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Logistics

• Please refrain from discussing anything about the midterm 
with others after you have taken your exam. 

• Final exams: May 4th to May 11th. 
• You can start making reservations on PrairieTest. 

• Thank you for your feedback for those who have filled it up. 
• For those who haven’t, please fill it up by Friday this week.  



Agenda for today
• Consensus
• Consensus in synchronous systems

• Chapter 15.4
• Impossibility of consensus in asynchronous systems

• We will not cover the proof in details
• Good enough consensus algorithm for asynchronous systems: 

• Paxos made simple, Leslie Lamport, 2001
• Other forms of consensus algorithm 

• Raft (log-based consensus)
• Block-chains / Bitcoins (distributed consensus)



• Implement a distributed replicated state machine that 
maintains an account ledger (= bank). 
• No user should be able to “double-spend”. 
• Need to know of all transactions to validate this.
• Who does this validation? Cannot trust a single central authority.

• Any participant (replica) should be able to validate. 
• All replicas must agree on the single history on transaction 

ordering.  
• Scale to thousands of replicas distributed across the world.
• Allow old replicas to fail, new replicas to join seamlessly.
• Withstand various types of attacks. 

Bitcoins



• Why not use Paxos / Raft?
• Need to scale to thousands of replicas across the world. 
• May not even know of all replicas a priori.
• Participants may leave / join dynamically. 
• Paxos/Raft are ill-suited for such a setup. 

• Leader election in Raft or proposals in Paxos require communication with 
at least a majority of servers.

• Require knowing the number of replicas. 
• ….

• So how does blockchain work? 
• Focus of today’s class. Only a high-level discussion. 

Uses Blockchains for Consensus



Transactions grouped into a block that gets added to 
the chain (history of transactions) by the “leader of 

that block”. 

Basic Idea



• Every node chooses a random number
• The method for choosing the number in blockchains enables log 

consensus (with a high probability). 
• Requires the leader to expend CPU (as proof-of-work). 

• Leader = “closest to 0” 
• Defined such that a replica can determine this independently 

without coordination 

Lottery Leader Election



• Every node chooses a random number
• The method for choosing the number in blockchains enables log 

consensus (with a high probability). 
• Requires the leader to expend CPU (as proof-of-work). 

• Leader = “closest to 0” 
• Defined such that a replica can determine this independently 

without coordination 

Lottery Leader Election



• Cryptographic hash function: 
• H(x) -> { 0, 1, ..., 2256-1} 

• Hard to invert: 
• Given y, find x such that H(x) = y 
• E.g., SHA256, SHA3, ... 

• Every node picks random number x and computes H(x) 
• Node with H(x) “closest to 0” wins 
• Finding such an x requires expending CPU (proof-of-work).

• But once we have found an ‘x’, we can always be the leader for 
all blocks, or even share it with colluding parties. How to prevent 
that? 

Choosing the random number



• Every node picks x, computes H(seed || x)
• Closest to 0 wins 
• What to use as a seed? 
• Hash of:
• Previous log 
• Node identifier
• New messages to add to log 

• How to find “closest to 0”?

Using a seed 



• Repeat:
• Pick random x, compute y = H(seed || x)
• If y<T, you win! 

• Set threshold T so that on average, one winner 
every few minutes 
•Given a solution, x such that H(seed || x) < T, anyone 

can verify the solution in constant time 
(microseconds). 

Iterated Hashing / Proof of work 



Chaining the blocks



• New transactions broadcast to all nodes.
• Each node collects new transactions into a block.
• Each node works on finding a proof-of-work for its block to become 

its leader and get it appended to a chain.
• i.e. finds x, such that H(seed || x) < T. 

• When a node finds a proof-of-work, it broadcasts it to all nodes. 
• Nodes accept a block only if all transactions in it are valid. 
• Nodes express their acceptance by working on creating the next 

block in the chain, using the hash of accepted block as previous hash.  

Protocol Overview



• Two nodes may end up mining different versions of the next block.
• A node may receive two versions of the next block. 

What could go wrong? 



• Two nodes may end up mining different versions of the next block.
• A node may receive two versions of the next block. 
• Will store both, but work on the first one they receive.  
• Over time, more blocks will be received. 
• The node will switch to working on the longest chain. 

Longest Chain Rule
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• Wait for upto k more blocks to be added in the chain. 
• Then commit the transaction. 
• k is set to 6 for Bitcoins. 

When is a transaction committed?



• Majority decision is represented by the longest chain. 
• It has greatest “proof-of-work” invested in it. 

• If majority of CPU power is controlled by honest nodes, the honest 
chain will grow fastest and outpace competing chains.

• To modify past blocks, an attacker will need to redo the proof-of-work 
for that block, and all blocks after it, and then surpass the work of 
honest nodes. 

• Probability of attack reduces as more blocks get added. 

Security Property



• Security better if more people participated in logging.

• Incentivize users to log others’ transactions 
• Transaction fees: e.g. pay me x% to log your data (or some fixed fee per 

transaction)
• Mining reward: each block creates bitcoins

Incentives for Logging 



• How to set T? 
• Too small: slows down transactions 
• Too big: wasted effort due to chain splits

• Periodically adjust difficulty T such that one block gets added every 10 
minutes. 
• Depends on hardware speed (which typically improves over time) 

and number of participants (which vary over time).  

• Determined algorithmically based on the rate at which blocks are 
mined
• Target is 1 block every 10minutes.
• Difficulty recomputed after every 2016 blocks. 

Logging Speed



• Need to broadcast:
• Transactions to all nodes, so they can be included in a block.
• New blocks to all nodes, so that they can switch to longest chain. 

• What if we use R-multicast?
• Have to send O(N) messages
• Have to know which nodes to send to
• Not a suitable choice. 

Bitcoin Broadcast



• Each node connects to a small set of neighbors (10–100). 
• Nodes propagate transactions and blocks to neighbors. 
• Push method: when you hear a new tx/block, resend them to all 

(some) of your neighbors (flooding).
• Pull method: periodically poll neighbors for list of blocks/tx’s, then 

request any you are missing. 
• Unreliable: some nodes may not receive all transactions or all blocks. 

But that’s ok. 

Gossip / Viral propagation 



• A seed service
• Gives out a list of random or well-connected nodes
• E.g., seed.bitnodes.io

• Neighbor discovery
• Ask neighbors about their neighbors 
• Randomly connect to some of them 

Maintaining Neighbors



• Unreliable broadcast using gossip
• Probabilistic “leader” election for mining blocks (tx ordering)
• Longest chain rule to ensure long-term (probabilistic) consistency and 

security

• Compared with Paxos/Raft:
• Scales to thousands of participants, dynamic groups
• Tens of minutes to successfully log a transaction (vs. milliseconds) 

Bitcoin Summary


