
Distributed Systems

CS425/ECE428

Feb 19 2021

Instructor : Radhika Mittal

Acknowledgements for some of materials: Indy Gupta and Nikita Borisov

Logistics

• HW1 is due tonight at 11:59pm.

• HW2 has been released.
• You should be able to solve the first two questions right away.
• You should (hopefully) be able to solve all questions after

Wednesday’s class.

• MP1 will be released on Wednesday (Feb 24th).
• Please reach out to me if you are changing groups for MP1, so that

we can accordingly reassign the VM clusters.

Logistics
• Midterm on March 8th, Monday, 7pm-8:50pm.

• CBTF will proctor the exam via Zoom.
• Please sign up with CBTF if you have not already done so.
• Conflict and DRES accommodation requests will be dealt with using

the CBTF portal.
• It is a closed-book exam (no websites, no textbooks).

• You are allowed one physical double-sided cheat sheet (could be typed or hand-
written).

• Your answers can be hand-written or typed.
• If you are typing your answers, use of any online editors (e.g. Google Docs) is

not allowed.
• You can use offline text editors (e.g. Microsoft Word, textEdit, vim, notepad, etc).

• You must submit your responses on Gradescope within 1 hour 50
mins of the start of your exam.

• Syllabus includes everything covered up to (and including) “Multicast”.

Recap: Global snapshot

• State of each process (and each channel) in the system at a given
instant of time.

• Difficult to capture global state at same instant of time.
• Capture consistent global state.

• If captured state includes an event e, it includes all other events that
happened before e.

• Chandy-Lamport algorithm captures consistent global state.

Recap: Global snapshot

• Global system properties (or predicates): defined for a captured
global state. Two categories:

• Liveness, e.g. has the algorithm terminated?
• Must be true for some state reachable from initial state for all linearizations.

• Safety, e.g. the system is not deadlocked.
• Must be true for all states reachable from initial state for all linearizations.

• Chandy-Lamport algorithm can capture stable global properties:
• once true, stays true forever afterwards (for stable liveness)
• once false, stays false forever afterwards (for stable non-safety)

Today’s agenda

• Multicast
• Chapter 15.4

• Goal: reason about desirable properties for
message delivery among a group of processes.

Communication modes

• Unicast
• Messages are sent from exactly one process to one process.

• Broadcast
• Messages are sent from exactly one process to all processes on

the network.
• Multicast

• Messages broadcast within a group of processes.
• A multicast message is sent from any one process to a group of

processes on the network.

Where is multicast used?

• Distributed storage
• Write to an object are multicast across replica servers.
• Membership information (e.g., heartbeats) is multicast across all

servers in cluster.

• Online scoreboards (ESPN, French Open, FIFA World Cup)
• Multicast to group of clients interested in the scores.

• Stock Exchanges
• Group is the set of broker computers.

• ……

Communication modes
• Unicast

• Messages are sent from exactly one process to one process.
• Best effort: if a message is delivered it would be intact; no reliability

guarantees.
• Reliable: guarantees delivery of messages.
• In order: messages will be delivered in the same order that they are sent.

• Broadcast
• Messages are sent from exactly one process to all processes on

the network.
• Multicast

• Messages broadcast within a group of processes.
• A multicast message is sent from any one process to the group of

processes on the network.
• How do we define (and achieve) reliable or ordered multicast?

What we are designing in this class?

Application
(at process p)

MULTICAST PROTOCOL

multicast(g,m)

Incoming
messages

deliver(m)

One process p

What we are designing in this class?

Application
(at process p)

MULTICAST PROTOCOL

multicast(g,m)

Incoming
messages

deliver(m)

One process p

Basic Multicast (B-Multicast)

• Straightforward way to implement B-multicast:
• use a reliable one-to-one send (unicast) operation:

B-multicast(group g, message m):
for each process p in g, send (p,m).

receive(m): B-deliver(m) at p.
• Guarantees: message is eventually delivered to the group if:

• Processes are non-faulty.
• The unicast “send” is reliable.
• Sender does not crash.

• Can we provide reliable delivery even after sender crashes?
• What does this mean?

Reliable Multicast (R-Multicast)

• Integrity: A correct (i.e., non-faulty) process p delivers a message m at
most once.

• Assumption: no process sends exactly the same message twice

• Validity: If a correct process multicasts (sends) message m, then it will
eventually deliver m itself.

• Liveness for the sender.

• Agreement: If a correct process delivers message m, then all the other
correct processes in group(m) will eventually deliver m.

• All or nothing.

• Validity and agreement together ensure overall liveness: if some
correct process multicasts a message m, then, all correct processes
deliver m too.

Reliable Multicast (R-Multicast)

• Integrity: A correct (i.e., non-faulty) process p delivers a message m at
most once.

• Assumption: no process sends exactly the same message twice

• Validity: If a correct process multicasts (sends) message m, then it will
eventually deliver m itself.

• Liveness for the sender.

• Agreement: If a correct process delivers message m, then all the other
correct processes in group(m) will eventually deliver m.

• All or nothing.

• Validity and agreement together ensure overall liveness: if some
correct process multicasts a message m, then, all correct processes
deliver m too.

What happens if a process initiates B-multicasts
of a message but fails after unicasting to a

subset of processes in the group?

Agreement is violated! R-multicast not satisfied.

Implementing R-Multicast

Application
(at process p)

MULTICAST PROTOCOL

multicast(g,m)

Incoming
messages

deliver(m)

Implementing R-Multicast

Application
(at process p)

R-multicast(g,m)

Incoming
messages

R-deliver(m)

B-multicast(g,m)

B-deliver(m)

Implementing R-Multicast

On initialization
Received := {};

For process p to R-multicast message m to group g
B-multicast(g,m); (p∈ g is included as destination)

On B-deliver(m) at process q in g = group(m)
if (m ∉ Received):

Received := Received ∪ {m};
if (q ≠ p): B-multicast(g,m);
R-deliver(m)

Reliable Multicast (R-Multicast)

• Integrity: A correct (i.e., non-faulty) process p delivers a message m at
most once.

• Assumption: no process sends exactly the same message twice

• Validity: If a correct process multicasts (sends) message m, then it will
eventually deliver m itself.

• Liveness for the sender.

• Agreement: If a correct process delivers message m, then all the other
correct processes in group(m) will eventually deliver m.

• All or nothing.

• Validity and agreement together ensure overall liveness: if some
correct process multicasts a message m, then, all correct processes
deliver m too.

Ordered Multicast

• Three popular flavors implemented by several multicast
protocols:

1. FIFO ordering
2. Causal ordering
3. Total ordering

1. FIFO Order

• Multicasts from each sender are delivered in the order
they are sent, at all receivers.

• Don’t care about multicasts from different senders.

• More formally
• If a correct process issues multicast(g,m) and then

multicast(g,m’), then every correct process that delivers
m’ will have already delivered m.

FIFO Order: Example

M1:1 and M1:2 should be delivered in that order at each receiver.
Order of delivery of M3:1 and M1:2 could be different at different receivers.

P2

Time
P1

P3

M1:1 M1:2

P4

M3:1

2. Causal Order

• Multicasts whose send events are causally related, must
be delivered in the same causality-obeying order at all
receivers.

• More formally
• If multicast(g,m) à multicast(g,m’) then any correct

process that delivers m’ will have already delivered m.
• à is Lamport’s happens-before
• à is induced only by multicast messages in group g,

and when they are delivered to the application, rather
than all network messages.

Causal Order: Example

M3:1 à M3:2, M1:1 à M2:1, M1:1 à M3:1 and so should be delivered in that order
at each receiver.
M3:1 and M2:1 are concurrent and thus ok to be delivered in any (and even
different) orders at different receivers.

P2

Time
P1

P3

M1:1

P4

M3:1 M3:2

M2:1

To be continued in next class

• More on causal ordering

• Total ordering

• Implementing of FIFO/Causal/Total ordering

Summary

• Multicast is an important communication mode in
distributed systems.

• Applications may have different requirements:
• Reliability
• Ordering: FIFO, Causal, Total
• Combinations of the above.

