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Logistics

• MP1 is due today.

• HW2 is due on Wednesday. 

• MP2 has been released. 

• HW3 has been released. 



Agenda for today
• Consensus
• Consensus in synchronous systems

• Chapter 15.4
• Impossibility of consensus in asynchronous systems

• We will not cover the proof in details
• Good enough consensus algorithm for asynchronous systems: 

• Paxos made simple, Leslie Lamport, 2001
• Other forms of consensus algorithm 

• Raft (log-based consensus)
• Block-chains (distributed consensus)



Raft: A Consensus 
Algorithm

for Replicated Logs

Slides from Diego Ongaro and John Ousterhout, Stanford University



• Replicated log => replicated state machine
• All servers execute same commands in same order

• Consensus module ensures proper log replication
• System makes progress as long as any majority of servers are up

• Failure model: fail-stop (not Byzantine), delayed/lost messages

Goal: Replicated Log
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1. Leader election:
• Select one of the servers to act as leader
• Detect crashes, choose new leader

2. Neutralizing old leaders
3. Normal operation (basic log replication)
4. Safety and consistency after leader changes

Raft Overview
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• At any given time, each server is either :
• Leader: handles all client interactions, log replication

• At most 1 viable leader at a time
• Follower: completely passive: issues no RPCs (requests), 

responds to incoming RPCs 
• Candidate: used to elect a new leader

• Normal operation: 1 leader, N-1 followers

Server States



• Raft servers communicate via RPCs. 
• What are RPCs?
• Remote Procedure Calls: procedure call between functions 

on different processes 
• Convenient programming abstraction.

Quick Detour: RPCs

P1 P2

P2.call(“foo”, args, reply) 

1. “foo”, args 2. foo(args) {
….
….
return reply

}

3. reply
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• Time divided into terms:
• Election
• Normal operation under a single leader

• At most 1 leader per term
• Some terms have no leader (failed election)
• Each server maintains current term value
• Key role of terms: identify obsolete information

Terms
Term	1 Term	2 Term	3 Term	4 Term	5

time

Elections Normal	OperationSplit	Vote



• Servers start up as followers.
• Followers expect to receive RPCs from leaders or 

candidates.
• Leaders must send heartbeats (empty AppendEntries

RPCs) to maintain authority.
• If electionTimeout elapses with no RPCs:
• Follower assumes leader has crashed
• Follower promotes itself to candidate and starts new election
• Timeouts typically in range100-500ms 
• Randomly chosen in some range to reduce probability of 

split election.

Heartbeats and Timeouts



• On timeout:
• Increment current term
• Change to Candidate state
• Vote for self
• Send RequestVote RPCs to all other servers:

1. Receive votes from majority of servers:
• Become leader
• Send AppendEntries heartbeats (RPCs) periodically to all other 

servers
2. Receive RPC from valid leader (with same or higher term):
• Return to follower state

3. No-one wins election (election timeout elapses):
• Increment term, start new election

Election Basics



State Diagram Revisit
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• Suppose a server in term currentTerm has voted for process with id 
votedFor in that term.
• When it receives RequestVote RPC from process candidateId with 

term voteRequestTerm:
If voteRequestTerm < currentTerm

reply false
return.

If voteRequestTerm > currentTerm
currentTerm = voteRequestTerm, votedFor = null

If (votedFor is null or candidateId)*   
//should not have voted for anyone else in that term
Grant vote, votedFor = candidateId
*we will extend on this condition later. 

Election Basics: handling RequestVote RPCs



• Safety:  allow at most one winner per term

• Each server gives out only one vote per term (persist on 
disk)
• Two different candidates can’t accumulate majorities in same 

term

• Liveness: some candidate must eventually win
• Choose election timeouts randomly in [T, kT]
• One server usually times out and wins election before others 

wake up
• Works well if T >> broadcast time

• Safety is guaranteed. Liveness is not guaranteed.

Elections, cont’d
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• Each term has at most one leader (safety condition).

• Terms always increase with time.

• If the latest term has an elected leader, majority of processes 
must have updated themselves to the latest term. 

• Only the leader of the latest term can commit log entries 
(we will discuss this next). 

Implication of terms
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• Deposed leader may not be dead:
• Temporarily disconnected from network
• Other servers elect a new leader
• Old leader becomes reconnected, attempts to commit log 

entries
• Terms used to detect stale leaders (and candidates)

• Every RPC contains term of sender
• If sender’s term is older, RPC is rejected, sender reverts to 

follower and updates its term
• If receiver’s term is older, it reverts to follower, updates its term, 

then processes RPC normally
• Election updates terms of majority of servers

• Deposed server cannot commit new log entries

Neutralizing Old Leaders
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• Log entry = index, term, command
• Log stored on stable storage (disk); survives crashes
• Entry is committed by the leader when certain conditions are met*. 

• Durable, will eventually be executed by state machines
• * we will get back to this. 
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• Client sends command to leader
• Leader appends command to its log (not yet committed)
• Leader sends AppendEntries RPCs to followers
• Once new entry committed* (we will discuss when and how):

• Leader passes command to its state machine, returns result to client
• Leader notifies followers of committed entries in subsequent AppendEntries

RPCs
• Followers pass committed commands to their state machines

• Crashed/slow followers?
• Leader retries RPCs until they succeed

• Performance is optimal in common case:
• One successful RPC to any majority of servers

Normal Operation



High level of coherency between logs:
Raft guarantees that: 
• If log entries on different servers have same index 

and term:
• They store the same command
• The logs are identical in all preceding entries

• If a given entry is committed, all preceding entries 
are also committed

Log Consistency
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• Each AppendEntries RPC contains index and term of 
entry preceding new ones
• Follower must contain matching entry;  otherwise it 

rejects request
• Implements an induction step, ensures coherency

AppendEntries Consistency Check
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• At beginning of new leader’s term:
• Old leader may have left entries partially replicated
• No special steps by new leader: just start normal operation
• Leader’s log is “the truth”
• Will eventually make follower’s logs identical to leader’s
• Unless a new leader gets elected during the process. 

• Multiple crashes can leave many extraneous log entries:

Leader Changes
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Log Inconsistencies
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• New leader must make follower logs consistent with its own
• Delete extraneous entries
• Fill in missing entries

• Next class:
• How leader repairs logs?
• How does Raft guarantee safety of consensus and when can a log 

entry be committed?

Repairing Follower Logs



MP2: Raft Leader Election and Log 
Consensus

• Lead TA: Jiangran Wang

• Objective:
• Implement a leader-based consensus protocol for replicated state 

machine, that maintains log consensus even when nodes crash or 
get temporarily disconnected. 

• Task:
• Beef up a skeleton code provided to you to implement Raft leader 

election and log consensus.
• We provide an emulation framework and a test suite. 
• Strive to pass all the test cases provided in our test suite.



MP2: Logistics

• Due on April 5th.
• Late policy: Can use part of your 168hours of grace period 

accounted per student over the entire semester.  

• Must be implemented in Go. 
• The framework we provide is in Go.

• Read the specification and the comments in the provided 
code carefully. 

• Start early!!
• MP2 is harder than MP1. 


