Distributed Systems

CS425/ECE428

March 6 2023

Instructor: Radhika Mittal

Logistics

* MP1I Is due today.

* HW?2 is due on VWednesday.

e MP2 has been released.

e HW3 has been released.

Agenda for today

* Consensus

* Other forms of consensus algorithm
* Raft (log-based consensus)

Raft: A Consensus
Algorithm
for Replicated Logs

Slides from Diego Ongaro and John Ousterhout, Stanford University

Goal: Replicated Log
CEEEEEE

=)
[Consensus Sttt K Con< >nsus S ate

f Consensus St=2C
Module Machine

1‘ @

add jmp mov sh.—|

J

Module Machine

DD

Replicated log =>

Mo Jule Mac hine

DD

add|jmp |[mov sh.—|

J

add|jmp |[mov sh.—|

~

J

o All servers execute same commands in same order

Consensus module ensures proper log replication

Clients

Servers

System makes progress as long as any majority of servers are up

Failure model: fail-stop (not Byzantine), delayed/lost messages

Raft Overview

|. Leader election:
* Select one of the servers to act as leader
e Detect crashes, choose new leader

2. Neutralizing old leaders
3. Normal operation (basic log replication)

4. Safety and consistency after leader changes

Raft Overview

|. Leader election:
e Select one of the servers to act as leader
e Detect crashes, choose new leader

Server States

* At any given time, each server Is erther:

* Leader: handles all client interactions, log replication
e At most | viable leader at a time

* Follower: completely passive: issues no RPCs (requests),
responds to incoming RPCs

e Candidate: used to elect a new leader

* Normal operation: | leader, N-1 followers

Quick Detour: RPCs

e Raft servers communicate via RPCs.
* What are RPCs?

* Remote Procedure Calls: procedure call between functions
on different processes

* Convenient programming abstraction.

|."foo"’, args

Pl 3 reply P2

2. foo(args) {

return reply
P2.call("foo”, args, reply) }

Server States

* At any given time, each server Is erther:
* Leader: handles all client interactions, log replication
e At most | viable leader at a time

* Follower: completely passive: issues no RPCs, responds to
incoming RPCs

e Candidate: used to elect a new leader

* Normal operation: | leader, N-1 followers

timeout,
timeout, new election receive votes from

start start election majority of servers

— ()
Follower > CCandidate) <Leader >
ustep”\/
m discover server with

discover current server higher term
or higher term

Terms

Term 1 Term2 Term 3 Term 4 Term 5

time

* [ime divided Into terms:
* Election
* Normal operation under a single leader

* At most | leader per term

* Some terms have no leader (failed election)

* Fach server maintains value

* Key role of terms: identity obsolete information

Heartbeats and Timeouts

* Servers start up as followers.

* [Followers expect to receive RPCs from leaders or
candidates.

must send (empty AppendEntries
RPCs) to maintain authortty.

° |f elapses with no RPCs:
* Follower assumes leader has crashed
* Follower promotes itself to candidate and starts new election
* Timeouts typically in range | 00-500ms

* Randomly chosen in some range to reduce probability of
split election.

Election Basics

* On timeout:
* Increment current term
* Change to Candidate state
* Vote for self

* Send RequestVote RPCs to all other servers:
|, Receive votes from majority of servers:
* Become leader

* Send AppendEntries heartbeats (RPCs) periodically to all other
servers

2. Receive RPC from valid leader (with same or higher term):
* Return to follower state

3. No-one wins election (election timeout elapses):
* Increment term, start new election

State Diagram Revisit

timeout,
timeout, new election receive votes from

start start election majority of servers

(Y — —~

e
Follower > <Candidate > <Leader >

discover current server higher term
or higher term

discover server with

Election Basics: handling RequestVote RPCs

* Suppose a server in term currentlerm has voted for process with id
votedFor in that term.

* When it receives RequestVote RPC from process candidateld with
term voteRequestlerm:
If voteRequestTerm < currentlerm
reply false
return.
If voteRequestTerm > currentlerm
currentTerm = voteRequestTerm, votedFor = null
If (votedFor is null or candidateld)*
//should not have voted for anyone else in that term
Grant vote, votedFor = candidateld
*we will extend on this condition later.

Elections, cont’d

. allow at most one winner per term

——————————————————————————

e (] () () (O (O

/

Servers
* Each server gives out only one vote per term (persist on
disk)

* Two different candidates can't accumulate majorities in same
term

:some candidate must eventually win
* Choose election timeouts randomly in [T, kT]

* One server usually times out and wins election before others
wake up

e Works well if T >> broadcast time

* Safety is guaranteed. Liveness is not guaranteed.

Implication of terms

* Fach term has at most one leader (safety condition).
* Terms always increase with time.

* |f the latest term has an elected leader;, majority of processes
must have updated themselves to the latest term.

* Only the leader of the latest term can commit log entries
(we will discuss this next).

Raft Overview

2. Neutralizing old leaders

Neutralizing Old Leaders

* Deposed leader may not be dead:
* Temporarily disconnected from network
* Other servers elect a new leader
* Old leader becomes reconnected, attempts to commit log
entries
used to detect stale leaders (and candidates)
* Every RPC contains term of sender

* |If sender’s term is older, RPC is rejected, sender reverts to
follower and updates its term

* If receiver's term is older, it reverts to follower, updates its term,
then processes RPC normally

* Election updates terms of majority of servers
* Deposed server cannot commit new log entries

Raft Overview

3. Normal operation (basic log replication)

4. Safety and consistency after leader changes

Log Structure

term
L
S
command J’l

S
S3
S4

S5

* Log entry = index, term, command
* Log stored on stable storage (disk); survives crashes

e Entryis

* * we will get back to this.

1 2 3 4 5 6 7 8
1 1 1 2 3 3 3 3
add |cmp]| ret |[mov| jmp | div | shl | sub
1 1 1 2 3

add [cmp]| ret |mov| jmp

1 1 1 2 3 3 3 3
add |cmp]| ret |[mov| jmp | div | shl | sub
1 1

add [cmp

1 1 1 2 3 3 3

add |[cmp]| ret |mov| jmp | div | shl

log index

leader

> followers

by the leader when certain conditions are met*.
* Durable, will eventually be executed by state machines

Normal Operation

e Client sends command to leader

Leader appends command to its log (not yet committed)
Leader sends AppendEntries RPCs to followers

Once new entry committed® (we will discuss when and how):
* |eader passes command to its state machine, returns result to client

* |eader notifies followers of committed entries in subsequent AppendEntries
RPCs

* Followers pass committed commands to their state machines
Crashed/slow followers!
* Leader retries RPCs until they succeed

Performance is optimal in common case:
* One successful RPC to any majority of servers

Log Consistency

High level of coherency between logs:

Raft guarantees that:

* |f log entries on different servers have same index
and term:
* They store the same command
* The logs are identical in all preceding entries

1 2 3 4 5 6

1 1 1 2 3 3
add |cmp]| ret |mov| jmp | div

1 1 1 2 3 4 4
add |cmp| ret [mov| jmp | sub | add

* [f a2 given entry Is committed, all preceding entries
are also committed

AppendEntries Consistency Check

* Fach AppendEntries RPC contains index and term of
entry preceding new ones

* Follower must contain matching entry; otherwise it
rejects request

* Implements an induction step, ensures coherency

leader | 2 (1|1 12]3
add [cmp| ret [mov| jmp AppendEntries succeeds:
foll 11 1112 matching entry
ollower 344 cmp| ret |mov

leader ~dd

follower ~dd

Leader Changes

* At beginning of new leader’s term:
* Old leader may have left entries partially replicated
* No special steps by new leader: just start normal operation

Leader’s log is “the truth”
Will eventually make follower’s logs identical to leader’s
* Unless a new leader gets elected during the process.

* Multiple crashes can leave many extraneous log entries:

log index 1 2 3 4 5 6 7 8

Y
term s;[1]1]|5|6|6]6

s, 1156|777

Log Inconsistencies

log index 1 2 3 4 5 6 7 8 9 10 11 12

leaderforterm8| 1 | 1|14 |4|5]|5|6|6]6

-~

@) |1|1|12]|4|4]|5]|5]|6]6

b)[1]21]|1]4

possible

followers
d[21]|12]|4]a|5|5|6|6]|6]|7]7

e) |11 |1|4]|4]|4]4

@ [1]1f2]2]2)[2]|3|3|3]3]3

Repairing Follower Logs

* New leader must make follower logs consistent with its own
* Delete extraneous entries
* Fill in missing entries

e Next class:

* How leader repairs logs!

* How does Raft guarantee safety of consensus and when can a log
entry be committed?

MP2: Raft Leader Election and Log
Consensus

* Lead TA: Jiangran Wang

* Objective:
* Implement a leader-based consensus protocol for replicated state
machine, that maintains log consensus even when nodes crash or
get temporarily disconnected.

* Task:
* Beef up a skeleton code provided to you to implement Raft leader
election and log consensus.
* We provide an emulation framework and a test suite.
* Strive to pass all the test cases provided in our test suite.

MP2: Logistics

* Due on April 5Sth.

* Late policy: Can use part of your |68hours of grace period
accounted per student over the entire semester.

* Must be implemented in Go.
* The framework we provide is in Go.

* Read the specification and the comments in the provided
code carefully.

* Start early!!
e MP2 is harder than MP/1.

