Distributed Systems

CS425/ECE428

Feb 12 2021

Instructor: Radhika Mittal



Some revision while we wait

* Fora process p, , where events ef e.!, ... occur:

history(p,) = h, = <e0e/,... >

0

prefix history(pX) = hk=<ef e/l ...,k >

s . pi's state immediately after k" event.
* For a set of processes <py, Py P3s - - -+s Pn>"

global history: H = U, (h))
acutCcH=hSUh%U...UhS
the frontier of C = {e5,i = I,2,... n}

global state S that corresponds to cut C = U, (s5)

* A cut Cis consistent if and only If Ve € C (if f > ethen f € C)

* A global state S is consistent if and only If it corresponds to a
consistent cut.



Logistics Related

* MPO Is due today | [:59pm.

* No class next Wednesday (Feb | 7") — non-instructional day.
* | have moved my office hours to Thursday |0-1 lam for next week.

 HW is due onThursday (Feb 18™) at | 1:59pm.



Today’s agenda

* Global State
* Chapter 14.5
* Goal: reason about how to capture the state across all

processes of a distributed system without requiring time
synchronization.



Recap: How to capture global state!?

* State of each process (and each channel) in the system at a given instant
of time.,
* Difficult to capture -- requires precisely synchronized time.

* Relax the problem
* For a system with n processes <p,, Py, P3, - - - P>, Capture the state
of the system after the ¢ ™ event at process p.
* State corresponding to the cut defined by frontier events
{eG fori=12,...n}k

* We want the state to be consistent.

* Must correspond to a consistent cut.

* If an event e belongs to the cut, all events that “happened
before” e must also belong to the cut.



Recap: Chandy-Lamport Algorithm

* Goal: Record consistent state by identifying a consistent cut,

* System model and assumptions:

* System of n processes: <p|, Py P3s - - -+ Pn~>-

* There are two uni-directional communication channels between
each ordered process pair: p;to p; and p; to p;

* Communication channels are FIFO-ordered (first in first out).

* All messages arrive intact, and are not duplicated.

* No fallures: nerther channel nor processes falil.

* Requirements:
* Snapshot should not interfere with normal application actions,
and 1t should not require application to stop sending messages.

* Any process may Initiate algorithm.



Chandy-Lamport Algorithm Intuition

* First, initiator p;;

records Its own state.

creates a special marker message.

sends the marker to all other process.

start recording messages received on other channels.
* until a marker is received on a channel.

* When a process receives a marker.

e [f marker is received for the first time.
* records its own state.
* sends marker on all other channels.
* start recording messages received on other channels.

e until a marker is received on a channel.



Chandy-Lamport Algorithm

* First, initiator p;;
* records Its own state.

* creates a special marker message.
* for j=1 to n except i
* p; sends a marker message on outgoing channel ¢;
* starts recording the incoming messages on each of the
incoming channels at p;: ¢; (for j=1 to n except ).



Chandy-Lamport Algorithm

Whenever a process p; receives a marker message from p, on
iIncoming channel ¢,

* If (this is the first marker p; is seeing)
* p, records Its own state first
* marks the state of channel ¢,; as “empty”
* forj=1 to n except |

* p, sends out a marker message on outgoing channel c;
* starts recording the incoming messages on each of the incoming
channels at p;: ¢; (for j=1 to n except i and k).

* else // already seen a marker message

* mark the state of channel ¢, as all the messages that have arrived
on it since recording was turned on for ¢



Chandy-Lamport Algorithm

The algorithm terminates when

* All processes have received a marker
* To record their own state
* All processes have received a marker on all the (n-/) incoming
channels
* To record the state of all channels
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Chandy-Lamport Algorithm: Properties

* Any run of the Chandy-Lamport Global Snapshot
algorithm creates a consistent cut.

* Let ; and g, be events occurring at p; and p;, respectively
such that

*e > e (ehappensbefore e)

j
* [ he snapshot algorithm ensures that
if e is in the cut then e is also In the cut.

* That is:if e, = < p; records its state>, then
it must be true that e, = <p. records its state>.



Chandy-Lamport Algorithm: Properties

* Given e; 2 e, If e 2 < p, records its state>, then
it must be true that e, = <p. records its state>.

* By contradiction, suppose e; 2 < p; records its state>, and
<p, records its state> 2> e,
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Chandy-Lamport Algorithm: Properties

* Given e; 2 e, If e > < p, records its state>, then
it must be true that e, = <p. records its state>.

* By contradiction, suppose e; 2 < p; records its state>, and
<p, records its state> 2> e,

* Consider the path of app messages (through other
processes) that go from e; to e;.

* Due to FIFO ordering, markers on each link in above path
will precede regular app messages.

* Thus, since <p; records its state> =2 e, , it must be true that

p; received a marker before e;

e Thus e s not In the cut => contradiction.



Summary

* The ability to calculate global snapshots in a distributed
system Is very important.

* But don't want to interrupt running distributed application.
* Chandy-Lamport algorithm calculates global snapshot.
* Obeys causality (creates a consistent cut).

* Can be used to detect global properties.
* Safety vs. Liveness.



Chandy-Lamport Algorithm: Usefulness

* Consistent global snapshots are useful for detecting
olobal system properties:
* Safety
* Liveness



More notations and definitions

* history(p) = h.=<ef%el,... >
* global history: H = Ui (h,)

* A run is a total ordering of events in H that Is consistent
with each h/'s ordering.

* A linearization is a run consistent with happens-before
(—) relation in H.
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More notations and definitions

* history(p) = h.=<ef%el,... >
* global history: H = Ui (h,)

* A run is a total ordering of events in H that Is consistent
with each h/'s ordering.

* A linearization is a run consistent with happens-before
(—) relation in H.

* Linearizations pass through consistent global states.
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More notations and definitions

* Linearizations pass through consistent global states.

* A global state S, is reachable from global state S, if there Is
a linearization that passes through S. and then through S,.

* [he distributed system evolves as a series of transitions
between global states 5y, 5 ...



State Transitions: Example
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Many linearizations:

<p0,pl,p2,q0,ql,g2>
<p0,q0,pl,ql,p2,q2>
<q0,p0,pl,ql,p2,q2 >
<q0,p0,pl,p2,ql,g2 >

e (Causal order:

pO = pl —p2
q0 - gl - g2

p0 »pl »qgl - g2

e Concurrent:

pO

o]
p2

q0
qo
q0,p2 || gql,p2 || g2



State Transitions: Example

Execution Lattice. Each path represents a linearization.
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State Transitions: Example

Execution Lattice. Each path represents a linearization.
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State Transitions: Example

Execution Lattice. Each path represents a linearization.
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State Transitions: Example

Execution Lattice. Each path represents a linearization.
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State Transitions: Example

p0 {1,0}  pl {2,0} , p2 {3,0}
7\ 7\

C,




State Transitions: Example

(o)== (oo Com}—2 (o)
start »
q0 0 q0
pl

P
C q0
@ PO . @ p2 @
1

p0 {10}  pl {2,0} \pz (3.0}
7\ 7\

€, \w \w >
q0 {0,1} q13{2,2} q2 {2,3}
C FaY ya\ I

\J \J \ -




State Transitions: Example
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More notations and definitions

* A run is a total ordering of events in H that Is consistent
with each h/'s ordering.

* A linearization is a run consistent with happens-before (—)
relation in H.

* Linearizations pass through consistent global states.

* A global state S, Is reachable from global state S, if there Is
a linearization that passes through S. and then through §,.

* The distributed system evolves as a series of transitions
between global states Sy, S, ...



Global State Predicates

* A global-state-predicate Is a property that is true or false
for a global state.
* |s there a deadlock!?
* Has the distributed algorithm terminated?

* Two ways of reasoning about predicates (or system
properties) as global state gets transformed by events.
* Liveness
* Safety



Liveness

* Liveness = guarantee that something good will happen,
eventually

* Examples:
* A distributed computation will terminate.
* "Completeness” in fallure detectors: the failure will be detected.

* All processes will eventually decide on a value.

* A global state S, satisfies a liveness property P iff:
* liveness(P(Sy)) = VL0Le linearizations from Sy, L passes through a
S| & P(5)) = true
* For all linearizations starting from Sy, P Is true for some state S,
reachable from S,



Liveness Example

If predicate Is true only in the marked states, does It satisfy liveness!
Yes
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Liveness Example
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Liveness

* Liveness = guarantee that something good will happen,
eventually

* Examples:
* A distributed computation will terminate.
* "Completeness” in fallure detectors: the failure will be detected.

* All processes will eventually decide on a value.

* A global state S, satisfies a liveness property P iff:
* liveness(P(Sy)) = VL0Le linearizations from Sy, L passes through a
S| & P(5)) = true
* For any linearization starting from S, P Is true for some state S,
reachable from S,



Safety

* Safety = guarantee that something bad will never happen.

* Examples:
* There is no deadlock in a distributed transaction system.

* "Accuracy’ in fallure detectors: an alive process is not detected as
falled.

* No two processes decide on different values.

* A global state S, satisfies a safety property P iff:
* safety(P(Sy)) = VS reachable from S, P(S) = true.
* For all states S reachable from S, P(5) I1s true.



Safety Example

If predicate Is true only in the marked states, does It satisfy safety?
No
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Safety Example

If predicate Is true only in the unmarked states, does it satisfy safety?
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Safety

* Safety = guarantee that something bad will never happen.

* Examples:
* There is no deadlock in a distributed transaction system.

* "Accuracy’ in fallure detectors: an alive process is not detected as
falled.

* No two processes decide on different values.

* A global state S, satisfies a safety property P iff:
* safety(P(Sy)) = VS reachable from S, P(S) = true.
* For all states S reachable from S, P(5) I1s true.



Liveness Example

Technically satisfies liveness, but difficult to capture or reason about.
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Stable Global Predicates

* once true, stays true forever afterwards (for stable liveness)



Stable Global Predicates

It predicate is true only in the marked states, Is 1t stable?
No
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Stable Global Predicates

It predicate is true only in the marked states, Is 1t stable?
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CadPadOmd®
start »
q0 q0 q0 q0

p0 {1,0} pl {2,0} p2 {3,0}

€] S S > q2

q0 {0,1} ql“:,{2,2} a2 {2.3}
.\

G © S/




Stable Global Predicates

It predicate is true only in the marked states, Is 1t stable?

Yes
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Stable Global Predicates

* once true, stays true forever afterwards (for stable liveness)
* once false, stays false forever afterwards (for stable non-safety)

* Stable liveness examples (once true, always true)
* Computation has terminated.

* Stable non-safety examples (once false, always false)
* There is no deadlock.
* An object I1s not orphaned.

* All stable global properties can be detected using the Chandy-
Lamport algorithm.



Global Snapshot Summary

* The ability to calculate global snapshots in a distributed
system Is very important.

* But don't want to interrupt running distributed application.
* Chandy-Lamport algorithm calculates global snapshot.

* Obeys causality (creates a consistent cut).

* Can be used to detect global properties.

* Safety vs. Liveness.



