Distributed Systems

CS425/ECE428

Feb 20 2023

Instructor: Radhika Mittal

Acknowledgements for some of the materials: Indy Gupta and Nikita Borisov
Logistics

• HW2 released today
 • You can solve the first two questions right away.
 • You can solve the third question by the end of this class.
 • Hopefully, you can solve the fourth question by end of this week, and the 5th and the 6th questions by next Monday.
 • Due on March 6th (Monday)

• MP1 is also due on March 6th (Monday).

• So please start working on your assignments right-away!
Logistics

• Early lecture slides are rough and transient.
Today’s agenda

• Mutual Exclusion
 • Chapter 15.2

• Leader Election (if time)
 • Chapter 15.3
Recap: Problem Statement for mutual exclusion

- **Critical Section Problem:**
 - Piece of code (at all processes) for which we need to ensure there is at most one process executing it at any point of time.

- Each process can call three functions
 - `enter()` to enter the critical section (CS)
 - `AccessResource()` to run the critical section code
 - `exit()` to exit the critical section
Recap: Mutual exclusion in distributed systems

• Processes communicating by passing messages.

• Cannot share variables like semaphores!

• How do we support mutual exclusion in a distributed system?
Recap: Mutual exclusion in distributed systems

- Our focus today: Classical algorithms for mutual exclusion in distributed systems.
 - Central server algorithm
 - Ring-based algorithm
 - Ricart-Agrawala Algorithm
 - Maekawa Algorithm
Recap: System Model

• Each pair of processes is connected by reliable channels (such as TCP).

• Messages sent on a channel are eventually delivered to recipient, and in FIFO (First In First Out) order.

• Processes do not fail.
 • Fault-tolerant variants exist in literature.
Mutual exclusion in distributed systems

• Our focus today: Classical algorithms for mutual exclusion in distributed systems.
 • Central server algorithm
 • Ring-based algorithm
 • Ricart-Agrawala Algorithm
 • Maekawa Algorithm
Ricart-Agrawala’s Algorithm

- Classical algorithm from 1981
- Invented by Glenn Ricart (NIH) and Ashok Agrawala (U. Maryland)

- No token.
- Uses the notion of causality and multicast.
- Has lower waiting time to enter CS than Ring-Based approach.
Key Idea: Ricart-Agrawala Algorithm

• **enter()** at process \(P_i \)
 - **multicast** a request to all processes
 - Request: \(<T, P_i>, \text{ where } T = \text{ current Lamport timestamp at } P_i>\)
 - Wait until **all** other processes have responded positively to request
 - Requests are granted in order of causality.
 - \(<T, P_i> \) is used lexicographically: \(P_i \) in request \(<T, P_i>\) is used to break ties (since Lamport timestamps are not unique for concurrent events).
Messages in RA Algorithm

• enter() at process Pi
 • set state to Wanted
 • multicast “Request” <Ti, Pi> to all other processes, where Ti = current Lamport timestamp at Pi
 • wait until all other processes send back “Reply”
 • change state to Held and enter the CS

• On receipt of a Request <Tj, j> at Pi (i ≠ j):
 • if (state = Held) or (state = Wanted & (Ti, i) < (Tj, j))
 // lexicographic ordering in (Tj, j), Ti is Lamport timestamp of Pi’s request
 add request to local queue (of waiting requests)
 else send “Reply” to Pj

• exit() at process Pi
 • change state to Released and “Reply” to all requests queued at Pi.
Example: Ricart-Agrawala Algorithm

Request message
<T, Pi> = <102, 32>
Example: Ricart-Agrawala Algorithm

N32 state: Held.
Can now access CS
Example: Ricart-Agrawala Algorithm

N12 state: **Wanted**

N3 state: **Held**

N32 state: **Held**

Can now access CS

Request message: <115, 12>

Request message: <110, 80>

N80 state: **Wanted**
Example: Ricart-Agrawala Algorithm

N12 state: **Wanted**

N32 state: **Held.**
Can now access CS

N80 state: **Wanted**

Request message

Reply messages

N32

N5

N6

N3

N12

<115, 12>

<110, 80>
Example: Ricart-Agrawala Algorithm

N12 state: Wanted

N12

Request message

<115, 12>

N3

Reply messages

N6

N32

N32 state: Held.
Can now access CS
Queue requests:
<115, 12>, <110, 80>

N80

Request message

<110, 80>

N5

N80 state: Wanted

<110, 80>
Example: Ricart-Agrawala Algorithm

N12 state: Wanted

N12

Request message <115, 12>

N3

Reply messages

N32

N32 state: Held.
Can now access CS
Queue requests: <115, 12>, <110, 80>

N80

N80 state:
Wanted
Queue requests: <115, 12> (since > (110, 80))

N6

N5

Request message <110, 80>
Example: Ricart-Agrawala Algorithm

N12 state: Wanted

Request message: <115, 12>

Reply messages

N3 state:

N32 state: Held.
Can now access CS
Queue requests:
<115, 12>, <110, 80>

N6 state:

N80 state:
Wanted
Queue requests: <115, 12> (since > (110, 80))
Example: Ricart-Agrawala Algorithm

N12 state: Wanted
Request message: \langle115, 12\rangle
Reply
N6

N12
Request message: \langle110, 80\rangle
N3

N32 state: Held.
Can now access CS
Queue requests: \langle115, 12\rangle, \langle110, 80\rangle

N80 state: Wanted
Queue requests: \langle115, 12\rangle
Example: Ricart-Agrawala Algorithm

N12 state: Wanted
N6

N12

Request message
<115, 12>

Reply

N3

N32

N32 state: Released.

N80

N80 state:
Wanted
Queue requests: <115, 12>

N5

Request message
<110, 80>
Example: Ricart-Agrawala Algorithm

N12 state: Wanted
N80 state: Wanted
Queue requests: <115, 12>

N32 state: Released.
Multicast Reply to <115, 12>, <110, 80>

Request message <115, 12>
Reply
Request message <110, 80>
Example: Ricart-Agrawala Algorithm

N12 state: **Wanted** (waiting for N80’s reply)

N6

N12

Request message

<115, 12>

Reply messages

N3

N32

N32 state: **Released**.
Multicast Reply to

<115, 12>, <110, 80>

N80

Request message

<110, 80>

N5

N80 state:
Held. Can now access CS.
Queue requests: <115, 12>
Analysis: Ricart-Agrawala’s Algorithm

- Safety
 - Two processes P_i and P_j cannot both have access to CS
 - If they did, then both would have sent Reply to each other.
 - Thus, $(T_i, i) < (T_j, j)$ and $(T_j, j) < (T_i, i)$, which are together not possible.
 - What if $(T_i, i) < (T_j, j)$ and P_i replied to P_j’s request before it created its own request?
 - But then, causality and Lamport timestamps at P_i implies that $T_i > T_j$, which is a contradiction.
 - So this situation cannot arise.
Analysis: Ricart-Agrawala’s Algorithm

- **Safety**
 - Two processes P_i and P_j cannot both have access to CS.

- **Liveness**
 - Worst-case: wait for all other $(N-1)$ processes to send Reply.

- **Ordering**
 - Requests with lower Lamport timestamps are granted earlier.
Analysis: Ricart-Agrawala’s Algorithm

- **Safety**
 - Two processes P_i and P_j cannot both have access to CS.

- **Liveness**
 - Worst-case: wait for all other $(N-1)$ processes to send Reply.

- **Ordering**
 - Requests with lower Lamport timestamps are granted earlier.
Analysis: Ricart-Agrawala’s Algorithm

• Bandwidth:
 • \(2(N-1)\) messages per enter operation
 • \(N-1\) unicasts for the multicast request + \(N-1\) replies
 • Maybe fewer depending on the multicast mechanism.
 • \(N-1\) unicasts for the multicast release per exit operation
 • Maybe fewer depending on the multicast mechanism.

• Client delay:
 • one round-trip time

• Synchronization delay:
 • one message transmission time

• Client and synchronization delays have gone down to \(O(1)\).
• Bandwidth usage is still high. Can we bring it down further?
Mutual exclusion in distributed systems

• Our focus today: Classical algorithms for mutual exclusion in distributed systems.
 • Central server algorithm
 • Ring-based algorithm
 • Ricart-Agrawala Algorithm
 • Maekawa Algorithm
Maekawa’s Algorithm: Key Idea

- Ricart-Agrawala requires replies from all processes in group.
- Instead, get replies from only some processes in group.
- But ensure that only one process is given access to CS (Critical Section) at a time.
Maekawa’s Voting Sets

- Each process \(P_i \) is associated with a voting set \(V_i \) (subset of processes).
- Each process belongs to its own voting set.
- The intersection of any two voting sets must be non-empty.
A way to construct voting sets

One way of doing this is to put N processes in a \sqrt{N} by \sqrt{N} matrix and for each P_i, its voting set $V_i = \text{row containing } P_i + \text{column containing } P_i$.

Size of voting set $= 2^{\sqrt{N}-1}$.

P_1's voting set $= V_1$
Maekawa: Key Differences From Ricart-Agrawala

• Each process requests permission from only its voting set members.
 • Not from all

• Each process (in a voting set) gives permission to at most one process at a time.
 • Not to all
Actions

• state = **Released**, voted = false

• **enter()** at process P_i:
 • state = **Wanted**
 • Multicast **Request** message to all processes in V_i
 • Wait for **Reply (vote)** messages from all processes in V_i (including vote from self)
 • state = **Held**

• **exit()** at process P_i:
 • state = **Released**
 • Multicast **Release** to all processes in V_i
Actions (contd.)

• When Pi receives a Request from Pj:
 if (state == Held OR voted = true)
 queue Request
 else
 send Reply to Pj and set voted = true

• When Pi receives a Release from Pj:
 if (queue empty)
 voted = false
 else
 dequeue head of queue, say Pk
 Send Reply only to Pk
 voted = true
Size of Voting Sets

• Each voting set is of size K.
• Each process belongs to M other voting sets.
• Maekawa showed that $K=M=\text{approx. } \sqrt{N}$ works best.
Optional self-study: Why \sqrt{N} ?

- Let each voting set be of size K and each process belongs to M other voting sets.
- Total number of voting set members (processes may be repeated) = $K \times N$
- But since each process is in M voting sets
 - $K \times N = M \times N \Rightarrow K = M$ (1)
- Consider a process P_i
 - Total number of voting sets = members present in P_i’s voting set and all their voting sets = $(M-1) \times K + 1$
 - All processes in group must be in above
 - To minimize the overhead at each process (K), need each of the above members to be unique, i.e.,
 - $N = (M-1) \times K + 1$
 - $N = (K-1) \times K + 1$ (due to (1))
 - $K \sim \sqrt{N}$
Size of Voting Sets

- Each voting set is of size K.
- Each process belongs to M other voting sets.
- Maekawa showed that $K=M=approx. \sqrt{N}$ works best.
- Matrix technique gives a voting set size of $2*\sqrt{N}-1 = O(\sqrt{N})$.
Performance: Maekawa Algorithm

- **Bandwidth**
 - $2K = 2\sqrt{N}$ messages per enter
 - $K = \sqrt{N}$ messages per exit
 - Better than Ricart and Agrawala’s $(2*(N-1)$ and $N-1$ messages)
 - \sqrt{N} quite small. $N \sim 1$ million $\Rightarrow \sqrt{N} = 1K$

- **Client delay:**
 - One round trip time

- **Synchronization delay:**
 - 2 message transmission times
Safety

• When a process P_i receives replies from all its voting set V_i members, no other process P_j could have received replies from all its voting set members V_j.
 • V_i and V_j intersect in at least one process say P_k.
 • But P_k sends only one Reply (vote) at a time, so it could not have voted for both P_i and P_j.
Liveness

• Does not guarantee liveness, since can have a deadlock.

• System of 6 processes \{0, 1, 2, 3, 4, 5\}. 0, 1, 2 want to enter critical section:

 • \(V_0 = \{0, 1, 2\} \):

 • 0, 2 send reply to 0, but 1 sends reply to 1;

 • \(V_1 = \{1, 3, 5\} \):

 • 1, 3 send reply to 1, but 5 sends reply to 2;

 • \(V_2 = \{2, 4, 5\} \):

 • 4, 5 send reply to 2, but 2 sends reply to 0;

• Now, 0 waits for 1’s reply, 1 waits for 5’s reply (5 waits for 2 to send a release), and 2 waits for 0 to send a release. Hence, deadlock!
Analysis: Maekawa Algorithm

- **Safety:**
 - When a process P_i receives replies from all its voting set V_i members, no other process P_j could have received replies from all its voting set members V_j.

- **Liveness**
 - Not satisfied. Can have deadlock!

- **Ordering:**
 - Not satisfied.
Breaking deadlocks

- Maekawa algorithm can be extended to break deadlocks.
- Compare Lamport timestamps before replying (like Ricart-Agrawala).
- But is that enough?
 - System of 6 processes \{0, 1, 2, 3, 4, 5\}. 0, 1, 2 want to enter critical section:
 - \(V_0 = \{0, 1, 2\}\): 0, 2 send reply to 0, but 1 sends reply to 1;
 - \(V_1 = \{1, 3, 5\}\): 1, 3 send reply to 1, but 5 sends reply to 2;
 - \(V_2 = \{2, 4, 5\}\): 4, 5 send reply to 2, but 2 sends reply to 0;
 - Suppose \((L_1, P_1) < (L_0, P_0) < (L_2, P_2)\).
 - Deadlock can still happen based on when messages are received.
 - P5 receives P2’s request before P1’s, and replies back to P2 first.
 - We need a way to take back the reply.
Breaking deadlocks

• Say Pi’s request has a smaller timestamp than Pj.
• If Pk receives Pj’s request after replying to Pi, send fail to Pj.
• If Pk receives Pi’s request after replying to Pj, send inquire to Pj.
• If Pj receives an inquire and at least one fail, it sends a relinquish to release locks, and deadlock breaks.
Breaking deadlocks

- System of 6 processes \{0, 1, 2, 3, 4, 5\}. 0, 1, 2 want to enter critical section:
 - \(V_0 = \{0, 1, 2\}\): 0, 2 send \textit{reply} to 0, but 1 sends \textit{reply} to 1;
 - \(V_1 = \{1, 3, 5\}\): 1, 3 send \textit{reply} to 1, but 5 sends \textit{reply} to 2;
 - \(V_2 = \{2, 4, 5\}\): 4, 5 send \textit{reply} to 2, but 2 sends \textit{reply} to 0;
- Suppose \((L1, P1) < (L0, P0) < (L2, P2)\).
- P2 will send \textit{fail} to itself when it receives its own request after P0.
- P5 will send \textit{inquire} to P2 when it receives P1’s request.
- P2 will send \textit{relinquish} to \(V_2\). P5 and P4 will set “voted = false”. P5 will reply to P1.
- P1 can now enter CS, followed by P0, and then P2.
Mutual exclusion in distributed systems

- Classical algorithms for mutual exclusion in distributed systems.
 - Central server algorithm
 - Satisfies safety, liveness, but not ordering.
 - $O(1)$ bandwidth, and $O(1)$ client and synchronization delay.
 - Central server is scalability bottleneck.
 - Ring-based algorithm
 - Satisfies safety, liveness, but not ordering.
 - Constant bandwidth usage, $O(N)$ client and synchronization delay.
 - Ricart-Agrawala algorithm
 - Satisfies safety, liveness, and ordering.
 - $O(N)$ bandwidth, $O(1)$ client and synchronization delay.
 - Maekawa algorithm
 - Satisfies safety, but not liveness and ordering.
 - $O(\sqrt{N})$ bandwidth, $O(1)$ client and synchronization delay.