Distributed Systems

CS425/ECE428

Feb 20 2023

Instructor: Radhika Mittal

Logistics

- HW2 released today
 - You can solve the first two questions right away.
 - You can solve the third question by the end of this class.
 - Hopefully, you can solve the fourth question by end of this week, and the 5th and the 6th questions by next Monday.
 - Due on March 6th (Monday)
- MP1 is also due on March 6th (Monday).
- So please start working on your assignments right-away!

Logistics

• Early lecture slides are rough and transient.

Today's agenda

- Mutual Exclusion
 - Chapter 15.2
- Leader Election (if time)
 - Chapter 15.3

Recap: Problem Statement for mutual exclusion

- Critical Section Problem:
 - Piece of code (at all processes) for which we need to ensure there is <u>at most one process</u> executing it at any point of time.
- Each process can call three functions
 - enter() to enter the critical section (CS)
 - AccessResource() to run the critical section code
 - exit() to exit the critical section

Recap: Mutual exclusion in distributed systems

- Processes communicating by passing messages.
- Cannot share variables like semaphores!
- How do we support mutual exclusion in a distributed system?

Recap: Mutual exclusion in distributed systems

- Our focus today: Classical algorithms for mutual exclusion in distributed systems.
 - Central server algorithm
 - Ring-based algorithm
 - Ricart-Agrawala Algorithm
 - Maekawa Algorithm

Recap: System Model

• Each pair of processes is connected by reliable channels (such as TCP).

 Messages sent on a channel are eventually delivered to recipient, and in FIFO (First In First Out) order.

- Processes do not fail.
 - Fault-tolerant variants exist in literature.

Mutual exclusion in distributed systems

- Our focus today: Classical algorithms for mutual exclusion in distributed systems.
 - Central server algorithm
 - Ring-based algorithm
 - Ricart-Agrawala Algorithm
 - Maekawa Algorithm

Ricart-Agrawala's Algorithm

- Classical algorithm from 1981
- Invented by Glenn Ricart (NIH) and Ashok Agrawala (U. Maryland)
- No token.
- Uses the notion of causality and multicast.
- Has lower waiting time to enter CS than Ring-Based approach.

Key Idea: Ricart-Agrawala Algorithm

- enter() at process Pi
 - multicast a request to all processes
 - Request: $\langle T, Pi \rangle$, where T = current Lamport timestamp at Pi
 - Wait until all other processes have responded positively to request
- Requests are granted in order of causality.
- <T, Pi> is used lexicographically: Pi in request <T, Pi> is used to break ties (since Lamport timestamps are not unique for concurrent events).

Messages in RA Algorithm

- enter() at process Pi
 - set state to <u>Wanted</u>
 - multicast "Request" <Ti, Pi> to all other processes, where Ti = current
 Lamport timestamp at Pi
 - wait until <u>all</u> other processes send back "Reply"
 - change state to <u>Held</u> and enter the CS
- On receipt of a Request <Tj, j> at Pi (i ≠ j):
 - if (state = Held) or (state = Wanted & (Ti, i) < (Tj, j))
 // lexicographic ordering in (Tj, j), Ti is Lamport timestamp of Pi's request add request to local queue (of waiting requests)
 else send "Reply" to Pj
- exit() at process Pi
 - change state to <u>Released</u> and "Reply" to <u>all</u> requests queued at Pi.

Wanted

Queue requests: <115, 12> (since > (110, 80))

- Safety
 - Two processes Pi and Pj cannot both have access to CS
 - If they did, then both would have sent Reply to each other.
 - Thus, (Ti, i) < (Tj, j) and (Tj, j) < (Ti, i), which are together not possible.
 - What if (Ti, i) < (Tj, j) and Pi replied to Pj's request before it created its own request?
 - But then, causality and Lamport timestamps at Pi implies that Ti
 Tj , which is a contradiction.
 - So this situation cannot arise.

- Safety
 - Two processes Pi and Pj cannot both have access to CS.
- Liveness
 - Worst-case: wait for all other (N-1) processes to send Reply.
- Ordering
 - Requests with lower Lamport timestamps are granted earlier.

Safety

• Two processes Pi and Pj cannot both have access to CS.

Liveness

 Worst-case: wait for all other (N-1) processes to send Reply.

Ordering

Requests with lower Lamport timestamps are granted earlier.

- Bandwidth:
 - 2*(N-1) messages per enter operation
 - N-1 unicasts for the multicast request + N-1 replies
 - Maybe fewer depending on the multicast mechanism.
 - N-1 unicasts for the multicast release per exit operation
 - Maybe fewer depending on the multicast mechanism.
- Client delay:
 - one round-trip time
- Synchronization delay:
 - one message transmission time
- Client and synchronization delays have gone down to O(1).
- Bandwidth usage is still high. Can we bring it down further?

Mutual exclusion in distributed systems

- Our focus today: Classical algorithms for mutual exclusion in distributed systems.
 - Central server algorithm
 - Ring-based algorithm
 - Ricart-Agrawala Algorithm
 - Maekawa Algorithm

Maekawa's Algorithm: Key Idea

 Ricart-Agrawala requires replies from all processes in group.

- Instead, get replies from only some processes in group.
- But ensure that only one process is given access to CS (Critical Section) at a time.

Maekawa's Voting Sets

- Each process Pi is associated with a <u>voting set</u> Vi (subset of processes).
- Each process belongs to its own voting set.
- The intersection of any two voting sets must be non-empty.

A way to construct voting sets

One way of doing this is to put N processes in a \sqrt{N} by \sqrt{N} matrix and for each Pi, its voting set Vi = row containing Pi + column containing Pi.

Size of voting set = $2*\sqrt{N-1}$.

р1	p2
p3	p4

Maekawa: Key Differences From Ricart-Agrawala

- Each process requests permission from only its voting set members.
 - Not from all

- Each process (in a voting set) gives permission to at most one process at a time.
 - Not to all

Actions

- state = Released, voted = false
- enter() at process Pi:
 - state = Wanted
 - Multicast Request message to all processes in Vi
 - Wait for Reply (vote) messages from all processes in Vi (including vote from self)
 - state = Held
- exit() at process Pi:
 - state = <u>Released</u>
 - Multicast Release to all processes in Vi

Actions (contd.)

```
    When Pi receives a Request from Pj:
        if (state == Held OR voted = true)
            queue Request
        else
        send Reply to Pj and set voted = true
```

```
    When Pi receives a Release from Pj:
        if (queue empty)
            voted = false
        else
            dequeue head of queue, say Pk
            Send Reply only to Pk
            voted = true
```

Size of Voting Sets

- Each voting set is of size K.
- Each process belongs to M other voting sets.
- Maekawa showed that K=M=approx. \sqrt{N} works best.

Optional self-study: Why \sqrt{N} ?

- Let each voting set be of size K and each process belongs to M other voting sets.
- Total number of voting set members (processes may be repeated) = K*N
- But since each process is in M voting sets
 - K*N = M*N => K = M (1)
- Consider a process Pi
 - Total number of voting sets = members present in Pi's voting set and all their voting sets = (M-1)*K + 1
 - All processes in group must be in above
 - To minimize the overhead at each process (K), need each of the above members to be unique, i.e.,
 - N = (M-1)*K + 1
 - N = (K-1)*K + 1 (due to (1))
 - K ~ √N

Size of Voting Sets

- Each voting set is of size K.
- Each process belongs to M other voting sets.
- Maekawa showed that K=M=approx. \sqrt{N} works best.
- Matrix technique gives a voting set size of $2*\sqrt{N-1} = O(\sqrt{N})$.

Performance: Maekawa Algorithm

- Bandwidth
 - $2K = 2\sqrt{N}$ messages per enter
 - $K = \sqrt{N}$ messages per exit
 - Better than Ricart and Agrawala's (2*(N-1)) and N-1 messages)
 - \sqrt{N} quite small. $N \sim 1$ million => $\sqrt{N} = 1$ K
- Client delay:
 - One round trip time
- Synchronization delay:
 - 2 message transmission times

Safety

- When a process Pi receives replies from all its voting set Vi members, no other process Pj could have received replies from all its voting set members Vj.
 - Vi and Vj intersect in at least one process say Pk.
 - But Pk sends only one Reply (vote) at a time, so it could not have voted for both Pi and Pj.

Liveness

- Does not guarantee liveness, since can have a deadlock.
- System of 6 processes {0,1,2,3,4,5}. 0,1,2 want to enter critical section:
 - $V_0 = \{0, 1, 2\}$:
 - 0, 2 send reply to 0, but I sends reply to I;
 - $V_1 = \{1, 3, 5\}$:
 - 1, 3 send reply to 1, but 5 sends reply to 2;
 - $V_2 = \{2, 4, 5\}$:
 - 4, 5 send reply to 2, but 2 sends reply to 0;
- Now, 0 waits for I's reply, I waits for 5's reply (5 waits for 2 to send a release), and 2 waits for 0 to send a release. Hence, deadlock!

Analysis: Maekawa Algorithm

- Safety:
 - When a process Pi receives replies from all its voting set Vi members, no other process Pj could have received replies from all its voting set members Vj.
- Liveness
 - Not satisfied. Can have deadlock!
- Ordering:
 - Not satisfied.

Breaking deadlocks

- Maekawa algorithm can be extended to break deadlocks.
- Compare Lamport timestamps before replying (like Ricart-Agrawala).
- But is that enough?
 - System of 6 processes {0,1,2,3,4,5}. 0,1,2 want to enter critical section:
 - $V_0 = \{0, 1, 2\}$: 0, 2 send reply to 0, but 1 sends reply to 1;
 - $V_1 = \{1, 3, 5\}$: 1, 3 send reply to 1, but 5 sends reply to 2;
 - $V_2 = \{2, 4, 5\}$: 4, 5 send reply to 2, but 2 sends reply to 0;
 - Suppose (L1, P1) < (L0, P0) < (L2, P2).
 - Deadlock can still happen based on when messages are received.
 - P5 receives P2's request before P1's, and replies back to P2 first.
- We need a way to take back the reply.

Breaking deadlocks

- Say Pi's request has a smaller timestamp than Pj.
- If Pk receives Pj's request after replying to Pi, send fail to Pj.
- If Pk receives Pi's request after replying to Pj, send inquire to Pj.
- If Pj receives an inquire and at least one fail, it sends a relinquish to release locks, and deadlock breaks.

Breaking deadlocks

- System of 6 processes {0,1,2,3,4,5}. 0,1,2 want to enter critical section:
 - $V_0 = \{0, 1, 2\}$: 0, 2 send reply to 0, but 1 sends reply to 1;
 - $V_1 = \{1, 3, 5\}$: 1, 3 send reply to 1, but 5 sends reply to 2;
 - $V_2 = \{2, 4, 5\}$: 4, 5 send reply to 2, but 2 sends reply to 0;
- Suppose (L1, P1) < (L0, P0) < (L2, P2).
- P2 will send fail to itself when it receives its own request after P0.
- P5 will send inquire to P2 when it receives P1's request.
- P2 will send relinquish to V_2 . P5 and P4 will set "voted = false". P5 will reply to P1.
- PI can now enter CS, followed by P0, and then P2.

Mutual exclusion in distributed systems

- Classical algorithms for mutual exclusion in distributed systems.
 - Central server algorithm
 - Satisfies safety, liveness, but not ordering.
 - O(1) bandwidth, and O(1) client and synchronization delay.
 - Central server is scalability bottleneck.
 - Ring-based algorithm
 - Satisfies safety, liveness, but not ordering.
 - Constant bandwidth usage, O(N) client and synchronization delay
 - Ricart-Agrawala algorithm
 - Satisfies safety, liveness, and ordering.
 - O(N) bandwidth, O(I) client and synchronization delay.
 - Maekawa algorithm
 - Satisfies safety, but not liveness and ordering.
 - $O(\sqrt{N})$ bandwidth, O(1) client and synchronization delay.