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Logistics

e MP3 has been released!



Distributed Transactions and Replication

* Objects distributed among 000’s cluster nodes for load-balancing
(sharding)

* Objects replicated among a handful of nodes for availability / durability.
* Replication across data centers, too

* Two-level operation:
* Use transactions, coordinators, 2PC per object
* Use Paxos / Raft among object replicas

* Consensus needed across object replicas, e.g.
* When acquiring locks and executing operations
* When committing transactions



2PC and Paxos

* E.g. workflow:
* Coordinator leader sends Prepare message to
leaders of each replica group
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2PC and Paxos

* E.g. workflow:
* Coordinator leader sends Prepare message to
leaders of each replica group

* Each replica leader uses Paxos to commit the
Prepare to the group logs
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2PC and Paxos

* E.g. workflow:
* Coordinator leader sends Prepare message to
leaders of each replica group

* Each replica leader uses Paxos to commit the
Prepare to the group logs
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2PC and Paxos

* E.g. workflow:
* Coordinator leader sends Prepare message to
leaders of each replica group

* Each replica leader uses Paxos to commit the
Prepare to the group logs
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2PC and Paxos

* E.g. workflow:
* Coordinator leader sends Prepare message to
leaders of each replica group
 Each replica leader uses Paxos to commit the
Prepare to the group logs

* Once commit prepare succeeds, reply to
coordinator leader

Coordinator

Paxos Decision



2PC and Paxos

* E.g. workflow:

* Coordinator leader sends Prepare message to
leaders of each replica group

* Each replica leader uses Paxos to commit the
Prepare to the group logs

* Once .commit prepare succeeds, reply to Series of Paxos
coordinator leader message exchanges.

* Coordinator leader uses Paxos to commit
decision to 1ts group log.
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2PC and Paxos

* E.g. workflow:

* Coordinator leader sends Prepare message to
leaders of each replica group

 Each replica leader uses Paxos to commit the
Prepare to the group logs

* Once commit prepare succeeds, reply to
coordinator leader

* Coordinator leader uses Paxos to commit
decision to 1ts group log.

* Coordinator leader sends Commit message to
leaders of each replica group.

* Each replica leader uses Paxos to process the
final commit.

* Replica leader send the “commit ok / have
committed”’ message back to coordinator.

Coordinator




Distributed Transactions and Replication

* Iransaction processing can be distributed across multiple servers.

* Different objects can be stored on different servers.

* An object may be replicated across multiple servers.

* Case study: Google’s Spanner System



Spanner: Google’s Globally-Distributed Database

* First three lines from the paper:

* Spanner is a scalable, globally-distributed database designed, built,
and deployed at Google.

* At the highest level of abstraction, it is a database that shards data
across many sets of Paxos state machines in datacenters spread all
over the world.

* Replication is used for global availability and geographic locality;
clients automatically fallover between replicas.



Wilson Hsieh
representing a host of authors
OSDI 2012

500gle



e SQL query language
* Schematized tables
* Semi-relational data model

* Running in production
* Storage for Google’s ad data
* Replaced a sharded MySQL database
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* Property: External consistency of distributed
transactions

— First system at global scale

* Implementation: Integration of concurrency
control, replication, and 2PC

— Correctness and performance

* Enabling technology: TrueTime

— Interval-based global time

G 8]




— Consistent view of friend list and their posts

Why consistency matters
1. Remove untrustworthy person X as friend
2. Post P: “My government is repressive...”




Generate my page
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— Each transaction T is assigned a timestamp s
— Data written by T is timestamped with s

Time <8 8 15
My friends [X] (]
My posts [P]
X’s friends [me] (]




External Consistency:
Commit order respects global wall-time order

Timestamp order respects global wall-time order
given
timestamp order == commit order
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* Assign timestamp while locks are held

Acquired locks Release locks

Pick s = now()




 Timestamp order respects global wall-time order




TT.now()

> time

2*e
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Acquired locks Releasq locks
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* External consistency
* Timestamp assignment

* TrueTime
— Uncertainty in time can be waited out




— Mostly non-blocking
— Commit in the future

* Non-blocking reads in the past
— At any sufficiently up-to-date replica




OSDI 2012

TrueTime Architecture

GPS

Atomic-clock GPS
tlmemaster timemaster timemaster

Datacenter 1 Datacenter 2 Datacenter n

Client

Compute reference [earliest, latest] = now + €
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+6ms
200 ps/sec
reference . _
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— Bad CPUs 6 times more likely than bad clocks




Network-Induced Uncertainty
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e Concurrency control
* Replication
 Time (NTP, Marzullo)




* Building out database features

— Finish implementing basic features

— Efficiently support rich query patterns




— Known unknowns are better than unknown
unknowns

— Rethink algorithms to make use of uncertainty

e Stronger semantics are achievable

— Greater scale = weaker semantics




* To lots of Googlers for feedback

e To you for listening!

e Questions?



MP3: Distributed Transactions

* https://courses.grainger.illinois.edu/ece428/sp202 3/mps/mp3.html

* Lead TA: Sarthak Moorjani

e Task:

* Build a distributed transaction system that satisfies ACI properties
(you do not need to handle Durability).

* Objective:

* Think through and implement algorithms for achieving atomicity and
consistency with distributed transactions (two-phase commit),
concurrency control (two-phase locking / timestamped ordering),
deadlock detection.



MP3: Distributed Transactions

branch_name

branch_name

branch_name

branch_name

branch_name

config_file config_file config_file config_file config_file
server A server B server C server D server E

sample config_file

A sp23-cs425-0101.cs.illinois.edu 1234
B sp23-cs425-0101.cs.illinois.edu 1234
C sp23-cs425-0101.cs.illinois.edu 1234
D sp23-cs425-0101.cs.illinois.edu 1234
E sp23-cs425-0101.cs.illinois.edu 1234

Use this information to
establish commmunication

dCross servers.




MP3: Distributed Transactions

branch_name

branch_name

branch_name

branch_name

branch_name

config_file config_file config_file config_file config_file
server A server B server C server D server E
sample config_file
client

A sp23-cs425-0101.cs.illinois.edu 1234

B sp23-cs425-0101.cs.illinois.edu 1234 f

C sp23-cs425-0101.cs.illinois.edu 1234

D sp23-cs425-0101.cs.illinois.edu 1234 client id

E sp23-cs425-0101.cs.illinois.edu 1234

config_file




MP3: Distributed Transactions

server A server B server C server D server E

client

Receives user input (command) from stdin.
Prints output of the command to stdout.

< BEGIN //start a new transaction



MP3: Distributed Transactions

server A

server B

server C

server D server k

client

Receives user input (command) from stdin.
Prints output of the command to stdout.

< BEGIN //start a new transaction

> 0K

For each transaction,
client randomly chooses
a server to act as
coordinator. Only
communicates with the
coordinator

< DEPOSIT A.foo 10 //deposit 10 units in account foo at branch A



MP3: Distributed Transactions

server A

N server B

server C

client

Receives user input (command) from stdin.
Prints output of the command to stdout.

< BEGIN //start a new transaction

> 0K

server D

server k

< DEPOSIT A.foo 10 //deposit 10 units in account foo at branch A

> 0K




MP3: Distributed Transactions

server A |« server B server C server D server E

client

Receives user input (command) from stdin.
Prints output of the command to stdout.

< BEGIN //start a new transaction

> 0K

< DEPOSIT A.foo 10 //deposit 10 units in account foo at branch A
> 0K

Other possible commands: WITHDRAW and BALANCE (only applicable if the account exists)



MP3: Distributed Transactions

A

server A server B server C server D server k

\ 4

client

Receives user input (command) from stdin.
Prints output of the command to stdout.

User enters COMMIT or ABORT to end the transaction.

A server may also choose to ABORT a transaction (e.g. if consistency violated, or if
needed for concurrency control).

Changes made by one transaction visible to others only after it successful commits.



MP3: Distributed Transactions

server B server C server D server k

A

server A

\ 4

client

Receives user input (command) from stdin.
Prints output of the command to stdout.

Required properties:
e Atomicity:

* all servers commit the entire transaction, or all rollback the entire transaction.
* Consistency:

* cannot withdraw from or read balance of a non-existent account.

* atransaction cannot result in a negative account balance.



MP3: Distributed Transactions
/_\

A

server A »  server B server C server D server E

client client

Receives user input (command) from stdin.
Prints output of the command to stdout.

Required properties:

* Isolation:
* multiple clients may concurrently issue commands on the object.
* Must provide serial equivalence.

* Deadlock avoidance.



MP3: Distributed Transactions

* Due on April 26th.

* Late policy: Can use remainder of your |68hours of grace period
accounted per student over the entire semester.

* Read the specification fully and carefully.
* Required semantics discussed more completely there.

* Start early!



