
Distributed Systems

CS425/ECE428

Feb 12 2021

Instructor : Radhika Mittal

Some revision while we wait
• For a process pi , where events ei

0, ei
1, … occur:

history(pi) = hi = <ei
0, ei

1, … >

prefix history(pi
k) = hi

k = <ei
0, ei

1, …,ei
k >

si
k : pi’s state immediately after kth event.

• For a set of processes <p1, p2, p3, …., pn>:

global history: H = Èi (hi)

a cut C Í H = h1
c1 È h2

c2 È … È hn
cn

the frontier of C = {ei
ci, i = 1,2, … n}

global state S that corresponds to cut C = Èi (si
ci)

• A cut C is consistent if and only if "e Î C (if f ® e then f Î C)
• A global state S is consistent if and only if it corresponds to a

consistent cut.

Logistics Related

• MP0 is due today 11:59pm.

• No class next Wednesday (Feb 17th) – non-instructional day.
• I have moved my office hours to Thursday 10-11am for next week.

• HW1 is due on Thursday (Feb 18th) at 11:59pm.

Today’s agenda

• Global State

• Chapter 14.5

• Goal: reason about how to capture the state across all
processes of a distributed system without requiring time
synchronization.

Recap: How to capture global state?
• State of each process (and each channel) in the system at a given instant

of time.
• Difficult to capture -- requires precisely synchronized time.

• Relax the problem
• For a system with n processes <p1, p2, p3, …., pn>, capture the state

of the system after the ci
th event at process pi.

• State corresponding to the cut defined by frontier events
{ei

ci, for i = 1,2, … n}.
• We want the state to be consistent.

• Must correspond to a consistent cut.
• If an event e belongs to the cut, all events that “happened

before” e must also belong to the cut.

Recap: Chandy-Lamport Algorithm
• Goal: Record consistent state by identifying a consistent cut.

• System model and assumptions:
• System of n processes: <p1, p2, p3, …., pn>.
• There are two uni-directional communication channels between

each ordered process pair : pj to pi and pi to pj.
• Communication channels are FIFO-ordered (first in first out).
• All messages arrive intact, and are not duplicated.
• No failures: neither channel nor processes fail.

• Requirements:
• Snapshot should not interfere with normal application actions,

and it should not require application to stop sending messages.
• Any process may initiate algorithm.

Chandy-Lamport Algorithm Intuition

• First, initiator pi:
• records its own state.
• creates a special marker message.
• sends the marker to all other process.
• start recording messages received on other channels.

• until a marker is received on a channel.
• When a process receives a marker.

• If marker is received for the first time.
• records its own state.
• sends marker on all other channels.
• start recording messages received on other channels.

• until a marker is received on a channel.

Chandy-Lamport Algorithm

• First, initiator pi:
• records its own state.
• creates a special marker message.
• for j=1 to n except i

• pi sends a marker message on outgoing channel cij
• starts recording the incoming messages on each of the

incoming channels at pi : cji (for j=1 to n except i).

Chandy-Lamport Algorithm
Whenever a process pi receives a marker message from pk on
incoming channel cki

• if (this is the first marker pi is seeing)
• pi records its own state first
• marks the state of channel cki as “empty”
• for j=1 to n except i

• pi sends out a marker message on outgoing channel cij
• starts recording the incoming messages on each of the incoming

channels at pi : cji (for j=1 to n except i and k).
• else // already seen a marker message

• mark the state of channel cki as all the messages that have arrived
on it since recording was turned on for cki

Chandy-Lamport Algorithm

The algorithm terminates when
• All processes have received a marker

• To record their own state
• All processes have received a marker on all the (n-1) incoming

channels
• To record the state of all channels

P2

Time
P1

P3

A B C D E

E F G

H I J

Message
Local computation

Example

p1 is initiator:
• Record local state s1,
• Send out markers
• Start recording on channels c21, c31

P2

Time
P1

P3

A B C D E

E F G

H I J

Example

s1, Record c21, c31

• First marker!
• Record own state as s3

• Mark c13 state as empty
• Start recording on other incoming c23

• Send out markers

P2

Time
P1

P3

A B C D E

E F G

H I J

Example

s1, Record c21, c31

s3
c13 = < >
Record c23

P2

Time
P1

P3

A B C D E

E F G

H I J

Example

s1, Record c21, c31

s3
c13 = < >
Record c23

Duplicate marker!

P2

Time
P1

P3

A B C D E

E F G

H I J

Example

s1, Record c21, c31

s3
c13 = < >
Record c23

Duplicate marker!
State of channel c31 = < >

P2

Time
P1

P3

A B C D E

E F G

H I J

Example

P2

Time
P1

P3

A B C D E

E F G

H I J

s1, Record c21, c31

s3
c13 = < >
Record c23

c31 = < >

• First marker
• Record own state as s2

• Mark c32 state as empty
• Turn on recording on c12
• Send out markers

Example

P2

Time
P1

P3

A B C D E

E F G

H I J

s1, Record c21, c31

s3
c13 = < >
Record c23

c31 = < >

• s2

• c32 = < >
• Record c12

Example

P2

Time
P1

P3

A B C D E

E F G

H I J

s1, Record c21, c31

s3
c13 = < >
Record c23

c31 = < >

s2

c32 = < >
Record c12

• Duplicate!
• c12 = < >

Example

P2

Time
P1

P3

A B C D E

E F G

H I J

s1, Record c21, c31

s3
c13 = < >
Record c23

c31 = < >

s2

c32 = < >
Record c12

c12 = < >

• Duplicate!
Example

P2

Time
P1

P3

A B C D E

E F G

H I J

s1, Record c21, c31

s3
c13 = < >
Record c23

c31 = < >

s2

c32 = < >
Record c12

c12 = < >

• Duplicate!
• c21 = <message G to D >

Example

P2

Time
P1

P3

A B C D E

E F G

H I J

s1, Record c21, c31

s3
c13 = < >
Record c23

c31 = < >

s2

c32 = < >
Record c12

c12 = < >

c21 = <message G to D >

• Duplicate!
• c23 = < >

Example

P2

Time
P1

P3

A B C D E

E F G

H I J

s1, Record c21, c31

s3
c13 = < >
Record c23

c31 = < >

s2

c32 = < >
Record c12

c12 = < >

c21 = <message G to D >

• Duplicate!
• c23 = < >

Example

Algorithm has terminated!

P2

Time
P1

P3

A B C D E

E F G

H I J

s1

s3 c13 =	<	>

c31 = < >

s2 c32 = < >

c12 = < >

c21 = <message G to D >

c23 = < >

Example

Frontier for the resulting cut:
{B, G, H}

Channel state for the cut:
Only c21 has a pending message.

P2

Time
P1

P3

A B C D E

E F G

H I J

s1

s3 c13 =	<	>

c31 = < >

s2 c32 = < >

c12 = < >

c21 = <message G to D >

c23 = < >

Global snapshots pieces can be
collected at a central location.

Example

Chandy-Lamport Algorithm: Properties

• Any run of the Chandy-Lamport Global Snapshot
algorithm creates a consistent cut.

• Let ei and ej be events occurring at pi and pj, respectively
such that

• ei à ej (ei happens before ej)
•The snapshot algorithm ensures that

if ej is in the cut then ei is also in the cut.
•That is: if ej à < pj records its state>, then

it must be true that ei à <pi records its state>.

Chandy-Lamport Algorithm: Properties

• Given ei à ej. If ej à < pj records its state>, then
it must be true that ei à <pi records its state>.

• By contradiction, suppose ejà < pj records its state>, and
<pi records its state> à ei.

pk

Time
pi

pj

ei

ej

m

m’

Chandy-Lamport Algorithm: Properties

• Given ei à ej. If ej à < pj records its state>, then
it must be true that ei à <pi records its state>.

• By contradiction, suppose ejà < pj records its state>, and
<pi records its state> à ei.

pk

Time
pi

pj

ei

ej

m

m’

Chandy-Lamport Algorithm: Properties

• Given ei à ej. If ej à < pj records its state>, then
it must be true that ei à <pi records its state>.

• By contradiction, suppose ejà < pj records its state>, and
<pi records its state> à ei.

pk

Time
pi

pj

ei

ej

m

m’
must reach pk before m

due to FIFO order.

Chandy-Lamport Algorithm: Properties

• Given ei à ej. If ej à < pj records its state>, then
it must be true that ei à <pi records its state>.

• By contradiction, suppose ejà < pj records its state>, and
<pi records its state> à ei.

pk

Time
pi

pj

ei

ej

m

m’
must reach pj before m’

due to FIFO order.

Chandy-Lamport Algorithm: Properties

• Given ei à ej. If ej à < pj records its state>, then
it must be true that ei à <pi records its state>.

• By contradiction, suppose ejà < pj records its state>, and
<pi records its state> à ei.

• Consider the path of app messages (through other
processes) that go from ei to ej .

• Due to FIFO ordering, markers on each link in above path
will precede regular app messages.

• Thus, since <pi records its state> à ei , it must be true that
pj received a marker before ej.

• Thus ej is not in the cut => contradiction.

Summary

• The ability to calculate global snapshots in a distributed
system is very important.

• But don’t want to interrupt running distributed application.
• Chandy-Lamport algorithm calculates global snapshot.
• Obeys causality (creates a consistent cut).
• Can be used to detect global properties.

• Safety vs. Liveness.

Chandy-Lamport Algorithm: Usefulness

• Consistent global snapshots are useful for detecting
global system properties:

• Safety
• Liveness

More notations and definitions

• history(pi) = hi = <ei
0, ei

1, … >

• global history: H = Èi (hi)

• A run is a total ordering of events in H that is consistent
with each hi’s ordering.

• A linearization is a run consistent with happens-before
(®) relation in H.

Example

m1 m2

p1

p2
Physical

time

e1
0 e 1

1 e 1
2 e 1

3

e 2
0 e 2

1 e 2
2

Run: < e1
0, e1

1, e1
2, e1

3 , e2
0, e2

1 e2
2 >

Linearization: < e1
0, e1

1, e1
2, e2

0, e2
1 e2

2 , e1
3 >

Order at p1: < e1
0, e1

1, e1
2, e1

3 > Order at p2: < e2
0, e2

1,e2
2>

Causal order across p1 and p2: < e1
0, e1

1, e2
0, e2

1, e2
2 , e1

3 >

Example

m1 m2

p1

p2
Physical

time

e1
0 e 1

1 e 1
2 e 1

3

e 2
0 e 2

1 e 2
2

Run: < e1
0, e1

1, e1
2, e1

3 , e2
0, e2

1 e2
2 >

Linearization: < e1
0, e1

1, e1
2, e2

0, e2
1 e2

2 , e1
3 >

Order at p1: < e1
0, e1

1, e1
2, e1

3 > Order at p2: < e2
0, e2

1,e2
2>

Causal order across p1 and p2: < e1
0, e1

1, e2
0, e2

1, e2
2 , e1

3 >

Example

m1 m2

p1

p2
Physical

time

e1
0 e 1

1 e 1
2 e 1

3

e 2
0 e 2

1 e 2
2

< e1
0, e1

1, e2
0, e2

1 , e1
2, e2

2 , e1
3 >

Order at p1: < e1
0, e1

1, e1
2, e1

3 > Order at p2: < e2
0, e2

1,e2
2>

Causal order across p1 and p2: < e1
0, e1

1, e2
0, e2

1, e2
2 , e1

3 >

Example

m1 m2

p1

p2
Physical

time

e1
0 e 1

1 e 1
2 e 1

3

e 2
0 e 2

1 e 2
2

< e1
0, e1

1, e2
0, e2

1 , e1
2, e2

2 , e1
3 >: Linearization

< e1
0, e2

1, e2
0 , e1

1, e1
2, e2

2 , e1
3 >: Not even a run

Order at p1: < e1
0, e1

1, e1
2, e1

3 > Order at p2: < e2
0, e2

1,e2
2>

Causal order across p1 and p2: < e1
0, e1

1, e2
0, e2

1, e2
2 , e1

3 >

More notations and definitions

• history(pi) = hi = <ei
0, ei

1, … >

• global history: H = Èi (hi)

• A run is a total ordering of events in H that is consistent
with each hi’s ordering.

• A linearization is a run consistent with happens-before
(®) relation in H.

• Linearizations pass through consistent global states.

Example

m1 m2

p1

p2
Physical

time

e1
0 e 1

1 e 1
2 e 1

3

e 2
0 e 2

1 e 2
2

Linearization: < e1
0, e1

1, e1
2, e2

0, e2
1 e2

2 , e1
3 >

Order at p1: < e1
0, e1

1, e1
2, e1

3 > Order at p2: < e2
0, e2

1,e2
2>

Causal order across p1 and p2: < e1
0, e1

1, e2
0, e2

1, e2
2 , e1

3 >

|

Example

m1 m2

p1

p2
Physical

time

e1
0 e 1

1 e 1
2 e 1

3

e 2
0 e 2

1 e 2
2

Linearization: < e1
0, e1

1, e1
2, e2

0, e2
1 e2

2 , e1
3 >

Order at p1: < e1
0, e1

1, e1
2, e1

3 > Order at p2: < e2
0, e2

1,e2
2>

Causal order across p1 and p2: < e1
0, e1

1, e2
0, e2

1 e2
2 , e1

3 >

|

Example

m1 m2

p1

p2
Physical

time

e1
0 e 1

1 e 1
2 e 1

3

e 2
0 e 2

1 e 2
2

Linearization: < e1
0, e1

1, e1
2, e2

0, e2
1 e2

2 , e1
3 >

Order at p1: < e1
0, e1

1, e1
2, e1

3 > Order at p2: < e2
0, e2

1,e2
2>

Causal order across p1 and p2: < e1
0, e1

1, e2
0, e2

1 e2
2 , e1

3 >

|

Example

m1 m2

p1

p2
Physical

time

e1
0 e 1

1 e 1
2 e 1

3

e 2
0 e 2

1 e 2
2

Linearization: < e1
0, e1

1, e1
2, e2

0, e2
1 e2

2 , e1
3 >

Order at p1: < e1
0, e1

1, e1
2, e1

3 > Order at p2: < e2
0, e2

1,e2
2>

Causal order across p1 and p2: < e1
0, e1

1, e2
0, e2

1 e2
2 , e1

3 >

|

Example

m1 m2

p1

p2
Physical

time

e1
0 e 1

1 e 1
2 e 1

3

e 2
0 e 2

1 e 2
2

Linearization: < e1
0, e1

1, e1
2, e2

0, e2
1 e2

2 , e1
3 >

Order at p1: < e1
0, e1

1, e1
2, e1

3 > Order at p2: < e2
0, e2

1,e2
2>

Causal order across p1 and p2: < e1
0, e1

1, e2
0, e2

1 e2
2 , e1

3 >

|

Example

m1 m2

p1

p2
Physical

time

e1
0 e 1

1 e 1
2 e 1

3

e 2
0 e 2

1 e 2
2

Linearization: < e1
0, e1

1, e1
2, e2

0, e2
1 e2

2 , e1
3 >

Order at p1: < e1
0, e1

1, e1
2, e1

3 > Order at p2: < e2
0, e2

1,e2
2>

Causal order across p1 and p2: < e1
0, e1

1, e2
0, e2

1 e2
2 , e1

3 >

|

Example

m1 m2

p1

p2
Physical

time

e1
0 e 1

1 e 1
2 e 1

3

e 2
0 e 2

1 e 2
2

Linearization: < e1
0, e1

1, e1
2, e2

0, e2
1 e2

2 , e1
3 >

Linearization < e1
0, e1

1, e2
0, e2

1 , e1
2, e2

2 , e1
3 >

Order at p1: < e1
0, e1

1, e1
2, e1

3 > Order at p2: < e2
0, e2

1,e2
2>

Causal order across p1 and p2: < e1
0, e1

1, e2
0, e2

1 e2
2 , e1

3 >

|

More notations and definitions

• Linearizations pass through consistent global states.

• A global state Sk is reachable from global state Si, if there is
a linearization that passes through Si and then through Sk.

• The distributed system evolves as a series of transitions
between global states S0 , S1 , ….

State Transitions: Example

m

Many linearizations:
• < p0, p1, p2, q0, q1, q2>
• < p0, q0, p1, q1, p2, q2>
• <q0, p0, p1, q1, p2, q2 >
• <q0, p0, p1, p2, q1,q2 >
• ……

• Causal order:
• p0 →	p1 →	p2
• q0 →	q1 →	q2
• p0 →	p1 →	q1→ q2

• Concurrent:
• p0 || q0
• p1 || q0
• p2 || q0, p2 || q1, p2 || q2

State Transitions: Example

q1

q2

Execution Lattice. Each path represents a linearization.

State Transitions: Example

q1

q2

Execution Lattice. Each path represents a linearization.

State Transitions: Example

q1

q2

Execution Lattice. Each path represents a linearization.

State Transitions: Example

q1

q2

Execution Lattice. Each path represents a linearization.

State Transitions: Example

q1

q2

State Transitions: Example

q1

q2

State Transitions: Example

q1

q2

State Transitions: Example

q1

q2

More notations and definitions

• A run is a total ordering of events in H that is consistent
with each hi’s ordering.

• A linearization is a run consistent with happens-before (®)
relation in H.

• Linearizations pass through consistent global states.

• A global state Sk is reachable from global state Si, if there is
a linearization that passes through Si and then through Sk.

• The distributed system evolves as a series of transitions
between global states S0 , S1 , ….

Global State Predicates

• A global-state-predicate is a property that is true or false
for a global state.

• Is there a deadlock?
• Has the distributed algorithm terminated?

• Two ways of reasoning about predicates (or system
properties) as global state gets transformed by events.

• Liveness
• Safety

Liveness
• Liveness = guarantee that something good will happen,

eventually

• Examples:
• A distributed computation will terminate.
• “Completeness” in failure detectors: the failure will be detected.
• All processes will eventually decide on a value.

• A global state S0 satisfies a liveness property P iff:
• liveness(P(S0)) º "LÎ linearizations from S0, L passes through a

SL & P(SL) = true
• For all linearizations starting from S0, P is true for some state SL

reachable from S0.

Liveness Example

q1

q2

If predicate is true only in the marked states, does it satisfy liveness?
Yes

Liveness Example

q1

q2

If predicate is true only in the marked states, does it satisfy liveness?
No

Liveness Example

q1

q2

If predicate is true only in the marked states, does it satisfy liveness?
Yes

Liveness
• Liveness = guarantee that something good will happen,

eventually

• Examples:
• A distributed computation will terminate.
• “Completeness” in failure detectors: the failure will be detected.
• All processes will eventually decide on a value.

• A global state S0 satisfies a liveness property P iff:
• liveness(P(S0)) º "LÎ linearizations from S0, L passes through a

SL & P(SL) = true
• For any linearization starting from S0, P is true for some state SL

reachable from S0.

Safety

• Safety = guarantee that something bad will never happen.

• Examples:
• There is no deadlock in a distributed transaction system.
• “Accuracy” in failure detectors: an alive process is not detected as

failed.
• No two processes decide on different values.

• A global state S0 satisfies a safety property P iff:
• safety(P(S0)) º "S reachable from S0, P(S) = true.
• For all states S reachable from S0, P(S) is true.

Safety Example

q1

q2

If predicate is true only in the marked states, does it satisfy safety?
No

Safety Example

q1

q2

If predicate is true only in the unmarked states, does it satisfy safety?
Yes

Safety

• Safety = guarantee that something bad will never happen.

• Examples:
• There is no deadlock in a distributed transaction system.
• “Accuracy” in failure detectors: an alive process is not detected as

failed.
• No two processes decide on different values.

• A global state S0 satisfies a safety property P iff:
• safety(P(S0)) º "S reachable from S0, P(S) = true.
• For all states S reachable from S0, P(S) is true.

Liveness Example

q1

q2

Technically satisfies liveness, but difficult to capture or reason about.

Stable Global Predicates

• once true, stays true forever afterwards (for stable liveness)

Stable Global Predicates

q1

q2

If predicate is true only in the marked states, is it stable?
No

Stable Global Predicates

q1

q2

If predicate is true only in the marked states, is it stable?
No

Stable Global Predicates

q1

q2

If predicate is true only in the marked states, is it stable?
Yes

Stable Global Predicates

• once true, stays true forever afterwards (for stable liveness)
• once false, stays false forever afterwards (for stable non-safety)
• Stable liveness examples (once true, always true)

• Computation has terminated.
• Stable non-safety examples (once false, always false)

• There is no deadlock.
• An object is not orphaned.

• All stable global properties can be detected using the Chandy-
Lamport algorithm.

Global Snapshot Summary

• The ability to calculate global snapshots in a distributed
system is very important.

• But don’t want to interrupt running distributed application.
• Chandy-Lamport algorithm calculates global snapshot.
• Obeys causality (creates a consistent cut).
• Can be used to detect global properties.
• Safety vs. Liveness.

