Distributed Systems

CS425/ECE428

Feb 26 202 |

Instructor: Radhika Mittal

Acknowledgements for some of the materials: Indy Gupta and Nikita Borisov

Today’s agenda

* Wrap up Multicast
* Chapter 154
* [ree-based multicast and Gossip

 Mutual Exclusion
* Chapter 15.2

Recap: Ordered Multicast

* FIFO ordering: If a correct process Issues multicast(g,m) and
then multicast(g,m’), then every correct process that delivers
m’ will have already delivered m.

* Causal ordering: If multicast(g,m) = multicast(g,m’) then any
correct process that delivers m’ will have already delivered m.

* Note that = counts multicast messages delivered to the application,
rather than all network messages.

* Total ordering: If a correct process delivers message m before
m’, then any other correct process that delivers m’ will have
already delivered m.

ISIS algorithm for total ordering

3 Agreed Periority

Py

P;
Proposed Priority: higher than all priorities proposed by the process and

agreed priorities received by the process so far.
Agreed (Final) Priority: Maximum of all proposed priority for the message

Proof of total order with ISIS

* Consider two messages, m; and m,, and two processes, p and p.
* Suppose that p delivers m, before m,.

* When p delivers m,, it is at the head of the queue. m, is either:
* Already In p’s queue, and deliverable, so
* finalpriority(m,) < finalpriority(m,)
* Already In p’s queue, and not deliverable, so
* finalpriority(m,) < proposedpriority(m,) <= finalpriority(m,)
* Not yet in p's queue:
* same as above, since proposed priority > priority of any
delivered message
* Suppose p’ delivers m, before m,, by the same argument:
* finalpriority(m,) < finalpriority(m,)
* Contradiction!

Ordered Multicast

* Causal ordering

* If multicast(g,m) = multicast(g,m’) then any correct process that
delivers m” will have already delivered m.

* Note that = counts multicast messages delivered to the application,
rather than all network messages.

Implementing causal order multicast

e Similar to FIFO Multicast

* What you send with a message differs.

» Updating rules differ.

* Fach receiver maintains a vector of per-sender sequence
numbers (integers)
* Processes P through PN.

* Pi maintains a vector of sequence numbers Pi[|...N] (inttially all
ZEeroes).

* Pi[j] is the latest sequence number Pi has received from P;.

Implementing causal order multicast

* CO-multicast(gm) at Pj:
set Pjlj] = Pj[j] + |
piggyback entire vector Pj[| ...N] with m.
B-multicast(g,{m, Pj[|...N]})
* On B-deliver({m,V[I..N]}) at Pi from Pj: If Pi receives a multicast from
Pj with sequence vector V[I ...N], buffer it until both:
|. This message Is the next one Pi is expecting from Pj, L.e,,
V[j] = Pi[j] + |
2. All multicasts, anywhere in the group, which happened-before
m have been received at Pj, I.e,
For all k # j:V[K] < Pi[K]
When above two conditions satisfied,
CO-deliver(m) and set Pi[j] = V][]

Causal order multicast execution

1,0,0,0]

Pl
[0,0,0,0] [0,0] Time

0,0.0.01 \ \ T~ \

[0,0,0,0] ~

P4
[0,0,0,0]

Self-deliveries omitted for simplicity.

Causal order multicast execution

11,0,0,0]

P1
[0,0,0,0]

P2

Time
[1,4,0,0]

[0,0,0,0]

P3

[0,0,0,0]

\ 7z

N

N

- =\~ NN
[1,0,0, T~
Deliver! \
\ .

P4
[0,0,0,0]

[1,0,0,0]
Deliver!

Self-deliveries omitted for simplicity.

Causal order multicast execution

[1,1,0,0]
[1,0,0,0] Deliver!
P1 >
[0909090] nme
- 1L~
[0,0,0,0] 11,00, T~
Deliver! \
P3 — AN X
[0,0,0,0] issing 1 from P17\
Buffer! \
P4 X
[0,0,0,0] [1,0,0,0]
Deliver!

Self-deliveries omitted for simplicity.

Causal order multicast execution

[1,1,0,0]
[1,0,0,0] Deliver!
P1 >
[0,0,0,0] Time
P2 AW | [19 9090] _—
[O’O’O’O] [170909 \
Deliver! \
P3 — AN S
[0,0,0,0] issing 1 from PL""\\
Buftfer!
P4 g
[0,0,0,0] [1,0,0,0]

Deliver!
Self-deliveries omitted for simplicity.

Causal order multicast execution

[1,1,0,0]
[1,0,0,0] Deliver!
P1 >
[0,0,0,0] Time
P2 AW | [19 9090] —
[O’O’O’O] [170909 \
Deliver! \
P3 — AN S
[0,0,0,0] issing 1 from PL~),
Buffer! \\
P4 \ X
[0,0,0,0] [1,0,0,0]

Deliver!

Self-deliveries omitted for simplicity.

Causal order multicast execution

[1,1,0,0]
[1909090] Deliver!
Pl >
[0,0,0,0] Time
P2 AW | [19 9090] _—
[O’O’O’O] [170309 \
Deliver! Deliver!
P3 N J1,1,0,1]
[0,0,0,0] issin—g—l from P1 \\.,Q ///)/
Buffer! \\ KA
P4 ~ ,
[1,0,0,0] [1,0,0,1] Deliver P1’s multicast, [1,0,0,0]

[0,0,0,0]

Causality condition true for buffered multicasts

1 |
Deliver! Deliver P2’s buffered multicast, [1,1,0,0]

Causal order multicast implementation

* Only looks at multicast messages delivered to the
application.

* lgnores causality created due to other network messages.

Ordered Multicast

* FIFO ordering

* If a correct process issues multicast(g,m) and then multicast(g,m’),
then every correct process that delivers m’ will have already
delivered m.

* Causal ordering

* If multicast(g,m) = multicast(g,m") then any correct process that
delivers m’ will have already delivered m.

* Note that = counts multicast messages delivered to the application,
rather than all network messages.

* Total ordering

* If a correct process delivers message m before m’, then any other
correct process that delivers m’ will have already delivered m.

More efficient multicast mechanisms

* Our focus so far has been on the application-level semantics
of multicast.

* What are some of the more efficient underlying mechanisms for a
B-multicast?

B-Multicast

Sender

B-Multicast using unicast sends

Sender

TCP/UDP packets y T~

B-Multicast using unicast sends

Sender ,
Closer look at physical network paths.

B-Multicast using unicast sends

Sender
Redundant packets!

B-Multicast using unicast sends

Similar redundancy when individual nodes
Sender also act as routers (e.g. wireless sensor

networks).
~ -~

\ —~

<~ How do we reduce the overhead?
\ TS~

~
\ ~

O o ©

Tree-based multicast

Instead of sending a unicast to all nodes,
construct a minimum spanning tree and
unicast along that.

Sender

Tree-based multicast

A process does not directly send messages to all
other processes in the group.

Sender

[t sends a message to only a subset of processes.

Tree-based multicast

A process does not directly send messages to all
other processes in the group.

Sender

[t sends a message to only a subset of processes.

X Closer look at the physical network.

Tree-based multicast

Sender Also possible to construct a tree that
includes network routers. IP multicast!

Tree-based multicast

Sender What happens if a node fails?
Overhead of tree construction and repair.

Third approach: Gossip

Transmit to b random targets.

Third approach: Gossip

Transmit to b random targets.

Other nodes do the same when they
receive a message.

Third approach: Gossip

Transmit to b random targets.

Other nodes do the same when they

=~ - receive a4 message.
_ > ~ ~
-~ ~
-~ ~ -
- ~ /i S
~ 4
- T
— -—
e =
/’—-§\ \
I/ ‘\ ~
z 2 S
' /I \ ,’_-\\\
__’/ \A, ’__~\\ 'I/ \‘
4 R % //'
\ I \\ 7’
\ /l ==

Third approach: Gossip

No “tree-construction” overhead.

More efficient than unicasting to all receivers.
Also known as “epidemic multicast”.
Probabilistic in nature — no hard guarantees.
Good enough for many applications.

o . -
_ > ~ ~
- ~
- ~ o
- ~ /, ‘\
~ 4
~a \ y
" w—_ = nd
—
/’—-§\ \
I/ ‘\ \
z) S
\ / \ ,,’_-\\\

Third approach: Gossip

Used in many real-world systems:

* Facebook’s distributed datastore uses it to
determine group membership and failures.

* Bitcoin uses It to exchange transaction
information between nodes.

L
P - ~ ~
- ~
- ~ -
- ~ y
~ F
\AQ \\
—> T
- -~
-
/’—-§\ \
I/ ‘\ \
z | S
\ / \ ,’_-\\

Multicast Summary

* Multicast Is an important communication mode in distributed systems.

* Applications may have different requirements:
* Basic
* Reliable
e Ordered: FIFO, Causal, Total
e Combinations of the above.

* Underlying mechanisms to spread the information:

e Unicast to all recelvers.

* Iree-based multicast, and gossip: sender unicasts messages to only
a subset of other processes, and they spread the message further.

* Gossip Is more scalable and more robust to process failures.

Today’s agenda

 Mutual Exclusion
* Chapter 15.2

* Goal: reason about ways In which different processes In a
distributed system can safely manipulate shared resources.

Why Mutual Exclusion?

 Bank’s Servers in the Cloud: Two of your customers make
simultaneous deposits of $10,000 into your bank account, each
from a separate AT M.

* Both ATMs read initial amount of $1000 concurrently from
the bank’s cloud server

* Both ATMs add $10,000 to this amount (locally at the ATM)
* Both write the final amount to the server
* What's wrong!

Why Mutual Exclusion?

 Bank’s Servers in the Cloud: Two of your customers make
simultaneous deposits of $10,000 into your bank account, each
from a separate AT M.

* Both ATMs read initial amount of $1000 concurrently from
the bank’s cloud server

* Both ATMs add $10,000 to this amount (locally at the ATM)
e Both write the final amount to the server

* You lost $10,000!
* The ATMs need mutually exclusive access to your account entry
at the server

* or, mutually exclusive access to executing the code that
modifies the account entry.

More uses of mutual exclusion

* Distributed file systems
* Locking of files and directories

* Accessing objects in a safe and consistent way
* Ensure at most one server has access to object at any point
of time
* In Industry
* Chubby I1s Google's locking service

Problem Statement for mutual exclusion

® Critical Section Problem:

* Piece of code (at all processes) for which we
need to ensure there is at most one process
executing It at any point of time.

* Fach process can call three functions
* enter() to enter the critical section (CS)
* AccessResource() to run the critical section code
* exit() to exit the critical section

Our bank example

ATMI: ATM2:
enter(); E enter();
/I AccessResource() i /I AccessResource()
obtain bank amount; E obtain bank amount;
add in deposit; i add in deposit;
update bank amount; E update bank amount;
/I AccessResource() end /I AccessResource() end

exit(); exit();

Mutual exclusion for a single OS

* It all processes are running in one OS on a machine
(or VM):
* Semaphores
* Mutexes
* Condition variables
* Monitors

Processes Sharing an OS: Semaphores

* Semaphore == an integer that can only be accessed via two special
functions

* Semaphore S=1;// Max number of allowed accessors.

wait(S) (or P(S) or down(S)):
while(l) { /I each execution of the while loop is atomic

if (S>0
A A - enter()
break: Atomic operations are
} supported via hardware

Instructions such as

} compare-and-swap,

signal(S) (or V(S) or up(s)): | test-and-set, etc.
S++;// atomic extt()

Our bank example

ATMI: ATM2:
enter(); E enter();
/I AccessResource() i /I AccessResource()
obtain bank amount; E obtain bank amount;
add in deposit; i add in deposit;
update bank amount; E update bank amount;
/I AccessResource() end /I AccessResource() end

exit(); exit();

Our bank example

Semaphore S=1;// shared

ATMI: ATM2:
wait(S); //enter wait(S); //enter
/I AccessResource() /I AccessResource()
obtain bank amount; obtain bank amount;
add in deposit; add in deposit;
update bank amount; update bank amount;
/I AccessResource() end /I AccessResource() end

signal(S); // exit signal(S); // exit

Mutual exclusion in distributed systems

* Processes communicating by passing messages.
* Cannot share variables like semaphores!

* How do we support mutual exclusion in a distributed
system?

Mutual exclusion in distributed systems

* Our focus today: Classical algorithms for mutual
exclusion in distributed systems.

* Central server algorithm

* Ring-based algorithm

* Ricart-Agrawala Algorithm
* Maekawa Algorithm

Mutual Exclusion Requirements

* Need to guarantee 3 properties:
* Safety (essential):

* At most one process executes in CS (Critical
Section) at any time.

* Liveness (essential):
* bvery request for a CS is granted eventually.
* Ordering (desirable):

* Requests are granted Iin the order they were
made.

System Model

* Each pair of processes Is connected by reliable
channels (such as TCP).

* Messages sent on a channel are eventually delivered
to recipient, and in FIFO (First In First Out) order.

* Processes do not fall.
e Fault-tolerant variants exist in literature.

Mutual exclusion in distributed systems

* Our focus today: Classical algorithms for mutual
exclusion in distributed systems.

* Central server algorithm

Central Server Algorithm

* Elect a central server (or leader)

* Leader keeps

* A queue of waiting requests from processes who wish to
access the CS

* A special token which allows its holder to access CS

* Actions of any process in group:

* enter()
* Send a request to leader
* Wait for token from leader

* exit()
* Send back token to leader

Central Server Algorithm

* | eader Actions:

* On receliving a request from process Pi
if (leader has token)
Send token to Pi

else
Add Pi to queue

* On receiving a token from process Pi
if (queue is not empty)
Dequeue head of queue (say P)), send that process the token
else

Retain token

Analysis of Central Algorithm

* Safety — at most one process in CS
* Exactly one token

* Liveness — every request for CS granted eventually

* With N processes In system, queue has at most N
processes

* |f each process exits CS eventually and no failures, liveness
guaranteed
* Ordering:
* FIFO ordering guaranteed in order of requests received at
leader

* Not in the order in which requests were sent or the
order in which processes enter CS!

Analysis of Central Algorithm

* Safety — at most one process in CS
* Exactly one token

* Liveness — every request for CS granted eventually

* With N processes In system, queue has at most N
processes

* |f each process exits CS eventually and no failures, liveness
guaranteed
* Ordering:
* FIFO ordering guaranteed in order of requests received at
leader

* Not in the order in which requests were sent or the
order in which processes enter CS!

To be continued in next class

* Metrics for analyzing performance of mutual exclusion
algorithms.

* Other algorithms for mutual exclusion in distributed
systems.

* Ring-based algorithm
* Ricart-Agrawala Algorithm
* Maekawa Algorithm

