
Distributed Systems

CS425/ECE428

March 6 2023

Instructor : Radhika Mittal

Logistics

• MP1 is due today.

• HW2 is due on Wednesday.

• MP2 has been released.

• HW3 has been released.

Agenda for today
• Consensus
• Consensus in synchronous systems

• Chapter 15.4
• Impossibility of consensus in asynchronous systems

• We will not cover the proof in details
• Good enough consensus algorithm for asynchronous systems:

• Paxos made simple, Leslie Lamport, 2001
• Other forms of consensus algorithm

• Raft (log-based consensus)
• Block-chains (distributed consensus)

Raft: A Consensus
Algorithm

for Replicated Logs

Slides from Diego Ongaro and John Ousterhout, Stanford University

• Replicated log => replicated state machine
• All servers execute same commands in same order

• Consensus module ensures proper log replication
• System makes progress as long as any majority of servers are up

• Failure model: fail-stop (not Byzantine), delayed/lost messages

Goal: Replicated Log

add jmp mov shl
Log

Consensus
Module

State
Machine

add jmp mov shl
Log

Consensus
Module

State
Machine

add jmp mov shl
Log

Consensus
Module

State
Machine

Servers

Clients

shl

1. Leader election:
• Select one of the servers to act as leader
• Detect crashes, choose new leader

2. Neutralizing old leaders
3. Normal operation (basic log replication)
4. Safety and consistency after leader changes

Raft Overview

1. Leader election:
• Select one of the servers to act as leader
• Detect crashes, choose new leader

2. Neutralizing old leaders
3. Normal operation (basic log replication)
4. Safety and consistency after leader changes

Raft Overview

• At any given time, each server is either :
• Leader: handles all client interactions, log replication

• At most 1 viable leader at a time
• Follower: completely passive: issues no RPCs (requests),

responds to incoming RPCs
• Candidate: used to elect a new leader

• Normal operation: 1 leader, N-1 followers

Server States

• Raft servers communicate via RPCs.
• What are RPCs?
• Remote Procedure Calls: procedure call between functions

on different processes
• Convenient programming abstraction.

Quick Detour: RPCs

P1 P2

P2.call(“foo”, args, reply)

1. “foo”, args 2. foo(args) {
….
….
return reply

}

3. reply

• At any given time, each server is either :
• Leader: handles all client interactions, log replication

• At most 1 viable leader at a time
• Follower: completely passive: issues no RPCs, responds to

incoming RPCs
• Candidate: used to elect a new leader

• Normal operation: 1 leader, N-1 followers

Server States

Follower Candidate Leader

start
timeout,
start	election

receive	votes	from
majority	of	servers

timeout,
new	election

discover	server	with
higher	termdiscover	current	server

or	higher	term

“step
down”

• Time divided into terms:
• Election
• Normal operation under a single leader

• At most 1 leader per term
• Some terms have no leader (failed election)
• Each server maintains current term value
• Key role of terms: identify obsolete information

Terms
Term	1 Term	2 Term	3 Term	4 Term	5

time

Elections Normal	OperationSplit	Vote

• Servers start up as followers.
• Followers expect to receive RPCs from leaders or

candidates.
• Leaders must send heartbeats (empty AppendEntries

RPCs) to maintain authority.
• If electionTimeout elapses with no RPCs:
• Follower assumes leader has crashed
• Follower promotes itself to candidate and starts new election
• Timeouts typically in range100-500ms
• Randomly chosen in some range to reduce probability of

split election.

Heartbeats and Timeouts

• On timeout:
• Increment current term
• Change to Candidate state
• Vote for self
• Send RequestVote RPCs to all other servers:

1. Receive votes from majority of servers:
• Become leader
• Send AppendEntries heartbeats (RPCs) periodically to all other

servers
2. Receive RPC from valid leader (with same or higher term):
• Return to follower state

3. No-one wins election (election timeout elapses):
• Increment term, start new election

Election Basics

State Diagram Revisit

Follower Candidate Leader

start
timeout,
start	election

receive	votes	from
majority	of	servers

timeout,
new	election

discover	server	with
higher	termdiscover	current	server

or	higher	term

“step
down”

• Suppose a server in term currentTerm has voted for process with id
votedFor in that term.
• When it receives RequestVote RPC from process candidateId with

term voteRequestTerm:
If voteRequestTerm < currentTerm

reply false
return.

If voteRequestTerm > currentTerm
currentTerm = voteRequestTerm, votedFor = null

If (votedFor is null or candidateId)*
//should not have voted for anyone else in that term
Grant vote, votedFor = candidateId
*we will extend on this condition later.

Election Basics: handling RequestVote RPCs

• Safety: allow at most one winner per term

• Each server gives out only one vote per term (persist on
disk)
• Two different candidates can’t accumulate majorities in same

term

• Liveness: some candidate must eventually win
• Choose election timeouts randomly in [T, kT]
• One server usually times out and wins election before others

wake up
• Works well if T >> broadcast time

• Safety is guaranteed. Liveness is not guaranteed.

Elections, cont’d

Servers

Voted	for	
candidate	A

B	can’t	also	get	
majority

• Each term has at most one leader (safety condition).

• Terms always increase with time.

• If the latest term has an elected leader, majority of processes
must have updated themselves to the latest term.

• Only the leader of the latest term can commit log entries
(we will discuss this next).

Implication of terms

1. Leader election:
• Select one of the servers to act as leader
• Detect crashes, choose new leader

2. Neutralizing old leaders
3. Normal operation (basic log replication)
4. Safety and consistency after leader changes

Raft Overview

• Deposed leader may not be dead:
• Temporarily disconnected from network
• Other servers elect a new leader
• Old leader becomes reconnected, attempts to commit log

entries
• Terms used to detect stale leaders (and candidates)

• Every RPC contains term of sender
• If sender’s term is older, RPC is rejected, sender reverts to

follower and updates its term
• If receiver’s term is older, it reverts to follower, updates its term,

then processes RPC normally
• Election updates terms of majority of servers

• Deposed server cannot commit new log entries

Neutralizing Old Leaders

1. Leader election:
• Select one of the servers to act as leader
• Detect crashes, choose new leader

2. Neutralizing old leaders
3. Normal operation (basic log replication)
4. Safety and consistency after leader changes

Raft Overview

• Log entry = index, term, command
• Log stored on stable storage (disk); survives crashes
• Entry is committed by the leader when certain conditions are met*.

• Durable, will eventually be executed by state machines
• * we will get back to this.

Log Structure
1

add

1 2 3 4 5 6 7 8
3

jmp
1

cmp
1
ret

2
mov

3
div

3
shl

3
sub

1
add

3
jmp

1
cmp

1
ret

2
mov

1
add

3
jmp

1
cmp

1
ret

2
mov

3
div

3
shl

3
sub

1
add

1
cmp

1
add

3
jmp

1
cmp

1
ret

2
mov

3
div

3
shl

leader

log	index

followers

committed	entries

term

command
s1

s2

s3

s4

s5

• Client sends command to leader
• Leader appends command to its log (not yet committed)
• Leader sends AppendEntries RPCs to followers
• Once new entry committed* (we will discuss when and how):

• Leader passes command to its state machine, returns result to client
• Leader notifies followers of committed entries in subsequent AppendEntries

RPCs
• Followers pass committed commands to their state machines

• Crashed/slow followers?
• Leader retries RPCs until they succeed

• Performance is optimal in common case:
• One successful RPC to any majority of servers

Normal Operation

High level of coherency between logs:
Raft guarantees that:
• If log entries on different servers have same index

and term:
• They store the same command
• The logs are identical in all preceding entries

• If a given entry is committed, all preceding entries
are also committed

Log Consistency

1
add

1 2 3 4 5 6
3

jmp
1

cmp
1
ret

2
mov

3
div

4
sub

1
add

3
jmp

1
cmp

1
ret

2
mov

4
add

• Each AppendEntries RPC contains index and term of
entry preceding new ones
• Follower must contain matching entry; otherwise it

rejects request
• Implements an induction step, ensures coherency

AppendEntries Consistency Check

1
add

3
jmp

1
cmp

1
ret

2
mov

1
add

1
cmp

1
ret

2
mov

leader

follower

1 2 3 4 5

1
add

3
jmp

1
cmp

1
ret

2
mov

1
add

1
cmp

1
ret

1
shl

leader

follower

AppendEntries succeeds:
matching	entry

AppendEntries fails:
mismatch

• At beginning of new leader’s term:
• Old leader may have left entries partially replicated
• No special steps by new leader: just start normal operation
• Leader’s log is “the truth”
• Will eventually make follower’s logs identical to leader’s
• Unless a new leader gets elected during the process.

• Multiple crashes can leave many extraneous log entries:

Leader Changes

1 2 3 4 5 6 7 8log	index

1 1

1 1

5

5

6 6 6

6

1 1 5 5

1 31

1 1

7 7

2 2 4 4 4

2

7

term s1

s2

s3

s4

s5

Log Inconsistencies

1 41 1 4 5 5 6 6 6

1 2 3 4 5 6 7 8 9 10 11 12log	index

leader	for	term	8

1 41 1 4 5 5 6 6

1 41 1

1 41 1 4 5 5 6 6 6 6

1 41 1 4 5 5 6 6 6

1 41 1 4

1 1 1

possible
followers

4 4

7 7

2 2 33 3 3 32

(a)

(b)

(c)

(d)

(e)

(f)

Extraneous
Entries

Missing
Entries

• New leader must make follower logs consistent with its own
• Delete extraneous entries
• Fill in missing entries

• Next class:
• How leader repairs logs?
• How does Raft guarantee safety of consensus and when can a log

entry be committed?

Repairing Follower Logs

MP2: Raft Leader Election and Log
Consensus

• Lead TA: Jiangran Wang

• Objective:
• Implement a leader-based consensus protocol for replicated state

machine, that maintains log consensus even when nodes crash or
get temporarily disconnected.

• Task:
• Beef up a skeleton code provided to you to implement Raft leader

election and log consensus.
• We provide an emulation framework and a test suite.
• Strive to pass all the test cases provided in our test suite.

MP2: Logistics

• Due on April 5th.
• Late policy: Can use part of your 168hours of grace period

accounted per student over the entire semester.

• Must be implemented in Go.
• The framework we provide is in Go.

• Read the specification and the comments in the provided
code carefully.

• Start early!!
• MP2 is harder than MP1.

