Distributed Systems

CS425/ECE428

Feb 17 2022

Instructor: Radhika Mittal

Acknowledgements for some of the materials: Indy Gupta and Nikita Borisov
Today’s agenda

• Mutual Exclusion
 • Chapter 15.2

• Leader Election (if time)
 • Chapter 15.3
Recap: Problem Statement for mutual exclusion

- **Critical Section Problem:**
 - Piece of code (at all processes) for which we need to ensure there is at most one process executing it at any point of time.

- Each process can call three functions
 - `enter()` to enter the critical section (CS)
 - `AccessResource()` to run the critical section code
 - `exit()` to exit the critical section
Recap: Mutual exclusion in distributed systems

• Processes communicating by passing messages.

• Cannot share variables like semaphores!

• How do we support mutual exclusion in a distributed system?
Recap: Mutual exclusion in distributed systems

• Our focus today: Classical algorithms for mutual exclusion in distributed systems.
 • Central server algorithm
 • Ring-based algorithm
 • Ricart-Agrawala Algorithm
 • Maekawa Algorithm
Recap: System Model

• Each pair of processes is connected by reliable channels (such as TCP).

• Messages sent on a channel are eventually delivered to recipient, and in FIFO (First In First Out) order.

• Processes do not fail.
 • Fault-tolerant variants exist in literature.
Recap: Mutual exclusion in distributed systems

- Our focus today: Classical algorithms for mutual exclusion in distributed systems.
 - **Central server algorithm**
 - Ring-based algorithm
 - Ricart-Agrawala Algorithm
 - Maekawa Algorithm
Analysis of Central Algorithm

- **Safety** – at most one process in CS
 - Exactly one token

- **Liveness** – every request for CS granted eventually
 - With \(N \) processes in system, queue has at most \(N \) processes
 - If each process exits CS eventually and no failures, liveness guaranteed

- **Ordering:**
 - FIFO ordering guaranteed in order of requests received at leader
 - Not in the order in which requests were sent or the order in which processes enter CS!
Analyzing Performance

Three metrics:

- **Bandwidth**: the total number of messages sent in each *enter* and *exit* operation.

- **Client delay**: the delay incurred by a process at each *enter* and *exit* operation (when no other process is in CS, or waiting)
 - *We will focus on the client delay for the enter operation.*

- **Synchronization delay**: the time interval between one process exiting the critical section and the next process entering it (when there is only one process waiting). Measure of the *throughput* of the system.
Analysis of Central Algorithm

- **Bandwidth**: the total number of messages sent in each *enter* and *exit* operation.
 - 2 messages for enter
 - 1 message for exit

- **Client delay**: the delay incurred by a process at each *enter* and *exit* operation (when *no* other process is in, or waiting)
 - 2 message latencies or 1 round-trip (request + grant) on enter.

- **Synchronization delay**: the time interval between one process exiting the critical section and the next process entering it (when there is *only one* process waiting)
 - 2 message latencies (release + grant)
Limitations of Central Algorithm

- The leader is the performance bottleneck and single point of failure.
Mutual exclusion in distributed systems

- Our focus today: Classical algorithms for mutual exclusion in distributed systems.
 - Central server algorithm
 - Ring-based algorithm
 - Ricart-Agrawala Algorithm
 - Maekawa Algorithm
Ring-based Mutual Exclusion

Currently holds token, can access CS

Token:
Ring-based Mutual Exclusion

Cannot access CS anymore

Here’s the token!

Token:
Ring-based Mutual Exclusion

Currently holds token, can access CS

Token: ●
Ring-based Mutual Exclusion

- N Processes organized in a virtual ring
- Each process can send message to its successor in ring
- Exactly 1 token
 - `enter()`
 - Wait until you get token
 - `exit()` // already have token
 - Pass on token to ring successor
- If receive token, and not currently in `enter()`, just pass on token to ring successor
Analysis of Ring-based algorithm

• Safety
 • Exactly one token

• Liveness
 • Token eventually loops around ring and reaches requesting process (we assume no failures)

• Ordering
 • Token not always obtained in order of enter events.
Analysis of Ring-based algorithm

- **Safety**
 - Exactly one token

- **Liveness**
 - Token eventually loops around ring and reaches requesting process (we assume no failures)

- **Ordering**
 - Token not always obtained in order of enter events.
Analysis of Ring-based algorithm

- Bandwidth
 - Per enter, 1 message at requesting process but up to N messages throughout system.
 - 1 message sent per exit.
 - Constantly consumes bandwidth even when no process requires entry to the critical section (except when a process is executing critical section).
Analysis of Ring-based algorithm

• Client delay:
 • Best case: just received token
 • Worst case: just sent token to neighbor
 • 0 to N message transmissions after entering enter()

• Synchronization delay between one process’ exit() from the CS and the next process’ enter():
 • Best case: process in enter() is successor of process in exit()
 • Worst case: process in enter() is predecessor of process in exit()
 • Between 1 and $(N-1)$ message transmissions.

• Can we improve upon this $O(n)$ client and synchronization delays?
Mutual exclusion in distributed systems

- Our focus today: Classical algorithms for mutual exclusion in distributed systems.
 - Central server algorithm
 - Ring-based algorithm
 - Ricart-Agrawala Algorithm
 - Maekawa Algorithm
Ricart-Agrawala’s Algorithm

• Classical algorithm from 1981
• Invented by Glenn Ricart (NIH) and Ashok Agrawala (U. Maryland)

• No token.
• Uses the notion of causality and multicast.
• Has lower waiting time to enter CS than Ring-Based approach.
Key Idea: Ricart-Agrawala Algorithm

- `enter()` at process Pi
 - multicast a request to all processes
 - Request: `<T, Pi>`, where T = current Lamport timestamp at Pi
 - Wait until *all* other processes have responded positively to request
 - Requests are granted in order of causality.
 - `<T, Pi>` is used lexicographically: Pi in request `<T, Pi>` is used to break ties (since Lamport timestamps are not unique for concurrent events).
Messages in RA Algorithm

• enter() at process Pi
 • set state to Wanted
 • multicast “Request” <Ti, Pi> to all other processes, where Ti = current Lamport timestamp at Pi
 • wait until all other processes send back “Reply”
 • change state to Held and enter the CS

• On receipt of a Request <Tj, j> at Pi (i ≠ j):
 • if (state = Held) or (state = Wanted & (Ti, i) < (Tj, j))
 // lexicographic ordering in (Tj, j), Ti is Lamport timestamp of Pi’s request
 add request to local queue (of waiting requests)
 else send “Reply” to Pj

• exit() at process Pi
 • change state to Released and “Reply” to all queued requests.
Example: Ricart-Agrawala Algorithm

Request message
\(<T, Pi> = <102, 32> \)
Example: Ricart-Agrawala Algorithm

N32 state: Held.
Can now access CS
Example: Ricart-Agrawala Algorithm

N12 state: Wanted

Request message: <115, 12>

N6

N3

N32 state: Held.
Can now access CS

N80 state: Wanted

Request message: <110, 80>

N5
Example: Ricart-Agrawala Algorithm

N12 state: Wanted

N12 to N3: Request message \langle115, 12\rangle

N3 to N12: Reply messages

N6

N3 to N6: Request message \langle110, 80\rangle

N32 state: Held.
Can now access CS

N80

N80 state: Wanted

N32 to N80: Request message \langle110, 80\rangle

N5
Example: Ricart-Agrawala Algorithm

N12 state: Wanted

N6

N12

N3

Request message

N32

N80

N5

Reply messages

Request message

N32 state: Held.
Can now access CS
Queue requests:

N80 state: Wanted

<115, 12>

<110, 80>

<110, 80>

N80

N12
Example: Ricart-Agrawala Algorithm

- N12 state: Wanted
 - Request message: <115, 12>
 - Reply messages
- N6
- N3
- N32 state: Held.
 - Can now access CS
 - Queue requests: <115, 12>, <110, 80>
- N80 state: Wanted
 - Request message: <110, 80>
- N5

Queue requests: <115, 12> (since > (110, 80))
Example: Ricart-Agrawala Algorithm

N12 state: Wanted
Request message: <115, 12>
Reply messages
N3
N6

N12
Request message: <110, 80>

N32 state: Held.
Can now access CS
Queue requests:
<115, 12>, <110, 80>

N80 state: Wanted
Queue requests: <115, 12> (since > (110, 80))
Example: Ricart-Agrawala Algorithm

N12 state: Wanted
N12 receives Request message <115, 12>
N12 sends Reply to N6
N6 receives Reply
N32 state: Held.
Can now access CS
N32 receives Request message <110, 80>
N32 sends Reply to N5
N5 receives Reply
N80 state: Wanted
N80 receives Request message <110, 80>
N80 sends Request message <115, 12> to N32
Queue requests: <115, 12>, <110, 80>
Example: Ricart-Agrawala Algorithm

N12 state: Wanted

N12

Request message
<115, 12>

N3

Reply

N6

N32 state: Released.

N32

N80 state:
Wanted

Queue requests: <115, 12>

N80

Request message
<110, 80>

N5
Example: Ricart-Agrawala Algorithm

N80 state: Wanted
Queue requests: <115, 12>

N12 state: Wanted

N3 state:
Request message <115, 12>
Reply

N6 state:
Reply

N32 state: Released.
Multicast Reply to <115, 12>, <110, 80>

N80 state:
Request message <110, 80>

N5 state:
Example: Ricart-Agrawala Algorithm

N12 state: **Wanted** (waiting for N80’s reply)

N6

N12

Request message

<115, 12>

Reply messages

N3

N32

N32 state: **Released**. Multicast Reply to

<115, 12>, <110, 80>

N80

Request message

<110, 80>

N80 state:

Held. Can now access CS.

Queue requests: <115, 12>

N5
Analysis: Ricart-Agrawala’s Algorithm

• Safety
 • Two processes P_i and P_j cannot both have access to CS
 • If they did, then both would have sent Reply to each other.
 • Thus, (T_i, i) < (T_j, j) and (T_j, j) < (T_i, i), which are together not possible.
 • What if (T_i, i) < (T_j, j) and P_i replied to P_j’s request before it created its own request?
 • But then, causality and Lamport timestamps at P_i implies that T_i > T_j, which is a contradiction.
 • So this situation cannot arise.
Analysis: Ricart-Agrawala’s Algorithm

• Safety
 • Two processes \(P_i \) and \(P_j \) cannot both have access to CS.

• Liveness
 • Worst-case: wait for all other \((N-1)\) processes to send Reply.

• Ordering
 • Requests with lower Lamport timestamps are granted earlier.
Analysis: Ricart-Agrawala’s Algorithm

• **Safety**
 - Two processes P_i and P_j cannot both have access to CS.

• **Liveness**
 - Worst-case: wait for all other $(N-1)$ processes to send Reply.

• **Ordering**
 - Requests with lower Lamport timestamps are granted earlier.
Analysis: Ricart-Agrawala’s Algorithm

• Bandwidth:
 • $2(N-1)$ messages per enter operation
 • $N-1$ unicasts for the multicast request + $N-1$ replies
 • Maybe fewer depending on the multicast mechanism.
 • $N-1$ unicasts for the multicast release per exit operation
 • Maybe fewer depending on the multicast mechanism.

• Client delay:
 • one round-trip time

• Synchronization delay:
 • one message transmission time

• *Client and synchronization delays have gone down to $O(1)$.*

• *Bandwidth usage is still high. Can we bring it down further?*
Mutual exclusion in distributed systems

• Our focus today: Classical algorithms for mutual exclusion in distributed systems.
 • Central server algorithm
 • Ring-based algorithm
 • Ricart-Agrawala Algorithm
 • Maekawa Algorithm
Maekawa’s Algorithm: Key Idea

• Ricart-Agrawala requires replies from all processes in group.

• Instead, get replies from only some processes in group.

• But ensure that only one process is given access to CS (Critical Section) at a time.
Maekawa’s Voting Sets

• Each process P_i is associated with a voting set V_i (subset of processes).
• Each process belongs to its own voting set.
• The intersection of any two voting sets must be non-empty.
A way to construct voting sets

One way of doing this is to put N processes in a \sqrt{N} by \sqrt{N} matrix and for each P_i, its voting set $V_i = \text{row containing } P_i + \text{column containing } P_i$.

Size of voting set $= 2^{\sqrt{N} - 1}$.

P_1's voting set $= V_1$
Maekawa: Key Differences From Ricart-Agrawala

• Each process requests permission from only its voting set members.
 • Not from all

• Each process (in a voting set) gives permission to at most one process at a time.
 • Not to all
Actions

• state = Released, voted = false

• enter() at process Pi:
 • state = Wanted
 • Multicast Request message to all processes in Vi
 • Wait for Reply (vote) messages from all processes in Vi (including vote from self)
 • state = Held

• exit() at process Pi:
 • state = Released
 • Multicast Release to all processes in Vi
Actions (contd.)

- When P_i receives a Request from P_j:

  ```java
  if (state == Held OR voted = true)
    queue Request
  else
    send Reply to $P_j$ and set voted = true
  ```

- When P_i receives a Release from P_j:

  ```java
  if (queue empty)
    voted = false
  else
    dequeue head of queue, say $P_k$
    Send Reply only to $P_k$
    voted = true
  ```
Size of Voting Sets

- Each voting set is of size K.
- Each process belongs to M other voting sets.
- Maekawa showed that $K=M=\text{approx. } \sqrt{N}$ works best.
Optional self-study: Why \sqrt{N}?

- Let each voting set be of size K and each process belongs to M other voting sets.
- Total number of voting set members (processes may be repeated) = $K*N$
- But since each process is in M voting sets
 - $K*N = M*N \Rightarrow K = M$ (1)
- Consider a process P_i
 - Total number of voting sets = members present in P_i’s voting set and all their voting sets
 = $(M-1)*K + 1$
 - All processes in group must be in above
 - To minimize the overhead at each process (K), need each of the above members to be unique, i.e.,
 - $N = (M-1)*K + 1$
 - $N = (K-1)*K + 1$ (due to (1))
 - $K \sim \sqrt{N}$
Size of Voting Sets

• Each voting set is of size K.

• Each process belongs to M other voting sets.

• Maekawa showed that $K=M=\text{approx. } \sqrt{N}$ works best.

• Matrix technique gives a voting set size of $2\sqrt{N}-1 = O(\sqrt{N})$.
Performance: Maekawa Algorithm

- Bandwidth
 - $2K = 2\sqrt{N}$ messages per enter
 - $K = \sqrt{N}$ messages per exit
 - Better than Ricart and Agrawala’s $(2(N-1))$ and $N-1$ messages)
 - \sqrt{N} quite small. $N \sim 1$ million $\Rightarrow \sqrt{N} = 1K$

- Client delay:
 - One round trip time

- Synchronization delay:
 - 2 message transmission times
Safety

• When a process P_i receives replies from all its voting set V_i members, no other process P_j could have received replies from all its voting set members V_j.
 • V_i and V_j intersect in at least one process say P_k.
 • But P_k sends only one Reply (vote) at a time, so it could not have voted for both P_i and P_j.
Liveness

• Does not guarantee liveness, since can have a deadlock.

• *System of 6 processes* \{0,1,2,3,4,5\}. 0,1,2 want to enter critical section:

 • \(V_0 = \{0, 1, 2\} \):
 • 0, 2 send *reply* to 0, but 1 sends *reply* to 1;

 • \(V_1 = \{1, 3, 5\} \):
 • 1, 3 send *reply* to 1, but 5 sends *reply* to 2;

 • \(V_2 = \{2, 4, 5\} \):
 • 4, 5 send *reply* to 2, but 2 sends *reply* to 0;

• Now, 0 waits for 1’s reply, 1 waits for 5’s reply (5 waits for 2 to send a release), and 2 waits for 0 to send a release. Hence, deadlock!
Analysis: Maekawa Algorithm

- **Safety:**
 - When a process P_i receives replies from all its voting set V_i members, no other process P_j could have received replies from all its voting set members V_j.

- **Liveness**
 - Not satisfied. Can have deadlock!

- **Ordering:**
 - Not satisfied.
Breaking deadlocks

- Maekawa algorithm can be extended to break deadlocks.
- Compare Lamport timestamps before replying (like Ricart-Agrawala).
- But is that enough?
 - System of 6 processes \{0, 1, 2, 3, 4, 5\}. 0, 1, 2 want to enter critical section:
 - \(V_0 = \{0, 1, 2\}\): 0, 2 send reply to 0, but 1 sends reply to 1;
 - \(V_1 = \{1, 3, 5\}\): 1, 3 send reply to 1, but 5 sends reply to 2;
 - \(V_2 = \{2, 4, 5\}\): 4, 5 send reply to 2, but 2 sends reply to 0;
 - Suppose \((L_1, P_1) < (L_0, P_0) < (L_2, P_2)\).
 - Deadlock can still happen based on when messages are received.
 - P5 receives P2’s request before P1’s, and replies back to P2 first.
- We need a way to take back the reply.
Breaking deadlocks

• To be continued in next class.