
Distributed Systems

CS425/ECE428

Feb 10 2021

Instructor : Radhika Mittal

Logistics Related

• MP0 is due on Friday.
• If you are in the 4 credit section, and still do not have a VM

cluster assigned to you, reach out to us asap.
• We will not give any extensions for this reason.

• No class next Wednesday (Feb 17th) – non-instructional
day.

Recap: Timestamps Summary

• Comparing timestamps across events is useful.
• Reconciling updates made to an object in a distributed datastore.
• Rollback recovery during failures:

1. Checkpoint state of the system; 2. Log events (with timestamps);
3. Rollback to checkpoint and replay events in order if system crashes.

• How to compare timestamps across different processes?
• Physical timestamp: requires clock synchronization.

• Google’s Spanner Distributed Database uses “TrueTime”.
• Lamport’s timestamps: cannot fully differentiate between causal

and concurrent ordering of events.
• Oracle uses “System Change Numbers” based on Lamport’s clock.

• Vector timestamps: larger message sizes.
• Amazon’s DynamoDB uses vector clocks.

Recap: Timestamps Summary

• Comparing timestamps across events is useful.
• Reconciling updates made to an object in a distributed datastore.
• Rollback recovery during failures:

1. Checkpoint state of the system; 2. Log events (with timestamps);
3. Rollback to checkpoint and replay events in order if system crashes.

• How to compare timestamps across different processes?
• Physical timestamp: requires clock synchronization.

• Google’s Spanner Distributed Database uses “TrueTime”.
• Lamport’s timestamps: cannot fully differentiate between causal

and concurrent ordering of events.
• Oracle uses “System Change Numbers” based on Lamport’s clock.

• Vector timestamps: larger message sizes.
• Amazon’s DynamoDB uses vector clocks.

Today’s agenda

• Global State

• Chapter 14.5

• Goal: reason about how to capture the state across all
processes of a distributed system without requiring time
synchronization.

Process, state, events
• Consider a system with n processes: <p1, p2, p3, …., pn>.
• Each process pi is associated with state si.

• State includes values of all local variables, affected files, etc.
• Each channel can also be associated with a state.

• Which messages are currently pending on the channel.
• Can be computed from process’ state:

• Record when a process sends and receives messages.
• if pi sends a message that pj has not yet received, it is pending

on the channel.
• State of a process (or a channel) gets transformed when an event

occurs. 3 types of events:
• local computation, sending a message, receiving a message.

Global State (or Global Snapshot)

• State of each process (and each channel) in the system at a
given instant of time.

• Example:

p1 p2

c12

c21

Two processes: p1 and p2.
c12: channel from p1 to p2. c21: channel from p2 to p1.

Global State (or Global Snapshot)

• State of each process (and each channel) in the system at a
given instant of time.

• Example:

p1 p2

c12: [empty]

c21: [empty]

Process state for p1 and p2.

No pending messages on the channels..

X1: 0

Y1: 0

Z1: 0

X2: 1

Y2: 2

Z2: 3

Global State (or Global Snapshot)

• State of each process (and each channel) in the system at a
given instant of time.

• Example:

p1 p2

c12: [X2 = 4]

c21: [empty]

p1 send a message to p2 asking it to set X2 = 4

X1: 0

Y1: 0

Z1: 0

X2: 1

Y2: 2

Z2: 3

Global State (or Global Snapshot)

• State of each process (and each channel) in the system at a
given instant of time.

• Example:

p1 p2

c12: [empty]

c21: [empty]

p2 receives the message.

X1: 0

Y1: 0

Z1: 0

X2: 1

Y2: 2

Z2: 3

X2 = 4

Global State (or Global Snapshot)

• State of each process (and each channel) in the system at a
given instant of time.

• Example:

p1 p2

c12: [empty]

c21: [empty]

p2 changes the value of X2

X1: 0

Y1: 0

Z1: 0

X2: 4

Y2: 2

Z2: 3

Capturing a global snapshot

• Useful to capture a global snapshot of the system:
• Checkpointing the system state.
• Reasoning about unreferenced objects (for garbage

collection).
• Deadlock detection.
• Distributed debugging.

Capturing a global snapshot

• Difficult to capture a global snapshot of the system.
• Global state or global snapshot is state of each process

(and each channel) in the system at a given instant of time.
• Strawman:

• Each process records its state at 3:15pm.
• We get the global state of the system at 3:15pm.
• But precise clock synchronization is difficult to achieve.

• How do we capture global snapshots without
precise time synchronization across processes?

• State of a process (or a channel) gets transformed when an event
occurs.

• 3 types of events:
• local computation, sending a message, receiving a message.

• ei
n is the nth event at pi.

Some more notations and definitions

Some more notations and definitions
• For a process pi , where events ei

0, ei
1, … occur:

history(pi) = hi = <ei
0, ei

1, … >
prefix history(pi

k) = hi
k = <ei

0, ei
1, …,ei

k >
si

k : pi’s state immediately after kth event.
• For a set of processes <p1, p2, p3, …., pn>:

global history: H = Èi (hi)
global state: S = Èi (si)

Some more notations and definitions
• For a process pi , where events ei

0, ei
1, … occur:

history(pi) = hi = <ei
0, ei

1, … >
prefix history(pi

k) = hi
k = <ei

0, ei
1, …,ei

k >
si

k : pi’s state immediately after kth event.
• For a set of processes <p1, p2, p3, …., pn>:

global history: H = Èi (hi)
global state: S = Èi (si)
But state at what time instant?

Some more notations and definitions
• For a process pi , where events ei

0, ei
1, … occur:

history(pi) = hi = <ei
0, ei

1, … >
prefix history(pi

k) = hi
k = <ei

0, ei
1, …,ei

k >
si

k : pi’s state immediately after kth event.
• For a set of processes <p1, p2, p3, …., pn>:

global history: H = Èi (hi)
global state: S = Èi (si

ki)
a cut C Í H = h1

c1 È h2
c2 È … È hn

cn

the frontier of C = {ei
ci, i = 1,2, … n}

global state S that corresponds to cut C = Èi (si
ci)

Example: Cut

m1 m2

p1

p2
Physical

time

e1
0

CB
CA

e 1
1 e 1

2 e 1
3

e 2
0 e 2

1 e 2
2

CA: < e1
0, e2

0>
Frontier of CA: {e1

0, e2
0}

CB: < e1
0, e1

1, e1
2, e2

0, e2
1 e2

2 >
Frontier of CB: {e1

2, e2
2}

Some more notations and definitions
• For a process pi , where events ei

0, ei
1, … occur:

history(pi) = hi = <ei
0, ei

1, … >
prefix history(pi

k) = hi
k = <ei

0, ei
1, …,ei

k >
si

k : pi’s state immediately after kth event.
• For a set of processes <p1, p2, p3, …., pn>:

global history: H = Èi (hi)
global state: S = Èi (si

ki)
a cut C Í H = h1

c1 È h2
c2 È … È hn

cn

the frontier of C = {ei
ci, i = 1,2, … n}

global state S that corresponds to cut C = Èi (si
ci)

Consistent cuts and snapshots

• A cut C is consistent if and only if
"e Î C (if f ® e then f Î C)

Example: Cut

m1 m2

p1

p2
Physical

time

e1
0

CB
CA

e 1
1 e 1

2 e 1
3

e 2
0 e 2

1 e 2
2

CA: < e1
0, e2

0>
Frontier of CA: {e1

0, e2
0}

Inconsistent cut.

CB: < e1
0, e1

1, e1
2, e2

0, e2
1 e2

2 >
Frontier of CB: {e1

2, e2
2}

Consistent cut.

Consistent cuts and snapshots

• A cut C is consistent if and only if
"e Î C (if f ® e then f Î C)

• A global state S is consistent if and only if it corresponds
to a consistent cut.

Consistent cuts and snapshots

• A cut C is consistent if and only if
"e Î C (if f ® e then f Î C)

• A global state S is consistent if and only if it corresponds
to a consistent cut.

• How do we find consistent global states?

Chandy-Lamport Algorithm

• Goal:
• Record a global snapshot

• Process state (and channel state) for a set of processes.
• The recorded global state is consistent.

• Identifies a consistent cut.

• Records corresponding state locally at each process.

Chandy-Lamport Algorithm

• System model and assumptions:
• System of n processes: <p1, p2, p3, …., pn>.
• There are two uni-directional communication channels between

each ordered process pair : pj to pi and pi to pj.
• Communication channels are FIFO-ordered (first in first out).
• All messages arrive intact, and are not duplicated.
• No failures: neither channel nor processes fail.

• Requirements:
• Snapshot should not interfere with normal application actions,

and it should not require application to stop sending messages.
• Any process may initiate algorithm.

Chandy-Lamport Algorithm Intuition

• First, initiator pi:
• records its own state.
• creates a special marker message.
• sends the marker to all other process.

• When a process receives a marker.
• records its own state.

Chandy-Lamport Algorithm Intuition

• First, initiator pi:
• records its own state.
• creates a special marker message.
• sends the marker to all other process.
• start recording messages received on other channels.

• until a marker is received on that channel.
• When a process receives a marker.

• records its own state.

Chandy-Lamport Algorithm Intuition

m1 m2

p1

p2
Physical

time

e1
0 e 1

1 e 1
2 e 1

3

e 2
0 e 2

1 e 2
2

s1

s2

Cut frontier: {e1
2, e2

2}

Process, state, events
• Consider a system with n processes: <p1, p2, p3, …., pn>.
• Each process pi is associated with state si.

• State includes values of all local variables, affected files, etc.
• Each channel can also be associated with a state.

• Which messages are currently pending on the channel.
• Can be computed from process’ state:

• Record when a process sends and receives messages.
• if pi sends a message that pj has not yet received, it is pending

on the channel.
• State of a process (or a channel) gets transformed when an event

occurs. 3 types of events:
• local computation, sending a message, receiving a message.

Chandy-Lamport Algorithm Intuition

m1 m2

p1

p2
Physical

time

e1
0 e 1

1 e 1
2 e 1

3

e 2
0 e 2

1 e 2
2

s1

s2

Cut frontier: {e1
2, e2

2}

Chandy-Lamport Algorithm Intuition

m1 m2

p1

p2
Physical

time

e1
0 e 1

1 e 1
2 e 1

3

e 2
0 e 2

1 e 2
2

s1

s2

Cut frontier: {e1
2, e2

2}

Chandy-Lamport Algorithm Intuition

• First, initiator pi:
• records its own state.
• creates a special marker message.
• sends the marker to all other process.
• start recording messages received on other channels.

• until a marker is received on a channel.
• When a process receives a marker.

• If marker is received for the first time.
• records its own state.
• sends marker on all other channels.
• start recording messages received on other channels.

• until a marker is received on a channel.

