Distributed Systems

CS425/ECE428

April 5 2023

Instructor: Radhika Mittal

Acknowledgements for the materials: Indy Gupta, Nikita Borisov, Sbanner authors

Logistics

e MP3 has been released!

Distributed Transactions and Replication

* Objects distributed among 000’s cluster nodes for load-balancing
(sharding)

* Objects replicated among a handful of nodes for availability / durability.
* Replication across data centers, too

* Two-level operation:
* Use transactions, coordinators, 2PC per object
* Use Paxos / Raft among object replicas

* Consensus needed across object replicas, e.g.
* When acquiring locks and executing operations
* When committing transactions

2PC and Paxos

* E.g. workflow:
* Coordinator leader sends Prepare message to
leaders of each replica group

Coordinator

2PC and Paxos

* E.g. workflow:
* Coordinator leader sends Prepare message to
leaders of each replica group

* Each replica leader uses Paxos to commit the
Prepare to the group logs

Coordinator

A

2PC prepare

2PC and Paxos

* E.g. workflow:
* Coordinator leader sends Prepare message to
leaders of each replica group

* Each replica leader uses Paxos to commit the
Prepare to the group logs

Coordinator

Paxos Prepare

2PC and Paxos

* E.g. workflow:
* Coordinator leader sends Prepare message to
leaders of each replica group

* Each replica leader uses Paxos to commit the
Prepare to the group logs

Coordinator

Paxos Promise

2PC and Paxos

* E.g. workflow:
* Coordinator leader sends Prepare message to
leaders of each replica group

* Each replica leader uses Paxos to commit the
Prepare to the group logs

Coordinator

Paxos Accept

2PC and Paxos

* E.g. workflow:
* Coordinator leader sends Prepare message to
leaders of each replica group

* Each replica leader uses Paxos to commit the
Prepare to the group logs

Coordinator

Paxos relay accept to leader
(distinguished learner)

2PC and Paxos

* E.g. workflow:
* Coordinator leader sends Prepare message to
leaders of each replica group
 Each replica leader uses Paxos to commit the
Prepare to the group logs

* Once commit prepare succeeds, reply to
coordinator leader

Coordinator

Paxos Decision

2PC and Paxos

* E.g. workflow:

* Coordinator leader sends Prepare message to
leaders of each replica group

* Each replica leader uses Paxos to commit the
Prepare to the group logs

* Once .commit prepare succeeds, reply to Series of Paxos
coordinator leader message exchanges.

* Coordinator leader uses Paxos to commit
decision to 1ts group log.

Coordinator

2PC and Paxos

* E.g. workflow:

* Coordinator leader sends Prepare message to
leaders of each replica group

 Each replica leader uses Paxos to commit the
Prepare to the group logs

* Once commit prepare succeeds, reply to
coordinator leader

* Coordinator leader uses Paxos to commit
decision to 1ts group log.

* Coordinator leader sends Commit message to
leaders of each replica group.

Coordinator

A

2PC and Paxos

* E.g. workflow:

* Coordinator leader sends Prepare message to
leaders of each replica group

 Each replica leader uses Paxos to commit the
Prepare to the group logs

* Once commit prepare succeeds, reply to
coordinator leader

* Coordinator leader uses Paxos to commit
decision to 1ts group log.

* Coordinator leader sends Commit message to
leaders of each replica group.

* Each replica leader uses Paxos to process the
final commit.

Coordinator

Series of Paxos
message exchanges.

2PC and Paxos

* E.g. workflow:

* Coordinator leader sends Prepare message to
leaders of each replica group

 Each replica leader uses Paxos to commit the
Prepare to the group logs

* Once commit prepare succeeds, reply to
coordinator leader

* Coordinator leader uses Paxos to commit
decision to 1ts group log.

* Coordinator leader sends Commit message to
leaders of each replica group.

* Each replica leader uses Paxos to process the
final commit.

* Replica leader send the “commit ok / have
committed”’ message back to coordinator.

Coordinator

Distributed Transactions and Replication

* Iransaction processing can be distributed across multiple servers.

* Different objects can be stored on different servers.

* An object may be replicated across multiple servers.

* Case study: Google’s Spanner System

Spanner: Google’s Globally-Distributed Database

* First three lines from the paper:

* Spanner is a scalable, globally-distributed database designed, built,
and deployed at Google.

* At the highest level of abstraction, it is a database that shards data
across many sets of Paxos state machines in datacenters spread all
over the world.

* Replication is used for global availability and geographic locality;
clients automatically fallover between replicas.

Wilson Hsieh
representing a host of authors
OSDI 2012

500gle

e SQL query language
* Schematized tables
* Semi-relational data model

* Running in production
* Storage for Google’s ad data
* Replaced a sharded MySQL database

San Francisco
Seattle
Arizona

Spain

London
Paris
Berlin
Madrid
Lisbon

Santiago
Buenos Aires

Moscow
Berlin
Krakow

Russia

* Property: External consistency of distributed
transactions

— First system at global scale

* Implementation: Integration of concurrency
control, replication, and 2PC

— Correctness and performance

* Enabling technology: TrueTime

— Interval-based global time

G 8]

— Consistent view of friend list and their posts

Why consistency matters
1. Remove untrustworthy person X as friend
2. Post P: “My government is repressive...”

Generate my page

l

Friend1 post —— ——)
Friend2 post — ——

Friend999 post —— ——)
Friend1000 post — ——)

Friendl post—— ——»
Friend2 post—— —

N\

Generate my page

Friend999 post—— ——— _ /

Friend1000 post—— ———

Friendl post———
us

Friend2 post—————
Spain '\
Generate my page
Friend999 post——————orop /
Brazil
Friend1000 post >

UNSE]

— Each transaction T is assigned a timestamp s
— Data written by T is timestamped with s

Time <8 8 15
My friends [X] (]
My posts [P]
X’s friends [me] (]

External Consistency:
Commit order respects global wall-time order

Timestamp order respects global wall-time order
given
timestamp order == commit order

G g]

* Assign timestamp while locks are held

Acquired locks Release locks

Pick s = now()

 Timestamp order respects global wall-time order

TT.now()

> time

2*e

\Z \/

! P

Pick s = TT.now().latest s Wait until TT.now().earliest > s

Commit wait
<€ >

average €

average €

Acquired locks Releasq locks

! f

Pick s Commit wait done

‘L ‘1’ Committed
4 4 Notify participants of s
Acfjuired lockp lease locks
‘1’ v v
A
Acquired |ocks Relkase locks

v v v

T Prepared

Send s
Compute s for each Commit wait done

Compute overall s

5c=6

5p=8

s=8 s=15

Remove thyself
from X’s friend

list
s=8
Time <8 8 15
My friends (X] (]
My posts [P]
X’s friends [me] [l

* External consistency
* Timestamp assignment

* TrueTime
— Uncertainty in time can be waited out

— Mostly non-blocking
— Commit in the future

* Non-blocking reads in the past
— At any sufficiently up-to-date replica

OSDI 2012

TrueTime Architecture

GPS

Atomic-clock GPS
tlmemaster timemaster timemaster

Datacenter 1 Datacenter 2 Datacenter n

Client

Compute reference [earliest, latest] = now + €

36

+6ms
200 ps/sec
reference . _
uncertainty > time
Osec 30sec 60sec 90sec

— Bad CPUs 6 times more likely than bad clocks

Network-Induced Uncertainty

10

4 —

Epsilon (ms)

2 -

]
Mar 29
Date

OSDI 2012

— 2

1

| | | | _

LILELEL I LILELEL I LILELEL
Mar 30 Mar 31 Apr 1 6AM SAM 10AM 12PM

Date (April 13)

39

e Concurrency control
* Replication
 Time (NTP, Marzullo)

* Building out database features

— Finish implementing basic features

— Efficiently support rich query patterns

— Known unknowns are better than unknown
unknowns

— Rethink algorithms to make use of uncertainty

e Stronger semantics are achievable

— Greater scale = weaker semantics

* To lots of Googlers for feedback

e To you for listening!

e Questions?

MP3: Distributed Transactions

* https://courses.grainger.illinois.edu/ece428/sp202 3/mps/mp3.html

* Lead TA: Sarthak Moorjani

e Task:

* Build a distributed transaction system that satisfies ACI properties
(you do not need to handle Durability).

* Objective:

* Think through and implement algorithms for achieving atomicity and
consistency with distributed transactions (two-phase commit),
concurrency control (two-phase locking / timestamped ordering),
deadlock detection.

MP3: Distributed Transactions

branch_name

branch_name

branch_name

branch_name

branch_name

config_file config_file config_file config_file config_file
server A server B server C server D server E

sample config_file

A sp23-cs425-0101.cs.illinois.edu 1234
B sp23-cs425-0101.cs.illinois.edu 1234
C sp23-cs425-0101.cs.illinois.edu 1234
D sp23-cs425-0101.cs.illinois.edu 1234
E sp23-cs425-0101.cs.illinois.edu 1234

Use this information to
establish commmunication

dCross servers.

MP3: Distributed Transactions

branch_name

branch_name

branch_name

branch_name

branch_name

config_file config_file config_file config_file config_file
server A server B server C server D server E
sample config_file
client

A sp23-cs425-0101.cs.illinois.edu 1234

B sp23-cs425-0101.cs.illinois.edu 1234 f

C sp23-cs425-0101.cs.illinois.edu 1234

D sp23-cs425-0101.cs.illinois.edu 1234 client id

E sp23-cs425-0101.cs.illinois.edu 1234

config_file

MP3: Distributed Transactions

server A server B server C server D server E

client

Receives user input (command) from stdin.
Prints output of the command to stdout.

< BEGIN //start a new transaction

MP3: Distributed Transactions

server A

server B

server C

server D server k

client

Receives user input (command) from stdin.
Prints output of the command to stdout.

< BEGIN //start a new transaction

> 0K

For each transaction,
client randomly chooses
a server to act as
coordinator. Only
communicates with the
coordinator

< DEPOSIT A.foo 10 //deposit 10 units in account foo at branch A

MP3: Distributed Transactions

server A

N server B

server C

client

Receives user input (command) from stdin.
Prints output of the command to stdout.

< BEGIN //start a new transaction

> 0K

server D

server k

< DEPOSIT A.foo 10 //deposit 10 units in account foo at branch A

> 0K

MP3: Distributed Transactions

server A |« server B server C server D server E

client

Receives user input (command) from stdin.
Prints output of the command to stdout.

< BEGIN //start a new transaction

> 0K

< DEPOSIT A.foo 10 //deposit 10 units in account foo at branch A
> 0K

Other possible commands: WITHDRAW and BALANCE (only applicable if the account exists)

MP3: Distributed Transactions

A

server A server B server C server D server k

\ 4

client

Receives user input (command) from stdin.
Prints output of the command to stdout.

User enters COMMIT or ABORT to end the transaction.

A server may also choose to ABORT a transaction (e.g. if consistency violated, or if
needed for concurrency control).

Changes made by one transaction visible to others only after it successful commits.

MP3: Distributed Transactions

server B server C server D server k

A

server A

\ 4

client

Receives user input (command) from stdin.
Prints output of the command to stdout.

Required properties:
e Atomicity:

* all servers commit the entire transaction, or all rollback the entire transaction.
* Consistency:

* cannot withdraw from or read balance of a non-existent account.

* atransaction cannot result in a negative account balance.

MP3: Distributed Transactions
/_\

A

server A » server B server C server D server E

client client

Receives user input (command) from stdin.
Prints output of the command to stdout.

Required properties:

* Isolation:
* multiple clients may concurrently issue commands on the object.
* Must provide serial equivalence.

* Deadlock avoidance.

MP3: Distributed Transactions

* Due on April 26th.

* Late policy: Can use remainder of your |68hours of grace period
accounted per student over the entire semester.

* Read the specification fully and carefully.
* Required semantics discussed more completely there.

* Start early!

