* [ he snapshot algorithm ensures that
if e is in the cut then e is also In the cut.

* That is:if e, = < p; records its state>, then
it must be true that e, = <p. records its state>.



Chandy-Lamport Algorithm: Properties

* If & = < p, records its state>, then
it must be true that e, = <p. records its state>.

* By contradiction, suppose e; 2 < p; records its state>, and
<p, records its state> 2> e,

<

Pj

Pk ®
\n,
[ ]




Chandy-Lamport Algorithm: Properties

* If & = < p, records its state>, then
it must be true that e, = <p. records its state>.

* By contradiction, suppose e; 2 < p; records its state>, and
<p, records its state> 2> e,

<

Pj

Pk ®
\n,
[ ]




Chandy-Lamport Algorithm: Properties

* If & = < p, records its state>, then
it must be true that e, = <p. records its state>.

* By contradiction, suppose e; 2 < p; records its state>, and
<p, records its state> 2> e,

<

Pj

Px must reach p, before m *
due to FIFO order. m’
)




Chandy-Lamport Algorithm: Properties

* If & = < p, records its state>, then
it must be true that e, = <p. records its state>.

* By contradiction, suppose e; 2 < p; records its state>, and
<p, records its state> 2> e,

<

e e >
Pi °
m Time
Py o ®
XY
must reach p; before m’ e

P; due to FIFO order S




Chandy-Lamport Algorithm: Properties

* If & = < p, records its state>, then
it must be true that e, = <p. records its state>.

* By contradiction, suppose e; 2 < p; records its state>, and
<p, records its state> 2> e,

* Consider the path of app messages (through other
processes) that go from e; to e;.

* Due to FIFO ordering, markers on each link in above path
will precede regular app messages.

* Thus, since <p; records its state> =2 e, , it must be true that

p; received a marker before e;

e Thus e s not In the cut => contradiction.



Global Snapshot Summary

* The ability to calculate global snapshots in a distributed
system Is very important.

* But don't want to interrupt running distributed application.
* Chandy-Lamport algorithm calculates global snapshot.
* Obeys causality (creates a consistent cut).

* Can be used to detect global properties.
* Safety vs. Liveness (next class)



