Distributed Systems

CS425/ECE428

Feb 12 2021

Instructor: Radhika Mittal

Some revision while we wait

- For a process \mathbf{p}_i , where events $\mathbf{e}_i^0, \mathbf{e}_i^1, \dots$ occur: history(p_i) = $h_i = \langle e_i^0, e_i^1, ... \rangle$ prefix history(p_i^k) = $h_i^k = \langle e_i^0, e_i^1, ..., e_i^k \rangle$ \mathbf{s}_{i}^{k} : \mathbf{p}_{i} 's state immediately after kth event. • For a set of processes <p1, p2, p3,, pn>: global history: $H = \bigcup_i (h_i)$ a cut $\mathbf{C} \subset \mathbf{H} = \mathbf{h}_1^{\mathbf{c}_1} \cup \mathbf{h}_2^{\mathbf{c}_2} \cup \ldots \cup \mathbf{h}_n^{\mathbf{c}_n}$ the frontier of C = $\{e_i^{c_i}, i = 1, 2, ..., n\}$ global state S that corresponds to cut C = \cup_i (s_i^c_i)
- A cut C is **consistent** if and only if $\forall e \in C$ (if $f \rightarrow e$ then $f \in C$)
 - A global state **S** is consistent if and only if it corresponds to a consistent cut.

Logistics Related

• MPO is due today 11:59pm.

- No class next Wednesday (Feb 17th) non-instructional day.
 - I have moved my office hours to Thursday 10-11am for next week.

• HWI is due on Thursday (Feb 18th) at 11:59pm.

Today's agenda

- Global State
 - Chapter 14.5
 - Goal: reason about how to capture the state across all processes of a distributed system without requiring time synchronization.

Recap: How to capture global state?

- State of each process (and each channel) in the system at a given instant of time.
 - Difficult to capture -- requires precisely synchronized time.
- Relax the problem
 - For a system with n processes $< p_1, p_2, p_3, ..., p_n >$, capture the state of the system after the c_i th event at process p_i .
 - State corresponding to the cut defined by frontier events $\{e_i^{c_i}, \text{ for } i = 1, 2, ..., n\}.$
 - We want the state to be consistent.
 - Must correspond to a consistent cut.
 - If an event e belongs to the cut, all events that "happened before" e must also belong to the cut.

Recap: Chandy-Lamport Algorithm

- Goal: Record consistent state by identifying a consistent cut.
- System model and assumptions:
 - System of **n** processes: <**p**₁, **p**₂, **p**₃, ..., **p**_n>.
 - There are two uni-directional communication channels between each ordered process pair : p_i to p_i and p_i to p_i.
 - Communication channels are FIFO-ordered (first in first out).
 - All messages arrive intact, and are not duplicated.
 - No failures: neither channel nor processes fail.
- Requirements:
 - Snapshot should not interfere with normal application actions, and it should not require application to stop sending messages.
 - Any process may initiate algorithm.

Chandy-Lamport Algorithm Intuition

- First, initiator **p**_i:
 - records its own state.
 - creates a special marker message.
 - sends the **marker** to all other process.
 - start recording messages received on other channels.
 - until a marker is received on a channel.
- When a process receives a marker.
 - If marker is received for the first time.
 - records its own state.
 - sends marker on all other channels.
 - start recording messages received on other channels.
 - until a marker is received on a channel.

Chandy-Lamport Algorithm

- First, initiator **p**_i:
 - records its own state.
 - creates a special marker message.
 - for j=1 to n except i
 - **p**_i sends a **marker** message on outgoing channel **c**_{ii}
 - starts recording the incoming messages on each of the incoming channels at p_i: c_{ji} (for j=1 to n except i).

Chandy-Lamport Algorithm

Whenever a process \textbf{p}_i receives a **marker** message from $|\textbf{p}_k|$ on incoming channel \textbf{c}_{ki}

- if (this is the first marker p_i is seeing)
 - **p**_i records its own state first
 - marks the state of channel **c**_{ki} as "empty"
 - for j=l to n except i
 - **p**_i sends out a marker message on outgoing channel **c**_{ii}
 - starts recording the incoming messages on each of the incoming channels at p_i: c_{ji} (for j=1 to n except i and k).
- else // already seen a **marker** message
 - mark the state of channel c_{ki} as all the messages that have arrived on it since recording was turned on for c_{ki}

Chandy-Lamport Algorithm

The algorithm terminates when

- All processes have received a marker
 - To record their own state
- All processes have received a **marker** on all the (*n*-1) incoming channels
 - To record the state of all channels

 $\{B, G, H\}$

Only c_{21} has a pending message.

Global snapshots pieces can be collected at a central location.

- Any run of the Chandy-Lamport Global Snapshot algorithm creates a consistent cut.
- Let \boldsymbol{e}_i and \boldsymbol{e}_j be events occurring at \boldsymbol{p}_i and \boldsymbol{p}_j , respectively such that
 - $\mathbf{e}_i \rightarrow \mathbf{e}_j$ (\mathbf{e}_i happens before \mathbf{e}_j)
- •The snapshot algorithm ensures that

if \mathbf{e}_i is in the cut then \mathbf{e}_i is also in the cut.

• That is: if $\mathbf{e}_j \rightarrow \langle \mathbf{p}_j \rangle$ records its state \rangle , then it must be true that $\mathbf{e}_i \rightarrow \langle \mathbf{p}_i \rangle$ records its state \rangle .

- Given $\mathbf{e}_i \rightarrow \mathbf{e}_j$. If $\mathbf{e}_j \rightarrow < \mathbf{p}_j$ records its state>, then it must be true that $\mathbf{e}_i \rightarrow < \mathbf{p}_i$ records its state>.
- By contradiction, suppose $\mathbf{e}_j \rightarrow < \mathbf{p}_j$ records its state>, and $<\mathbf{p}_i$ records its state> $\rightarrow \mathbf{e}_i$.

- Given $\mathbf{e}_i \rightarrow \mathbf{e}_j$. If $\mathbf{e}_j \rightarrow < \mathbf{p}_j$ records its state>, then it must be true that $\mathbf{e}_i \rightarrow < \mathbf{p}_i$ records its state>.
- By contradiction, suppose $\mathbf{e}_j \rightarrow < \mathbf{p}_j$ records its state>, and $<\mathbf{p}_i$ records its state> $\rightarrow \mathbf{e}_i$.

- Given $\mathbf{e}_i \rightarrow \mathbf{e}_j$. If $\mathbf{e}_j \rightarrow < \mathbf{p}_j$ records its state>, then it must be true that $\mathbf{e}_i \rightarrow < \mathbf{p}_i$ records its state>.
- By contradiction, suppose $\mathbf{e}_j \rightarrow < \mathbf{p}_j$ records its state>, and $<\mathbf{p}_i$ records its state> $\rightarrow \mathbf{e}_i$.

- Given $\mathbf{e}_i \rightarrow \mathbf{e}_j$. If $\mathbf{e}_j \rightarrow < \mathbf{p}_j$ records its state>, then it must be true that $\mathbf{e}_i \rightarrow < \mathbf{p}_i$ records its state>.
- By contradiction, suppose $\mathbf{e}_j \rightarrow < \mathbf{p}_j$ records its state>, and $<\mathbf{p}_i$ records its state> $\rightarrow \mathbf{e}_i$.

- Given $\mathbf{e}_i \rightarrow \mathbf{e}_j$. If $\mathbf{e}_j \rightarrow < \mathbf{p}_j$ records its state>, then it must be true that $\mathbf{e}_i \rightarrow < \mathbf{p}_i$ records its state>.
- By contradiction, suppose $\mathbf{e}_j \rightarrow < \mathbf{p}_j$ records its state>, and $<\mathbf{p}_i$ records its state> $\rightarrow \mathbf{e}_i$.
- Consider the path of app messages (through other processes) that go from e_i to e_i.
- Due to FIFO ordering, markers on each link in above path will precede regular app messages.
- Thus, since $\langle \mathbf{p}_i | \text{records its state} \rangle \rightarrow \mathbf{e}_i$, it must be true that \mathbf{p}_i received a marker before \mathbf{e}_i .
- Thus $\mathbf{e}_{\mathbf{j}}$ is not in the cut => contradiction.

Summary

- The ability to calculate global snapshots in a distributed system is very important.
- But don't want to interrupt running distributed application.
- Chandy-Lamport algorithm calculates global snapshot.
- Obeys causality (creates a consistent cut).
- Can be used to detect global properties.
 - Safety vs. Liveness.

Chandy-Lamport Algorithm: Usefulness

- Consistent global snapshots are useful for detecting global system properties:
 - Safety
 - Liveness

More notations and definitions

- history(p_i) = $h_i = \langle e_i^0, e_i^1, ... \rangle$
- global history: $H = \bigcup_i (h_i)$
- A run is a total ordering of events in H that is consistent with each h_i's ordering.
- A linearization is a run consistent with happens-before
 (→) relation in H.

Order at p_1 : < e_1^0 , e_1^1 , e_1^2 , e_1^3 > Order at p_2 : < e_2^0 , e_2^1 , e_2^2 > Causal order across p_1 and p_2 : < e_1^0 , e_1^1 , e_2^0 , e_2^1 , e_2^2 , e_1^3 >

Run: $< e_1^0, e_1^1, e_1^2, e_1^3, e_2^0, e_2^1 e_2^2 >$ Linearization: $< e_1^0, e_1^1, e_1^2, e_2^0, e_2^1 e_2^2, e_1^3 >$

Order at p_1 : < e_1^0 , e_1^1 , e_1^2 , e_1^3 > Order at p_2 : < e_2^0 , e_2^1 , e_2^2 > Causal order across p_1 and p_2 : < e_1^0 , e_1^1 , e_2^0 , e_2^1 , e_2^2 , e_1^3 >

Run:
$$< e_1^0, e_1^1, e_1^2, e_1^3, e_2^0, e_2^1 e_2^2 >$$

Linearization: $< e_1^0, e_1^1, e_1^2, e_2^0, e_2^1 e_2^2, e_1^3 >$

Causal order across p_1 and p_2 : < e_1^0 , e_1^1 , e_2^0 , e_2^1 , e_2^2 , e_1^3 >

$$< e_1^0, e_1^1, e_2^0, e_2^1, e_1^2, e_2^2, e_1^3 >$$

Causal order across p_1 and p_2 : < e_1^0 , e_1^1 , e_2^0 , e_2^1 , e_2^2 , $e_1^3 >$

< e_1^0 , e_1^1 , e_2^0 , e_2^1 , e_1^2 , e_2^2 , e_1^3 >: Linearization < e_1^0 , e_2^1 , e_2^0 , e_1^1 , e_1^2 , e_2^2 , e_1^3 >: Not even a run

More notations and definitions

- history(p_i) = $h_i = \langle e_i^0, e_i^1, ... \rangle$
- global history: $H = \bigcup_i (h_i)$
- A run is a total ordering of events in H that is consistent with each h_i's ordering.
- A linearization is a run consistent with happens-before
 (→) relation in H.
- Linearizations pass through consistent global states.

Order at p_1 : < e_1^0 , e_1^1 , e_1^2 , e_1^3 > Order at p_2 : < e_2^0 , e_2^1 , e_2^2 > Causal order across p_1 and p_2 : < e_1^0 , e_1^1 , e_2^0 , e_2^1 , e_2^2 , e_1^3 >

Linearization: $< e_1^0, e_1^1, e_1^2, e_2^0, e_2^1, e_2^2, e_1^3 >$

Order at $p_1: < e_1^0, e_1^1, e_1^2, e_1^3 >$ Order at $p_2: < e_2^0, e_2^1, e_2^2 >$ Causal order across p_1 and $p_2: < e_1^0, e_1^1, e_2^0, e_2^1 e_2^2, e_1^3 >$

Linearization: $< e_1^0, e_1^1, e_1^2, e_2^0, e_2^1, e_2^2, e_1^3 >$

Order at $p_1: < e_1^0, e_1^1, e_1^2, e_1^3 >$ Order at $p_2: < e_2^0, e_2^1, e_2^2 >$ Causal order across p_1 and $p_2: < e_1^0, e_1^1, e_2^0, e_2^1 e_2^2, e_1^3 >$

Linearization: $< e_1^0, e_1^1, e_1^2, e_2^0, e_2^1 e_2^2, e_1^3 >$

Causal order across p_1 and p_2 : < e_1^0 , e_1^1 , e_2^0 , e_2^1 , e_2^2 , e_1^3 >

Linearization: $< e_1^0, e_1^1, e_1^2, e_2^0, e_2^1 e_2^2, e_1^3 >$

Order at $p_1: < e_1^0, e_1^1, e_1^2, e_1^3 >$ Order at $p_2: < e_2^0, e_2^1, e_2^2 >$ Causal order across p_1 and $p_2: < e_1^0, e_1^1, e_2^0, e_2^1 e_2^2, e_1^3 >$

> Linearization: $< e_1^0, e_1^1, e_1^2, e_2^0, e_2^1, e_2^2, e_1^3 >$ Linearization $< e_1^0, e_1^1, e_2^0, e_2^1, e_1^2, e_2^2, e_1^3 >$

More notations and definitions

- Linearizations pass through consistent global states.
- A global state S_k is reachable from global state S_i, if there is a linearization that passes through S_i and then through S_k.
- The distributed system evolves as a series of transitions between global states S_0 , S_1 , …

Many linearizations:

.

- < p0, p1, p2, q0, q1, q2>
- < p0, q0, p1, q1, p2, q2>
- <q0, p0, p1, q1, p2, q2 >
- <q0, p0, p1, p2, q1,q2 >

Causal order:

- $p0 \rightarrow p1 \rightarrow p2$
- $q0 \rightarrow qI \rightarrow q2$
- $p0 \rightarrow p1 \rightarrow q1 \rightarrow q2$
- Concurrent:
 - p0 || q0
 - p|||q0
 - p2 || q0, p2 || q1, p2 || q2

More notations and definitions

- A run is a total ordering of events in H that is consistent with each **h**_i's ordering.
- A linearization is a run consistent with happens-before (\rightarrow) relation in H.
- Linearizations pass through consistent global states.
- A global state S_k is reachable from global state S_i, if there is a linearization that passes through S_i and then through S_k.
- The distributed system evolves as a series of transitions between global states S_0 , S_1 , …

Global State Predicates

- A global-state-predicate is a property that is *true* or *false* for a global state.
 - Is there a deadlock?
 - Has the distributed algorithm terminated?
- Two ways of reasoning about predicates (or system properties) as global state gets transformed by events.
 - Liveness
 - Safety

Liveness

- Liveness = guarantee that something good will happen, eventually
- Examples:
 - A distributed computation will terminate.
 - "Completeness" in failure detectors: the failure will be detected.
 - All processes will eventually decide on a value.
- A global state S₀ satisfies a **liveness** property P iff:
 - liveness(P(S₀)) = $\forall L \in$ linearizations from S₀, L passes through a S_L & P(S_L) = true
 - For all linearizations starting from $\rm S_0, P$ is true for some state $\rm S_L$ reachable from $\rm S_0.$

If predicate is true only in the marked states, does it satisfy liveness?

If predicate is true only in the marked states, does it satisfy liveness? **No**

If predicate is true only in the marked states, does it satisfy liveness?

Liveness

- Liveness = guarantee that something good will happen, eventually
- Examples:
 - A distributed computation will terminate.
 - "Completeness" in failure detectors: the failure will be detected.
 - All processes will eventually decide on a value.
- A global state S₀ satisfies a **liveness** property P iff:
 - liveness(P(S₀)) = $\forall L \in$ linearizations from S₀, L passes through a S_L & P(S_L) = true
 - For any linearization starting from $\rm S_0, P$ is true for some state $\rm S_L$ reachable from $\rm S_0.$

Safety

- Safety = guarantee that something bad will never happen.
- Examples:
 - There is no deadlock in a distributed transaction system.
 - "Accuracy" in failure detectors: an alive process is not detected as failed.
 - No two processes decide on different values.
- A global state S₀ satisfies a **safety** property P iff:
 - safety($P(S_0)$) = $\forall S$ reachable from S_0 , P(S) = true.
 - For all states S reachable from S_0 , P(S) is true.

Safety Example

If predicate is true only in the marked states, does it satisfy safety?

Safety Example

If predicate is true only in the **unmarked** states, does it satisfy safety?

Safety

- Safety = guarantee that something bad will never happen.
- Examples:
 - There is no deadlock in a distributed transaction system.
 - "Accuracy" in failure detectors: an alive process is not detected as failed.
 - No two processes decide on different values.
- A global state S₀ satisfies a **safety** property P iff:
 - safety($P(S_0)$) = $\forall S$ reachable from S_0 , P(S) = true.
 - For all states S reachable from S_0 , P(S) is true.

Technically satisfies liveness, but difficult to capture or reason about.

• once true, stays true forever afterwards (for stable liveness)

If predicate is true only in the marked states, is it stable?

Stable Global Predicates

- once true, stays true forever afterwards (for stable liveness)
- once false, stays false forever afterwards (for stable non-safety)
- Stable liveness examples (once true, always true)
 - Computation has terminated.
- Stable non-safety examples (once false, always false)
 - There is no deadlock.
 - An object is not orphaned.
- All stable global properties can be detected using the Chandy-Lamport algorithm.

Global Snapshot Summary

- The ability to calculate global snapshots in a distributed system is very important.
- But don't want to interrupt running distributed application.
- Chandy-Lamport algorithm calculates global snapshot.
- Obeys causality (creates a consistent cut).
- Can be used to detect global properties.
- Safety vs. Liveness.