
Distributed Systems

CS425/ECE428

Feb 26 2021

Instructor : Radhika Mittal

Acknowledgements for some of the materials: Indy Gupta and Nikita Borisov

Today’s agenda

• Wrap up Multicast
• Chapter 15.4
• Tree-based multicast and Gossip

• Mutual Exclusion
• Chapter 15.2

Recap: Ordered Multicast

• FIFO ordering: If a correct process issues multicast(g,m) and
then multicast(g,m’), then every correct process that delivers
m’ will have already delivered m.

• Causal ordering: If multicast(g,m) à multicast(g,m’) then any
correct process that delivers m’ will have already delivered m.

• Note that à counts multicast messages delivered to the application,
rather than all network messages.

• Total ordering: If a correct process delivers message m before
m’, then any other correct process that delivers m’ will have
already delivered m.

ISIS algorithm for total ordering

2
1

1

2

2

1 Message
P2

P3

P1

P4

3 Agreed Priority

3

3

Proposed Priority: higher than all priorities proposed by the process and
agreed priorities received by the process so far.
Agreed (Final) Priority: Maximum of all proposed priority for the message

Proof of total order with ISIS
• Consider two messages, m1 and m2, and two processes, p and p’.
• Suppose that p delivers m1 before m2.
• When p delivers m1, it is at the head of the queue. m2 is either :

• Already in p’s queue, and deliverable, so
• finalpriority(m1) < finalpriority(m2)

• Already in p’s queue, and not deliverable, so
• finalpriority(m1) < proposedpriority(m2) <= finalpriority(m2)

• Not yet in p’s queue:
• same as above, since proposed priority > priority of any

delivered message
• Suppose p’ delivers m2 before m1, by the same argument:

• finalpriority(m2) < finalpriority(m1)
• Contradiction!

Ordered Multicast

• FIFO ordering
• If a correct process issues multicast(g,m) and then multicast(g,m’),

then every correct process that delivers m’ will have already
delivered m.

• Causal ordering
• If multicast(g,m) à multicast(g,m’) then any correct process that

delivers m’ will have already delivered m.
• Note that à counts multicast messages delivered to the application,

rather than all network messages.
• Total ordering

• If a correct process delivers message m before m’ then any other
correct process that delivers m’ will have already delivered m.

Implementing causal order multicast

• Similar to FIFO Multicast
• What you send with a message differs.
• Updating rules differ.

• Each receiver maintains a vector of per-sender sequence
numbers (integers)

• Processes P1 through PN.
• Pi maintains a vector of sequence numbers Pi[1…N] (initially all

zeroes).
• Pi[j] is the latest sequence number Pi has received from Pj.

Implementing causal order multicast
• CO-multicast(g,m) at Pj:

set Pj[j] = Pj[j] + 1
piggyback entire vector Pj[1…N] with m.
B-multicast(g,{m, Pj[1…N]})

• On B-deliver({m, V[1..N]}) at Pi from Pj: If Pi receives a multicast from
Pj with sequence vector V[1…N], buffer it until both:

1.This message is the next one Pi is expecting from Pj, i.e.,
V[j] = Pi[j] + 1

2.All multicasts, anywhere in the group, which happened-before
m have been received at Pi, i.e.,

For all k ≠ j: V[k] ≤ Pi[k]
When above two conditions satisfied,

CO-deliver(m) and set Pi[j] = V[j]

Time

P2

P1

P3

P4

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[1,0,0,0]

[1,0,0,0]

Causal order multicast execution

Self-deliveries omitted for simplicity.

Time

P2

P1

P3

P4

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[1,0,0,0]

[1,0,0,0]
Deliver!

[1,0,0,0]
Deliver!

[1,1,0,0]

Causal order multicast execution

Self-deliveries omitted for simplicity.

Time

P2

P1

P3

P4

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[1,0,0,0]

[1,0,0,0]
Deliver!

[1,1,0,0]
Deliver!

Missing 1 from P1
Buffer!

Causal order multicast execution

[1,0,0,0]
Deliver!

[1,1,0,0]

Self-deliveries omitted for simplicity.

Time

P2

P1

P3

P4

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[1,0,0,0]

[1,0,0,0]
Deliver!

[1,0,0,0]
Deliver!

[1,1,0,0]

[1,1,0,0]
Deliver!

Missing 1 from P1
Buffer!

[1,0,0,1]

Deliver!
[1,1,0,1]

Deliver!
[1,1,0,1]

Causal order multicast execution

Self-deliveries omitted for simplicity.

Time

P2

P1

P3

P4

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[1,0,0,0]

[1,0,0,0]
Deliver!

[1,0,0,0]
Deliver!

[1,1,0,0]

[1,1,0,0]
Deliver!

Missing 1 from P1
Buffer!

[1,0,0,1]

Causal order multicast execution

Deliver!
[1,1,0,1]

Deliver!
[1,1,0,1]

Missing 1 from P1
Buffer!

Self-deliveries omitted for simplicity.

Time

P2

P1

P3

P4

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[1,0,0,0]

[1,0,0,0]
Deliver!

[1,0,0,0]
Deliver!

[1,1,0,0]

[1,1,0,0]
Deliver!

Missing 1 from P1
Buffer!

[1,0,0,1]

Missing 1 from P1
Buffer!

Deliver P1’s multicast, [1,0,0,0]
Causality condition true for buffered multicasts

Deliver P2’s buffered multicast, [1,1,0,0]
Deliver P4’s buffered multicast, [1,1,0,1]

Causal order multicast execution

Deliver!
[1,1,0,1]

Deliver!
[1,1,0,1]

Deliver!
[1,1,0,1]

Causal order multicast implementation

• Only looks at multicast messages delivered to the
application.

• Ignores causality created due to other network messages.

Ordered Multicast

• FIFO ordering
• If a correct process issues multicast(g,m) and then multicast(g,m’),

then every correct process that delivers m’ will have already
delivered m.

• Causal ordering
• If multicast(g,m) à multicast(g,m’) then any correct process that

delivers m’ will have already delivered m.
• Note that à counts multicast messages delivered to the application,

rather than all network messages.
• Total ordering

• If a correct process delivers message m before m’, then any other
correct process that delivers m’ will have already delivered m.

More efficient multicast mechanisms

• Our focus so far has been on the application-level semantics
of multicast.

• What are some of the more efficient underlying mechanisms for a
B-multicast?

B-Multicast

Sender

B-Multicast using unicast sends

TCP/UDP packets

Sender

B-Multicast using unicast sends

Closer look at physical network paths.
Sender

B-Multicast using unicast sends

Redundant packets!
Sender

B-Multicast using unicast sends
Similar redundancy when individual nodes
also act as routers (e.g. wireless sensor
networks).

How do we reduce the overhead?

Sender

Tree-based multicast

TCP/UDP packets

Instead of sending a unicast to all nodes,
construct a minimum spanning tree and
unicast along that.

Sender

Tree-based multicast

TCP/UDP packets

A process does not directly send messages to all
other processes in the group.

It sends a message to only a subset of processes.
Sender

Tree-based multicast
A process does not directly send messages to all
other processes in the group.

It sends a message to only a subset of processes.

Closer look at the physical network.

Sender

Tree-based multicast

Also possible to construct a tree that
includes network routers. IP multicast!

Sender

Tree-based multicast

What happens if a node fails?
Overhead of tree construction and repair.

Sender

TCP/UDP packets

Third approach: Gossip

Transmit to b random targets.

Third approach: Gossip

Other nodes do the same when they
receive a message.

Transmit to b random targets.

Third approach: Gossip

Other nodes do the same when they
receive a message.

Transmit to b random targets.

Third approach: Gossip
No “tree-construction” overhead.
More efficient than unicasting to all receivers.
Also known as “epidemic multicast”.
Probabilistic in nature – no hard guarantees.
Good enough for many applications.

Third approach: Gossip
Used in many real-world systems:
• Facebook’s distributed datastore uses it to

determine group membership and failures.
• Bitcoin uses it to exchange transaction

information between nodes.

Multicast Summary
• Multicast is an important communication mode in distributed systems.

• Applications may have different requirements:
• Basic
• Reliable
• Ordered: FIFO, Causal, Total
• Combinations of the above.

• Underlying mechanisms to spread the information:
• Unicast to all receivers.
• Tree-based multicast, and gossip: sender unicasts messages to only

a subset of other processes, and they spread the message further.
• Gossip is more scalable and more robust to process failures.

Today’s agenda

• Wrap up Multicast
• Chapter 15.4
• Tree-based multicast and Gossip

• Mutual Exclusion
• Chapter 15.2

• Goal: reason about ways in which different processes in a
distributed system can safely manipulate shared resources.

Why Mutual Exclusion?
• Bank’s Servers in the Cloud: Two of your customers make

simultaneous deposits of $10,000 into your bank account, each
from a separate ATM.

• Both ATMs read initial amount of $1000 concurrently from
the bank’s cloud server

• Both ATMs add $10,000 to this amount (locally at the ATM)
• Both write the final amount to the server
• What’s wrong?

Why Mutual Exclusion?
• Bank’s Servers in the Cloud: Two of your customers make

simultaneous deposits of $10,000 into your bank account, each
from a separate ATM.

• Both ATMs read initial amount of $1000 concurrently from
the bank’s cloud server

• Both ATMs add $10,000 to this amount (locally at the ATM)
• Both write the final amount to the server
• You lost $10,000!

• The ATMs need mutually exclusive access to your account entry
at the server

• or, mutually exclusive access to executing the code that
modifies the account entry.

More uses of mutual exclusion

• Distributed file systems
• Locking of files and directories

• Accessing objects in a safe and consistent way
• Ensure at most one server has access to object at any point

of time
• In industry

• Chubby is Google’s locking service

Problem Statement for mutual exclusion

• Critical Section Problem:
• Piece of code (at all processes) for which we

need to ensure there is at most one process
executing it at any point of time.

• Each process can call three functions
• enter() to enter the critical section (CS)
• AccessResource() to run the critical section code
• exit() to exit the critical section

ATM1:

enter();
// AccessResource()

obtain bank amount;
add in deposit;
update bank amount;
// AccessResource() end

exit();

ATM2:

enter();
// AccessResource()

obtain bank amount;
add in deposit;
update bank amount;
// AccessResource() end

exit();

Our bank example

Mutual exclusion for a single OS

• If all processes are running in one OS on a machine
(or VM):
• Semaphores
• Mutexes
• Condition variables
• Monitors
• …

Processes Sharing an OS: Semaphores

• Semaphore == an integer that can only be accessed via two special
functions

• Semaphore S=1; // Max number of allowed accessors.

wait(S) (or P(S) or down(S)):
while(1) { // each execution of the while loop is atomic
if (S > 0) {

S--;
break;

}
}

signal(S) (or V(S) or up(s)):
S++; // atomic

enter()

exit()

Atomic operations are
supported via hardware
instructions such as
compare-and-swap,
test-and-set, etc.

ATM1:

enter();
// AccessResource()

obtain bank amount;
add in deposit;
update bank amount;
// AccessResource() end

exit();

ATM2:

enter();
// AccessResource()

obtain bank amount;
add in deposit;
update bank amount;
// AccessResource() end

exit();

Our bank example

ATM1:

wait(S); //enter
// AccessResource()

obtain bank amount;
add in deposit;
update bank amount;
// AccessResource() end

signal(S); // exit

ATM2:

wait(S); //enter
// AccessResource()

obtain bank amount;
add in deposit;
update bank amount;
// AccessResource() end

signal(S); // exit

Our bank example
Semaphore S=1; // shared

Mutual exclusion in distributed systems

• Processes communicating by passing messages.

• Cannot share variables like semaphores!

• How do we support mutual exclusion in a distributed
system?

Mutual exclusion in distributed systems

• Our focus today: Classical algorithms for mutual
exclusion in distributed systems.
• Central server algorithm
• Ring-based algorithm
• Ricart-Agrawala Algorithm
• Maekawa Algorithm

Mutual Exclusion Requirements

• Need to guarantee 3 properties:
• Safety (essential):

• At most one process executes in CS (Critical
Section) at any time.

• Liveness (essential):
• Every request for a CS is granted eventually.

• Ordering (desirable):
• Requests are granted in the order they were

made.

System Model

• Each pair of processes is connected by reliable
channels (such as TCP).

• Messages sent on a channel are eventually delivered
to recipient, and in FIFO (First In First Out) order.

• Processes do not fail.
• Fault-tolerant variants exist in literature.

Mutual exclusion in distributed systems

• Our focus today: Classical algorithms for mutual
exclusion in distributed systems.
• Central server algorithm
• Ring-based algorithm
• Ricart-Agrawala Algorithm
• Maekawa Algorithm

Central Server Algorithm

• Elect a central server (or leader)
• Leader keeps

• A queue of waiting requests from processes who wish to
access the CS

• A special token which allows its holder to access CS
• Actions of any process in group:

• enter()
• Send a request to leader
• Wait for token from leader

• exit()
• Send back token to leader

Central Server Algorithm

• Leader Actions:
• On receiving a request from process Pi

if (leader has token)
Send token to Pi

else

Add Pi to queue

• On receiving a token from process Pi
if (queue is not empty)

Dequeue head of queue (say Pj), send that process the token
else

Retain token

Analysis of Central Algorithm

• Safety – at most one process in CS
• Exactly one token

• Liveness – every request for CS granted eventually
• With N processes in system, queue has at most N

processes
• If each process exits CS eventually and no failures, liveness

guaranteed
• Ordering:

• FIFO ordering guaranteed in order of requests received at
leader

• Not in the order in which requests were sent or the
order in which processes enter CS!

Analysis of Central Algorithm

• Safety – at most one process in CS
• Exactly one token

• Liveness – every request for CS granted eventually
• With N processes in system, queue has at most N

processes
• If each process exits CS eventually and no failures, liveness

guaranteed
• Ordering:

• FIFO ordering guaranteed in order of requests received at
leader

• Not in the order in which requests were sent or the
order in which processes enter CS!

To be continued in next class

• Metrics for analyzing performance of mutual exclusion
algorithms.

• Other algorithms for mutual exclusion in distributed
systems.
• Central server algorithm
• Ring-based algorithm
• Ricart-Agrawala Algorithm
• Maekawa Algorithm

