Distributed Systems

CS425/ECE428

Feb 10 2021

Instructor: Radhika Mittal



Logistics Related

* MPO is due on Friday.

* If you are in the 4 credit section, and still do not have aVM
cluster assigned to you, reach out to us asap.
* We will not give any extensions for this reason.

* No class next Wednesday (Feb |7") — non-instructional
day.



Recap: Timestamps Summary

* Comparing timestamps across events is useful.
* Reconciling updates made to an object in a distributed datastore.

* Rollback recovery during failures:

|. Checkpoint state of the system; 2. Log events (with timestamps);
3. Rollback to checkpoint and replay events in order if system crashes.

* How to compare timestamps across different processes!?
* Physical timestamp: requires clock synchronization.
* Google's Spanner Distributed Database uses “TrueTime”.

* Lamport’s timestamps: cannot fully differentiate between causal
and concurrent ordering of events.

* Oracle uses “System Change Numbers” based on Lamport’s clock.

* Vector timestamps: larger message sizes.
* Amazon's DynamoDB uses vector clocks.



Recap: Timestamps Summary

* Comparing timestamps across events is useful.
* Reconciling updates made to an object in a distributed datastore.

* Rollback recovery during failures:

|. Checkpoint state of the system; 2. Log events (with timestamps);
3. Rollback to checkpoint and replay events in order if system crashes.

* How to compare timestamps across different processes!?
* Physical timestamp: requires clock synchronization.
* Google's Spanner Distributed Database uses “TrueTime”.

* Lamport’s timestamps: cannot fully differentiate between causal
and concurrent ordering of events.

* Oracle uses “System Change Numbers” based on Lamport’s clock.

* Vector timestamps: larger message sizes.
* Amazon's DynamoDB uses vector clocks.



Today’s agenda

* Global State
* Chapter 14.5
* Goal: reason about how to capture the state across all

processes of a distributed system without requiring time
synchronization.



Process, state, events

* Consider a system with n processes: <py, P P3s - - -+ Pp>>

n

* Fach process p; Is associated with state s..
e State includes values of all local variables, affected files, etc.

* Each channel can also be associated with a state.
* Which messages are currently pending on the channel.
* Can be computed from process’ state:
* Record when a process sends and receives messages.
* if p; sends a message that p; has not yet received, it is pending
on the channel.

* State of a process (or a channel) gets transformed when an event
occurs. 3 types of events:
* local computation, sending a message, receiving a message.



Global State (or Global Snapshot)

* State of each process (and each channel) in the system at a
given instant of time.

* Example:

Col

Two processes: p, and p,
C|,: channel from p, to p, C,,: channel from p, to p;.



Global State (or Global Snapshot)

* State of each process (and each channel) in the system at a
given instant of time.

* Example:
Cjy: [empty]
X,:0
Y,:0
Z,.0
Cyi: [empty]

Process state for p; and p,
No pending messages on the channels.



Global State (or Global Snapshot)

* State of each process (and each channel) in the system at a
given instant of time.

* Example:
C iyt [X; = 4]
X,:0
Y,:0
Z,0
Cyi: [empty]

P, send a message to p, asking it to set X, = 4



Global State (or Global Snapshot)

* State of each process (and each channel) in the system at a
given instant of time.

* Example:
Cjy: [empty]
X,:0
Y,:0
Z,.0
Cyi: [empty]

P, receives the message.



Global State (or Global Snapshot)

* State of each process (and each channel) in the system at a
given instant of time.

* Example:
Cjy: [empty]
X,:0
Y,:0
Z,.0
Cyi: [empty]

P, changes the value of X,



Capturing a global snapshot

* Useful to capture a global snapshot of the system:
* Checkpointing the system state.
* Reasoning about unreferenced objects (for garbage
collection).
* Deadlock detection.
* Distributed debugging.



Capturing a global snapshot

* Difficult to capture a global snapshot of the system.

* Global state or global snapshot is state of each process
(and each channel) in the system at a given instant of time.

* Strawman:
* Fach process records its state at 3:15pm.
* We get the global state of the system at 3:15pm.
* But precise clock synchronization is difficult to achieve.

* How do we capture global snapshots without
precise time synchronization across processes?



Some more notations and definitions

* State of a process (or a channel) gets transformed when an event
occurs.

* 3 types of events:
* local computation, sending a message, receiving a message.

* e" is the n'" event at p.



Some more notations and definitions

 Fora process p;, where events €%, e/, ... occur:
history(p) = h, =<ef%e/, ... >
prefix history(p¥) = hk=<e0e!,...,ek>

s p/’s state immediately after k" event.
* For a set of processes <py, Pys P3» - -+ Pn:

global history: H = U, (h)
global state: S = U, (s))



Some more notations and definitions

 Fora process p;, where events €%, e/, ... occur:
history(p) = h, =<ef%e/, ... >
prefix history(p¥) = hk=<e0e!,...,ek>

s p/’s state immediately after k" event.
* For a set of processes <py, Pys P3» - -+ Pn:

global history: H = U, (h))
global state: S = Ui (s))
But state at what time instant’



Some more notations and definitions

 Fora process p;, where events €%, e/, ... occur:
history(p) = h, =<ef%e/, ... >
prefix history(p¥) = hk=<e0e!,...,ek>

s p/’s state immediately after k" event.
* For a set of processes <py, Pys P3» - -+ Pn:

global history: H = U, (h))

global state: S = U, (s%)
acutCcH=hSuUhy%%U... Uh

the frontier of C = {e%,i = |,2, ... n}

global state S that corresponds to cut C = U, (s:%)



Example: Cut

0 1 2 3
e, \ e e \ e
® @ o >
P+
My m,
e ° . Physical
P2 time
0 1 2
€o €o €o
Ca Cg
Cr<ele0l> Ci<elelle?ele) e?>

Frontier of C,: Frontier of Cg:



Some more notations and definitions

 Fora process p;, where events €%, e/, ... occur:
history(p) = h, =<ef%e/, ... >
prefix history(p¥) = hk=<e0e!,...,ek>

s p/’s state immediately after k" event.
* For a set of processes <py, Pys P3» - -+ Pn:

global history: H = U, (h))

global state: S = U, (s%)
acutCcH=hSuUhy%%U... Uh

the frontier of C = {e%,i = |,2, ... n}

global state S that corresponds to cut C = U, (s:%)



Consistent cuts and snapshots

* A cut Cis consistent if and only if
Ve e C(ff > ethenf e C)



Example: Cut

0 1 2 3
e, \ e e \ e
® @ o >
P1
My m,
e ° . Physical
P2 i
0 1 2 ime
€o \ €o €o \
Ca Cg
Cr<ele0l> Ci<elelle?ele) e?>
Frontier of C,:{e |, e,% Frontier of C;: {e,? e,%}

Inconsistent cut. Consistent cut.



Consistent cuts and snapshots

* A cut Cis consistent if and only if
Ve e C(ff > ethenf e C)

* A global state S is consistent if and only if it corresponds
to a consistent cut.



Consistent cuts and snapshots

* A cut Cis consistent if and only if
Ve e C(ff > ethenf e C)

* A global state S is consistent if and only if it corresponds
to a consistent cut.

* How do we find consistent global states’



Chandy-Lamport Algorithm

* Goal:
* Record a global snapshot
* Process state (and channel state) for a set of processes.
* [he recorded global state Is consistent.

 |dentifies a consistent cut.

* Records corresponding state locally at each process.



Chandy-Lamport Algorithm

* System model and assumptions:

* System of n processes: <py, Pys P3s « -« P~

e There are two uni-directional communication channels between
each ordered process pair: p;to p; and p; to p;

* Communication channels are FIFO-ordered (first in first out).
* All messages arrive intact, and are not duplicated.
* No fallures: nerther channel nor processes falil.

* Requirements:

* Snapshot should not interfere with normal application actions,
and it should not require application to stop sending messages.

* Any process may Initiate algorithm.



Chandy-Lamport Algorithm Intuition

* First, initiator p;;
* records Its own state.
* creates a special marker message.
* sends the marker to all other process.

* When a process receives a marker.
e records its own state.



Chandy-Lamport Algorithm Intuition

* First, initiator p;;
* records Its own state.
* creates a special marker message.
* sends the marker to all other process.

* When a process receives a marker.
e records its own state.



Chandy-Lamport Algorithm Intuition

m \ /ﬂz

Cut frontier: {e,?, e,?}

~ Physical
time




Process, state, events

* Consider a system with n processes: <py, P P3s - - -+ Pp>>

n

* Fach process p; Is associated with state s..
e State includes values of all local variables, affected files, etc.

* Each channel can also be associated with a state.
* Which messages are currently pending on the channel.
* Can be computed from process’ state:
* Record when a process sends and receives messages.
* if p; sends a message that p; has not yet received, it is pending
on the channel.

* State of a process (or a channel) gets transformed when an event
occurs. 3 types of events:
* local computation, sending a message, receiving a message.



Chandy-Lamport Algorithm Intuition

” ] W/
e / 2 / Physical

0 time

Cut frontier: {e,?, e,?}



Chandy-Lamport Algorithm Intuition

P1 ’
9 A/ -~ Physical

0 time

Cut frontier: {e,?, e,?}



Chandy-Lamport Algorithm Intuition

* First, initiator p;;

records Its own state.

creates a special marker message.

sends the marker to all other process.

start recording messages received on other channels.
* until a marker is received on a channel.

* When a process receives a marker.

e [f marker is received for the first time.
* records its own state.
* sends marker on all other channels.
* start recording messages received on other channels.

e until a marker is received on a channel.



