Distributed Systems

CS425/ECE428

Feb 12 2021

Instructor: Radhika Mittal

Some revision while we wait

* Fora process p, , where events ef e.!, ... occur:

history(p,) = h, = <e0e/,... >

0

prefix history(pX) = hk=<ef e/l ...,k >

s . pi's state immediately after k" event.
* For a set of processes <py, Py P3s - - -+s Pn>"

global history: H = U, (h))
acutCcH=hSUh%U...UhS
the frontier of C = {e5,i = I,2,... n}

global state S that corresponds to cut C = U, (s5)

* A cut Cis consistent if and only If Ve € C (if f > ethen f € C)

* A global state S is consistent if and only If it corresponds to a
consistent cut.

Logistics Related

* MPO Is due today | [:59pm.

* No class next Wednesday (Feb | 7") — non-instructional day.
* | have moved my office hours to Thursday |0-1 lam for next week.

 HW is due onThursday (Feb 18™) at | 1:59pm.

Today’s agenda

* Global State
* Chapter 14.5
* Goal: reason about how to capture the state across all

processes of a distributed system without requiring time
synchronization.

Recap: How to capture global state!?

* State of each process (and each channel) in the system at a given instant
of time.,
* Difficult to capture -- requires precisely synchronized time.

* Relax the problem
* For a system with n processes <p,, Py, P3, - - - P>, Capture the state
of the system after the ¢ ™ event at process p.
* State corresponding to the cut defined by frontier events
{eG fori=12,...n}k

* We want the state to be consistent.

* Must correspond to a consistent cut.

* If an event e belongs to the cut, all events that “happened
before” e must also belong to the cut.

Recap: Chandy-Lamport Algorithm

* Goal: Record consistent state by identifying a consistent cut,

* System model and assumptions:

* System of n processes: <p|, Py P3s - - -+ Pn~>-

* There are two uni-directional communication channels between
each ordered process pair: p;to p; and p; to p;

* Communication channels are FIFO-ordered (first in first out).

* All messages arrive intact, and are not duplicated.

* No fallures: nerther channel nor processes falil.

* Requirements:
* Snapshot should not interfere with normal application actions,
and 1t should not require application to stop sending messages.

* Any process may Initiate algorithm.

Chandy-Lamport Algorithm Intuition

* First, initiator p;;

records Its own state.

creates a special marker message.

sends the marker to all other process.

start recording messages received on other channels.
* until a marker is received on a channel.

* When a process receives a marker.

e [f marker is received for the first time.
* records its own state.
* sends marker on all other channels.
* start recording messages received on other channels.

e until a marker is received on a channel.

Chandy-Lamport Algorithm

* First, initiator p;;
* records Its own state.

* creates a special marker message.
* for j=1 to n except i
* p; sends a marker message on outgoing channel ¢;
* starts recording the incoming messages on each of the
incoming channels at p;: ¢; (for j=1 to n except).

Chandy-Lamport Algorithm

Whenever a process p; receives a marker message from p, on
iIncoming channel ¢,

* If (this is the first marker p; is seeing)
* p, records Its own state first
* marks the state of channel ¢,; as “empty”
* forj=1 to n except |

* p, sends out a marker message on outgoing channel c;
* starts recording the incoming messages on each of the incoming
channels at p;: ¢; (for j=1 to n except i and k).

* else // already seen a marker message

* mark the state of channel ¢, as all the messages that have arrived
on it since recording was turned on for ¢

Chandy-Lamport Algorithm

The algorithm terminates when

* All processes have received a marker
* To record their own state
* All processes have received a marker on all the (n-/) incoming
channels
* To record the state of all channels

Example

B D E
Pl P\ 8
/ \ Time
P9 E F G .
P3 I‘ J

® Local computation

~ Message

Example

B
Pl 0

P3

Example

B
Pl 0

P2 k 3

.

Example

B
Pl 0

P2 k 3

.

Example

B
Pl 0

P2 k 3

.

Example

B
Pl 0

P2 k 3

.

Example

Cy €3y C31
B D E

Pl o S

Time

F
P9 E G .
P3 I‘ J
Ci3 Cs;
C23

Example

Cy €3y C31
B D E
Pl o S
Time
F
P2 G
P3 I‘ J
Ci3 - ¢,

Example

Cy €3y C31
B D E

p — S

Time

F
P2 G >
P3 Iy J
Ci3 €32 .. Ci2

Example

Cy €3y C31
B D E

Pl o S

Time

F

P2 G >
P3 H - J

C

Cis C32 . 12

Example

Ca
€,,;€3, C31
B D E

Pl o S

Time

F

P9 E G .
P3 H - J

C

Cis C32 . 12

Example

C2i
€,,;€3, C31
B D E
Pl s S
Time
F

P2 G >
P3 Iy J

C32 Ciy

Ci3 €5
€23

Example

%)
€,,;€3, C31
B D E
Pl o S
Time
F

P9 E G .
P3 I‘ J

C3)

Ci3 €5 =
€23

Algorithm has terminated!

Example

C2
C3y
A B < C D E
P -
==/ Time
E P G/ ¢
J 12
P2 7
/, C32
> 4
o
/T/, J
7z 1
P3 v, PS
C3
Ci3

Frontier for the resulting cut:
{B, G, H}

Channel state for the cut:
Only c,, has a pending message.

Example

Cyi
C3y
B D E
Pl o S
Time

P2 A G ik :

C32
P3 H - J

C23

Global snapshots pieces can be
collected at a central location.

Chandy-Lamport Algorithm: Properties

* Any run of the Chandy-Lamport Global Snapshot
algorithm creates a consistent cut.

* Let ; and g, be events occurring at p; and p;, respectively
such that

*e > e (ehappensbefore e)

j
* [he snapshot algorithm ensures that
if e is in the cut then e is also In the cut.

* That is:if e, = < p; records its state>, then
it must be true that e, = <p. records its state>.

Chandy-Lamport Algorithm: Properties

* Given e; 2 e, If e 2 < p, records its state>, then
it must be true that e, = <p. records its state>.

* By contradiction, suppose e; 2 < p; records its state>, and
<p, records its state> 2> e,

<

Pj

Pk ®
\n,
[]

Chandy-Lamport Algorithm: Properties

* Given e; 2 e, If e 2 < p, records its state>, then
it must be true that e, = <p. records its state>.

* By contradiction, suppose e; 2 < p; records its state>, and
<p, records its state> 2> e,

<

Pj

Pk ®
\n,
[]

Chandy-Lamport Algorithm: Properties

* Given e; 2 e, If e 2 < p, records its state>, then
it must be true that e, = <p. records its state>.

* By contradiction, suppose e; 2 < p; records its state>, and
<p, records its state> 2> e,

<

D, e e e >
m Time
Px must reach p, before m ¢ *
due to FIFO order. m’
)

Chandy-Lamport Algorithm: Properties

* Given e; 2 e, If e 2 < p, records its state>, then
it must be true that e, = <p. records its state>.

* By contradiction, suppose e; 2 < p; records its state>, and
<p, records its state> 2> e,

<

e e >
Pi °
m Time
Py o ®
XY
must reach p; before m’ e

P; due to FIFO order S

Chandy-Lamport Algorithm: Properties

* Given e; 2 e, If e > < p, records its state>, then
it must be true that e, = <p. records its state>.

* By contradiction, suppose e; 2 < p; records its state>, and
<p, records its state> 2> e,

* Consider the path of app messages (through other
processes) that go from e; to e;.

* Due to FIFO ordering, markers on each link in above path
will precede regular app messages.

* Thus, since <p; records its state> =2 e, , it must be true that

p; received a marker before e;

e Thus e s not In the cut => contradiction.

Summary

* The ability to calculate global snapshots in a distributed
system Is very important.

* But don't want to interrupt running distributed application.
* Chandy-Lamport algorithm calculates global snapshot.
* Obeys causality (creates a consistent cut).

* Can be used to detect global properties.
* Safety vs. Liveness.

Chandy-Lamport Algorithm: Usefulness

* Consistent global snapshots are useful for detecting
olobal system properties:
* Safety
* Liveness

More notations and definitions

* history(p) = h.=<ef%el,... >
* global history: H = Ui (h,)

* A run is a total ordering of events in H that Is consistent
with each h/'s ordering.

* A linearization is a run consistent with happens-before
(—) relation in H.

Example

P4
my
“o) -~ Physical

P2 0 1 time

Orderatp;:<elel e?e?> Orderatp, < ezo, e, e,’>
Causal order across p; and p,: <e/% ¢/l e,0 e, e,%,e°>

Run:<e%ele?e?, 06 2>
Linearization: < e\% ¢,!,e,%,e,% ¢,' €,%2,¢3>

Example

P4
my
“o) -~ Physical

P2 0 1 time

Orderatp;:<elel e?e?> Orderatp, < ezo, e, e,’>
Causal order across p; and p,: <e/% ¢/l e,0 e, e,%,e°>

Run:<efele?e?’, e’e, 2>
Linearization:< e % ¢!, e,%,e,% ¢, 6,2, >

Example

P4
my
“o) -~ Physical

P2 0 1 time

Orderatp;:<elel e?e?> Orderatp, < ezo, e, e,’>
Causal order across p; and p,: <e/% ¢/l e,0 e, e,%,e°>

< eIO’ e I’ e20’ e2I : eIZ’ 622, e|3 >

Example

P4
my
“o) -~ Physical

P2 0 1 time

Orderatp;:<elel e?e?> Orderatp, < ezo, e, e,’>
Causal order across p; and p,: <e/% ¢/l e,0 e, e,%,e°>

<elelele,, e?e,?, e3> Linearization
<ebe e0e!e?e? e3> Notevenarun

More notations and definitions

* history(p) = h.=<ef%el,... >
* global history: H = Ui (h,)

* A run is a total ordering of events in H that Is consistent
with each h/'s ordering.

* A linearization is a run consistent with happens-before
(—) relation in H.

* Linearizations pass through consistent global states.

Example

“o) -~ Physical

0 1 2 time
€ € e

P2

Orderatp;:<eel e?e?> Orderatp,;<eV’ele?>
Causal order across p; and p,: <e/% ¢/l e,0 e, e,%,e°>

Linearization:< e\% ¢ 'le, %, e, ¢,' e,2,¢3>

Example

0 1 2 3
e, e e, e,
@ @ @ >
P4
my m,
\ [
“o @ -~ Physical
P2 i
0 1 p) ime
€o €o €o

Orderatp;:<eel e?e?> Orderatp,;<eV’ele?>
Causal order across p, and p,: <e\% ¢!, e)% e, e,2,¢3>

Linearization: < e|°, e |, e|2162°, e2' e22,e|3 >

Example

0 1 2 3
e, e e, e,
@ @ @ >
P4
my m,
“o @ -~ Physical
P2 i
0 1 p) ime
€o €o €o

Orderatp;:<eel e?e?> Orderatp,;<eV’ele?>
Causal order across p, and p,: <e\% ¢!, e)% e, e,2,¢3>

Linearization:< e /% ¢!, e,%, &,%e,' e,2,¢,°>

Example

0 1 2 3
e, e, e, e,
@ @ @ >
P4
\ \ m
p ~0) -~ Physical
2 0 1 \) time
€o eo)

Orderatp;:<eel e?e?> Orderatp,;<eV’ele?>
Causal order across p, and p,: <e\% ¢!, e)% e, e,2,¢3>

Linearization:< e % ¢,!,e,%, &% ¢,'|e,%, ¢, >

Example

“o) -~ Physical
0 1 2 \ time
€o eo)
Orderatp;:<eel e?e?> Orderatp,;<eV’ele?>
Causal order across p, and p,: <e\% ¢!, e)% e, e,2,¢3>

P2

Linearization:< e/% ¢!, e/, &% &,/ ezzleﬁ >

Example

0 1 2 3
e, e, e, e
@ @ o >
P4 \
mjy m,
o
0 1 2
€eo

=~ Physical
Po y

time
€ e

Orderatp;:<eel e?e?> Orderatp,;<eV’ele?>
Causal order across p, and p,: <e\% ¢!, e)% e, e,2,¢3>

Linearization:< e /% ¢,!,e,%, &% ¢,' ,2, ¢

Example

0 1 2 3
e, e, e, e,
® @ o >
P+
p ki) ~ Physical
2 0 \ 1 o time
€o €»o €o

Orderatp;:<eel e?e?> Orderatp,;<eV’ele?>
Causal order across p, and p,: <e\% ¢!, e)% e, e,2,¢3>

Linearization:< e\% e ', e /% e, e,' e,2,¢3>
Linearization <e%e,',e’)e,',e%e,2,e3>

More notations and definitions

* Linearizations pass through consistent global states.

* A global state S, is reachable from global state S, if there Is
a linearization that passes through S. and then through S,.

* [he distributed system evolves as a series of transitions
between global states 5y, 5 ...

State Transitions: Example

p0 {1,0}

C,

q0 {0,1}

pl {2,0} p2 {3,0}
Py o

\J \J

'
'
v M
.

q13{2,2} q2 {2.3}
.\

7/ \J

Many linearizations:

<p0,pl,p2,q0,ql,g2>
<p0,q0,pl,ql,p2,q2>
<q0,p0,pl,ql,p2,q2 >
<q0,p0,pl,p2,ql,g2 >

e (Causal order:

pO = pl —p2
q0 - gl - g2

p0 »pl »qgl - g2

e Concurrent:

pO

o]
p2

q0
qo
q0,p2 || gql,p2 || g2

State Transitions: Example

Execution Lattice. Each path represents a linearization.

p0 pl p2
start »

q0 q0 q0 q0
@ p0 @ p1 @ p2 @
ql al
p0 {1,0} pl {2,0} p2 {3,0} q2
G S © g2 -
q0 {0,1} ql“:,{2,2} a2 {2.3}
.\ ya\

O \J \J

State Transitions: Example

Execution Lattice. Each path represents a linearization.

— N S
-

- =~
- p0 pl p2 \™ ~
start » N
N\
q0 q0 q0 q0 N\
\
OxdOxdOxdON
p0 pl p2 N
1 \
1 RN
\
p2 \
(on)— (o) s
p0 {1,0} pl {20} p2 {3,0} q2\
€, S © > q2 LR |

q0 {0,1} ql“:,{2,2} q2 {2,3}
Fa\

C \J \J

State Transitions: Example

Execution Lattice. Each path represents a linearization.

p0 pl p2
start »

\ q0 q0 q0 q0
\
\
\ p0 pl p2
~ —_— —— W
~
N p2
N\
0 {1,0} 1{2,0} 2 {3,0}
C—— & ; \ q2 a2
\
\ p2
~
A} - _>
q0 {0,1} ql“:,{2,2} q2 {2,3}
Fa\ Fa\

C \J \J

State Transitions: Example

Execution Lattice. Each path represents a linearization.

(o) (o) (o) (o
start »
- oy,

\ q0 q0

~

q0 q0
-~ — oy
. p0 ' pl @ p2 @
gl
\ 1
~
— P2 -
p0 {1,0} pl {20} p2 {3,0} q2\
G S © q2 o
\
q0 {0,1} ql“:,{2,2} q2 {2,3}
FaY ya\

C \J \J

State Transitions: Example

- . gy,
_—

\
\
start »
\
C ON
\ ‘ @ @ p2
~
p0 {1 0} pl {2 0} p2 {3 0}
q0 {0 1} q1q{2 2} q2 {2,3}
Fa\

State Transitions: Example

p0 {1,0} pl {2,0} , p2 {3,0}
7\ 7\

C,

State Transitions: Example

(o)== (oo Com}—2 (o)
start »
q0 0 q0
pl

P
C q0
@ PO . @ p2 @
1

p0 {10} pl {2,0} \pz (3.0}
7\ 7\

€, \w \w >
q0 {0,1} q13{2,2} q2 {2,3}
C FaY ya\ I

\J \J \ -

State Transitions: Example

q0

P
q0
. . pl @ p2 @
1

p0 {1,0} pl {20} p2 {3.0} ‘

© & o >
q0 {0,1} al¥{2,2} qzh
€, S | »

.
\J

(o)== (oo Com}—2 (o)
start »
q0 q0
p0

More notations and definitions

* A run is a total ordering of events in H that Is consistent
with each h/'s ordering.

* A linearization is a run consistent with happens-before (—)
relation in H.

* Linearizations pass through consistent global states.

* A global state S, Is reachable from global state S, if there Is
a linearization that passes through S. and then through §,.

* The distributed system evolves as a series of transitions
between global states Sy, S, ...

Global State Predicates

* A global-state-predicate Is a property that is true or false
for a global state.
* |s there a deadlock!?
* Has the distributed algorithm terminated?

* Two ways of reasoning about predicates (or system
properties) as global state gets transformed by events.
* Liveness
* Safety

Liveness

* Liveness = guarantee that something good will happen,
eventually

* Examples:
* A distributed computation will terminate.
* "Completeness” in fallure detectors: the failure will be detected.

* All processes will eventually decide on a value.

* A global state S, satisfies a liveness property P iff:
* liveness(P(Sy)) = VL0Le linearizations from Sy, L passes through a
S| & P(5)) = true
* For all linearizations starting from Sy, P Is true for some state S,
reachable from S,

Liveness Example

If predicate Is true only in the marked states, does It satisfy liveness!
Yes

CadCad D ad
start »
q0 q0 q0 q0

ql gl

(g} (o)
p0 {1,0} pl {2,0} p2 {3,0}

€] S S > q2

q0 {0,1} ql“:,{2,2} a2 {2.3}
.\

G © S

Liveness Example

If predicate Is true only in the marked states, does It satisfy liveness!
No

CadCad Oend D
start »
q0 q0 q0 q0

ql gl

p0 {1,0} pl {2,0} p2 {3,0}

€] S S > q2

q0 {0,1} ql“:,{2,2} a2 {2.3}
.\

G © S

Liveness Example

If predicate Is true only in the marked states, does It satisfy liveness!

Yes
CadPadOmd®
start »
q0 q0 q0 q0

p0 {1,0} pl {2,0} p2 {3,0}

€] S S > q2

q0 {0,1} ql“:,{2,2} a2 {2.3}
.\

G © S

Liveness

* Liveness = guarantee that something good will happen,
eventually

* Examples:
* A distributed computation will terminate.
* "Completeness” in fallure detectors: the failure will be detected.

* All processes will eventually decide on a value.

* A global state S, satisfies a liveness property P iff:
* liveness(P(Sy)) = VL0Le linearizations from Sy, L passes through a
S| & P(5)) = true
* For any linearization starting from S, P Is true for some state S,
reachable from S,

Safety

* Safety = guarantee that something bad will never happen.

* Examples:
* There is no deadlock in a distributed transaction system.

* "Accuracy’ in fallure detectors: an alive process is not detected as
falled.

* No two processes decide on different values.

* A global state S, satisfies a safety property P iff:
* safety(P(Sy)) = VS reachable from S, P(S) = true.
* For all states S reachable from S, P(5) I1s true.

Safety Example

If predicate Is true only in the marked states, does It satisfy safety?
No

CadCad Oend D
start »
q0 q0 q0 q0

ql gl

p0 {1,0} pl {2,0} p2 {3,0}

€] S S > q2

q0 {0,1} ql“:,{2,2} a2 {2.3}
.\

G © S

Safety Example

If predicate Is true only in the unmarked states, does it satisfy safety?

Yes
start »
q0 q0 q0 q0

p0 {1,0} pl {2,0} p2 {3,0}

G S S > q2

q0 {0,1} ql“:,{2,2} a2 {2.3}
.\

G © S/

Safety

* Safety = guarantee that something bad will never happen.

* Examples:
* There is no deadlock in a distributed transaction system.

* "Accuracy’ in fallure detectors: an alive process is not detected as
falled.

* No two processes decide on different values.

* A global state S, satisfies a safety property P iff:
* safety(P(Sy)) = VS reachable from S, P(S) = true.
* For all states S reachable from S, P(5) I1s true.

Liveness Example

Technically satisfies liveness, but difficult to capture or reason about.

p0 pl p2
start »

q0 q0 q0 q0

p0 {1,0} pl {2,0} p2 {3,0}

€] S S > q2

q0 {0,1} ql“:,{2,2} a2 {2.3}
.\

G © S

Stable Global Predicates

* once true, stays true forever afterwards (for stable liveness)

Stable Global Predicates

It predicate is true only in the marked states, Is 1t stable?
No

p0 pl p2
start »

q0 q0 q0 q0

ql gl
p0 {1,0} pl {2,0} p2 {3,0}

€] S S > q2

g2

q0 {0,1} ql“:,{2,2} a2 {2.3}
.\

G © S/

Stable Global Predicates

It predicate is true only in the marked states, Is 1t stable?

No
CadPadOmd®
start »
q0 q0 q0 q0

p0 {1,0} pl {2,0} p2 {3,0}

€] S S > q2

q0 {0,1} ql“:,{2,2} a2 {2.3}
.\

G © S/

Stable Global Predicates

It predicate is true only in the marked states, Is 1t stable?

Yes
CadPadOmd®
start »
q0 q0 q0 q0
ql

gl
> (o)
p0 {1,0} pl {2,0} p2 {3,0}

€] S S > q2

q0 {0,1} ql“:,{2,2} a2 {2.3}
.\

G © S

Stable Global Predicates

* once true, stays true forever afterwards (for stable liveness)
* once false, stays false forever afterwards (for stable non-safety)

* Stable liveness examples (once true, always true)
* Computation has terminated.

* Stable non-safety examples (once false, always false)
* There is no deadlock.
* An object I1s not orphaned.

* All stable global properties can be detected using the Chandy-
Lamport algorithm.

Global Snapshot Summary

* The ability to calculate global snapshots in a distributed
system Is very important.

* But don't want to interrupt running distributed application.
* Chandy-Lamport algorithm calculates global snapshot.

* Obeys causality (creates a consistent cut).

* Can be used to detect global properties.

* Safety vs. Liveness.

