Distributed Systems

CS425/ECE428

May [t 2023

Instructor: Radhika Mittal



Logistics

* Final exam on: May 4-1 |
* Reservation via Prairie Test.
* Same format as your midterm, but longer.
* Unless you have approved accommodations, you have | hour
50mins to complete the exam from the start time.
* Comprehensive: includes everything covered in the course.
* Higher weightage assigned to materials that were not covered
in midterm syllabus (i.e. Raft and beyond).



PrairieLearn

e Exam format:

* Multiple choice questions and True/False

* For questions with multiple choices correct, there is negative marking
for selecting incorrect choices to discourage guesswork (the minimum
score per question is capped at zero).

* Numerical questions

* No step marking!

* |f a subpart is not attempted or has invalid format, entire
question will be left ungraded.



Exam Syllabus

* All topics covered so far

e Midterm content

* Post-midterm content (higher weightage, > 65%)
* Starting from Raft, up until distributed datastores.



Exam Syllabus

* Midterm content (included in finals)
* System model and Failures
* Fallure Detection
* Clock Synchronization
* Event ordering and Logical Timestamps
* Global Snapshot
* Multicast
* Mutual Exclusion
* Leader Election
* Synchronous Consensus and Paxos



Exam Syllabus

* Remaining topics (included in finals)
* Raft
* Blockchains
* Transaction Processing and Concurrency Control
* Distributed Transactions
+Bdernal-consisteneyand-opanner
* Distributed Hash Tables (Chord)
* MapReduce
* Distributed Datastores



Disclaimer

* Quick reminder of the relevant concepts we
covered In class.

e Not meant to be an exhaustive review!

* Go over the slides for each class.
* Refer to lecture videos and textbook to fill in gaps In
understanding.



System model and Failures

* What is a distributed system!?

* Relationship between processes

* Synchronous and Asynchronous Systems
* Types of failures



Failure Detection

* Ping-ack and Heartbeats
* what are appropriate timeout values!
* Correctness of fallure detection algorithms
* accuracy and completeness
* synchronous vs asynchronous systems
* Performance of failure detection algorithms
* bandwidth usage and worst-case failure detection times

* Extending to a system of N processes.



Clock Synchronization

* Clock skew and drift rates
* External vs Internal Synchronization
* Clock synchronization in synchronous systems

* Clock synchronization in asynchronous systems
* Cristian Algorithm
* Berkeley Algorithm
* NTP symmetric mode synchronization



Event ordering and Logical Timestamps

* Happened before relationship
* Lamport Clocks
* Vector Clocks



Global Snapshots

* Process and channel states

* Consistent cuts

* Chandy-Lamport algorithm

 Runs and Linearizations

* Safety and liveness properties, stable global predicates



Global Snapshots

P1

P2

P3

P4

6 7 8 9 10 11 12 13 14 15 16 17

Set of consistent cuts?



Global Snapshots

P1

P2

P3

P4

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Incoming channels at PI?



Multicast

e Basic multicast
e Reliable multicast
e Ordered multicast: FIFO, Causal, Total

* Implementing FIFO ordered multicast
* Implementing causal ordered multicast
* Implementing total ordered multicast

* centralized (sequencer) algorithm
* |SIS algorithm



Mutual Exclusion

* Central server algorithm

* Ring-based algorithm

* Ricart Agrawala algorithm

* Maekawa algorithm (breaking deadlock not in your syllabus)

* Analyzing these algorithms:
* Safety, liveness, and ordering
* Client delay, Synchronization delay, and Bandwidth.




| eader Election

* Ring election algorithm (Chang and Roberts algorithm)

* Bully algorithm

* Analyzing these algorithms:
* Safety and liveness for synchronous and asynchronous systems
* Turnaround time and bandwidth



Bully Algorithm

D Q Number of messages sent by P2?

@ O Number of messages received by P2?

@)

1. P1 initiates election

Turnaround time?
To begin with,

only Pl knows of P5’s failure.
No other failures.



Synchronous vs Asynchronous Consensus

* Round-based algorithm for synchronous consensus
* how many rounds are needed to tolerate up to f failures!

* Impossibility of consensus in asynchronous systems
* cannot achieve both safety and liveness for consensus in
an asynchronous system.
* proof not In your syllabus.



Paxos

* Three roles: proposer, acceptor; learner.

* Phase |: prepare request and response.
* When will an acceptor respond with a promise!

* What are the contents of the promise!

* Phase 2: accept request (if applicable)
* When will an accept request be sent?

* What will be the proposed value?

* When is a value implicitly decided?! How Is the value shared

with the learners! What Is required to guarantee safety!?



Paxos

& P1
(7))
o J
o
(@)
s | p2
) P3
o
1=y
3 - P4
<

PS5

Accept #2
Pre;pareé #2 Proposed value = 10 .
4 T~
/ SN
|
,.' I \{'rep*}# R
1! \ SN
|
N TS
! \\\\\; —~ X
|
! AN R
I N\ \\

P2 intends to propose a value |5.
Will P2 send an accept request? What value will it propose!?




Paxos

& P1
(7))
o J
o
(@)
s | p2
) P3
o
1=y
3 - P4
<

PS5

Accept #2
Prepare #2 Proposed value = 10 ,
/E§
I _
I h
7y ; .

vl
(o)}
~
(00}
(o}
o

How about now!?

[N



Acceptors

Paxos

Proposers

r Accept #7
P1 P“’-?Par% #7 ‘Prof osed value = 10 .
y
I S~
B , -
I
P2 ,.' I \{'rep*}# >
' \\
L /
~ I ~_
N
! NN ‘
P3 T N\ N >
I
| \\\ N
! >
P4 ) <
P5 R

How about now!?




Raft

* Algorithm for log consensus. Designed for simplicity.

* What are the guarantees provided by Raft and how!

* How Is leader elected?
* Under what conditions will a process refuse to grant vote?

* What happens when a leader fails or gets disconnected?
* How are log entries appended?

* What leads to missing / extra entries in a server’s log?

* When can log entries be overwritten!?

* When can log entries be committed!



Raft

* Valid or not!
e SI: 1, 1,1
« S2:1,2,2
e S3:1,2,3



Bitcoin / Blockchains

* How Is a new transaction added to the log!
* How is a block mined, and added to a chain?

 What factors determine the rate at which a block is mined?
* What happens if two nodes mine different versions of a block?

* How Is information propagated in a Bitcoin network?



Transaction Processing

* What are the ACID properties!
* How Is atomicity achieved?
* What does consistency mean in this context?
* What does isolation mean, and how is it achieved?

* What is durability?



Concurrency Control

* What could go wrong If we don't have isolation?
* Lost update problem
* Inconsistent retrieval problem

* What are conflicting operations!
* What is serial equivalence!?

* How can we check if an interleaving is serially equivalent?



Concurrency Control

* Pessimistic Concurrency Control
* Global lock vs per-object locks vs per-object read/write locks
* [wo-phase locking
* Deadlocks

* Optimistic Concurrency Control
* Timestamped ordering



Concurrency Control

T1
read A
read B

write A

read D

write B

12

read D
write C'

read A

write B

write £

* |s this serially equivalent?



Concurrency Control

T1
read A
read B

write A

read D

write B

12

read D

write ('

read A

write B
write £

 \What about this!?

e Can it be achieved with strict two-
phase locking?



Concurrency Control

T1
read A
read B

write A

read D

write B

12

read D

write ('

read A

write B
write £

 \What about this!?

e Can it be achieved with strict two-
phase locking?

* Can it be achieved with timestamp
ordering?



Concurrency Control

T1
read A
read B

write A

read D

write B

12

read D
write C'

read A

write B
write F

 \What about this!?

e Can it be achieved with strict two-
phase locking?

* Can it be achieved with timestamp
ordering?



Distributed Transactions

* Meeting ACID requirements for distributed transaction:
* Two-phase commit for atomicity
* Distributed deadlock detection with two-phase locking.



Distributed Hash Tables (Chord)

* What determines the placement of nodes in a Chord ring
with m-bit key space?
* Which node is responsible for storing a given key!

* What are the routing table entries maintained by each node:
* Finger tables
* 1 successor entries

* What is the key lookup protocol in Chord?

* How does Chord handle churns?
* Stabilization protocol.



MapReduce

* Map: creates intermediate key-value pairs

* Reduce: aggregate by key, and run some computation across
all values for the key.

* A MapReduce chain comprises of multiple map-reduce pairs.

* Allows easier parallelization.
* Multiple map/reduce tasks scheduled in parallel across the servers in
a cluster.

* Barrier between a map stage and a reduce stage.
* No reduce task starts before all map tasks are finished.



Distributed Datastores (Cassandra)

What i1s CAP theorem?

* Can only achieve two out of consistency, avallability, and partition-
tolerance.

* Cassandra: chooses avallability, with eventual consistency
* Key partitioning and replication strategies.
* How is cluster membership updated?
* How Is a write query executed?
* How is a read query executed!
What are the different consistency levels?
* What is hinted-handoff and read repair?



Exam Syllabus

* Pre-midterm * Post-midterm (more weight)

* System model and Failures * Raft

* Fallure Detection * Blockchains

* Clock Synchronization * Transaction Processing and

* Event ordering and Logical Concurrency Control
Timestamps * Distributed Transactions

* Global Snapshot + Bdernal-consisteney-and

* Multicast Spannrer

* Mutual Exclusion * Distributed Hash Tables

* Leader Election * MapReduce

* Synchronous Consensus * Distributed Datastores

e Paxos



Good luck!



