Distributed Systems

CS425/ECE428

Feb 5 202 |

Instructor: Radhika Mittal

Something to think while we wait...

* What are the practical usecases of clocks and timestamps!

* Do we necessarily need synchronization to reason about
ordering of events across processes!

Logistics Related

* VM clusters were assigned on VWednesday.

* HW /I has been released today.
* Four questions in total (each with a few subparts).
* You should be able to solve the first three questions by the
end of today’s class.
* You might need to wait until Wednesday's class for the last
question.

Quick Recap: Clock Synchronization

* Synchronization in synchronous systems:
* Synchronization bound = (max — min)/2

* Synchronization in asynchronous systems:

* Cristian Algorithm: Synchronization between a client and a server.
¢/ 2)=—min <T g/ 2
* Berkeley Algorithm: internal synchronization between clocks.

* A central server picks the average time and disseminates offsets.
* Network Time Protocol: Hierarchical time synchronization over the

Internet.
* Symmetric mode synchronization between lower strata servers
for greater accuracy.

* Synchronization bound = (T,

NTP Symmetric Mode

Server B Tg, T

Time

Time
Server A Tas Tar

e t and t": actual transmission times TBr — TAs +1t+4 0

for m and m'(unknown) :
= + 1 —
o: true offset of clock at B TA" TBS t—o

relative to clock at A (unknown) o = ((Tg. - Ty.) - (Ta.-Tg)+ (X' —1))/2

* O; estimate of actual offset 0, = (Tg, - Ta) - (Ta.-Tg))/2
between the two clocks . ,
o | o=o+ (t—-1/2
* d: estimate of accuracy of o, ; o
d=t+t di =ttt = (TBr B TAs) + (TAr B TBs)

skew estimate = di/2 (0—d/2)<o<(o+d/2) gvent,t=0

Today’s agenda

* Logical Clocks and Timestamps
* Chapter 144

* Global State
* Chapter 14.5

Today’s agenda

* Logical Clocks and Timestamps
* Chapter 144

Event Ordering

* A usecase of synchronized clocks:
* Reasoning about order of events.

e Can we reason about order of events without
synchronized clocks?

Process, state, events

* Consider a system with n processes: <py, Ps P3s -« -+ P,

* Fach process p; Is described by its state s; that gets

transformed over time.
e State includes values of all local variables, affected files, etc.

* s, gets transformed when an event occurs.

* Three types of events:
* Local computation.
* Sending a message.
* Recelving a message.

Event Ordering

* Fasy to order events within a single process p;, based on
their time of occurrence.

* How do we reason about events across processes!
* A message must be sent before it gets received at
another process.

* These two notions help define happened-before (HB)
relationship denoted by —.
* e = e means e happened before ¢€’.

Happened-Before Relationship

* Happened-before (HB) relationship denoted by —.
* e = € means e happened before €.
* e >. e means e happened before €’, as observed by p;.

 HB rules:

fAp ,e—> e thene— e
~or any message m, send(m) — receive(m)

fe—o>eande’ > e’ thene —» ¢e”

* Also called “causal” or “potentially causal” ordering.

Event Ordering: Example

P4 e e
p2 A & @ - Ph yS|Ca|
time
C d\
p3 8 >

Which event happened first!
a—>bandb—->candc—>dandd - f
a—>banda—>canda—>danda—f

Event Ordering: Example

P1 ® e
Py e o _ Physical
time
C d\

P3 8 8 >

e f
What can we say about e’ a~e ande+a

e —>f alle

a and e are concurrent.

Event Ordering: Example

P+ e e

p2 A & @ > Ph yS|Ca |

time
C d\

P3 . . >

What can we say about e and d!
elld

Logical Timestamps: Example

P4 e e
N
A h Physi
P2 ’ o . ysical
time
C d\
p3 v 8 >
e 8 f

What can we say about e and d!
e > d

Lamport’s Logical Clock

* Logical timestamp for each event that captures the
happened-before relationship.

* Algorithm: Each process p.
| inttializes local clock L, = 0.
2. Increments L, before timestamping each event.
3. piggybacks L, when sending a message.
4. upon receiving a message with clock value t
* sets L, = max(t, L)

* increments L, before timestamping the receive event (as per
step 2).

Logical Timestamps: Example

P4

P2

P3

.. Physical

0 1 2
¢ ¢
a b\\\\\\i:\jZ)
0 \?>0) .4
3
0 f Ja>1)

time

f5

Logical Timestamps: Example

P4

P2

P3

. Physical

’ e -
3 .
C d m, (5) time
(2)

Lamport’s Logical Clock

* Logical timestamp for each event that captures the
happened-before relationship.

* |[fe = e’ then L(e) < L(¢)

* What if L(e) < L(e’)!
* We cannot say that e — €’
* We can say. e’ » e
* Eithere - e’ orel| €

Logical Timestamps: Example

P4

P2

P3

o 1 2

a b\MZ)
0 . £2 > 0) 4

.. Physical

time

, (4)

3
¢ d m
0 1

e

_(4>1).
f5

L(e) < L(d), e || d L(e) < L(f), e > f

Vector Clocks

* Fach event associated with a vector timestamp.
* Fach process p; maintains vector of clocks V,

* The size of this vector Is the same as the no. of processes.
* Vi[j] is the clock for process p;as maintained by p,
* Algorithm: each process p;:

Vector Clocks
* Fach event associated with a vector timestamp.
* Fach process p; maintains vector of clocks V,

* The size of this vector Is the same as the no. of processes.
* Vi[j] is the clock for process p;as maintained by p,

* Algorithm: each process p;:
| inttializes local clock Vi[j] =0

Vector Clocks

* Fach event associated with a vector timestamp.

* Fach process p; maintains vector of clocks V,

* The size of this vector Is the same as the no. of processes.
* Vi[j] is the clock for process p;as maintained by p,

* Algorithm: each process p;:
| inttializes local clock Vi[j] =0
2. increments V[i] before timestamping each event.

Vector Clocks

* Fach event associated with a vector timestamp.
* Fach process p; maintains vector of clocks V,

* The size of this vector Is the same as the no. of processes.
* Vi[j] is the clock for process p;as maintained by p,

* Algorithm: each process p;:
| inttializes local clock Vi[j] =0

2. increments V[i] before timestamping each event.
3. piggybacks V. when sending a message.

Vector Clocks

* Fach event associated with a vector timestamp.
* Fach process p; maintains vector of clocks V,

* The size of this vector Is the same as the no. of processes.
* Vi[j] is the clock for process p;as maintained by p,
* Algorithm: each process p;:
| inttializes local clock Vi[j] =0
2. increments V[i] before timestamping each event.
3. piggybacks V. when sending a message.
4. upon recelving a message with vector clock value v
* setsV,[j] = max(V|[j], v[j]) forall j=1...n.

* increments V[i] before timestamping receive event
(as per step 2).

Vector Timestamps: Example

[0,0,0] [1,0,0] [2,0,0]
p1 @ P

a b\M[Z,0,0])
0,0,0
[p2] L, o [2,2,0] Physia
240 time
C[] d m2 ([212;0])
[0} D;O] [0’0’1]
P3 s

8 >
© f [2}2;2]

Vector Timestamps: Example

[0,0,0] [1,0,0] [2,0,0]
p1 @ P

. b my ([2,0,0])
0,9,0 [Lﬁﬂ
[p2’ = o e 12,3,2] . Physical
2,1,0 |
|]C d mo ([2,3,2]) time
[0,p,0] [0,0,1] ([0,0,2])
P3 s

8 >
e g [0,0,2] ¢ [2,33]

Comparing Vector Timestamps
* et V(e) =V and V(¢e’) =V’

V=V, iff V[i]=V[i]foralli=1 ... n
-V <V, iff V[i]<VIi]foralli=1,...,n
c V<V, iff VSV &V %V

ff V<V &3 jsuch that (V[j] <V[j])

ce—elff V<V
* (V< V implese > ¢€’)and (e » € implies V <V’)

ce||eiff (V<£V and V <V)

Vector Timestamps: Example

[0,0,

P4

P2

[0,
P3

0] [1,0,0] [21010]
@ @

a b\M[Z,0,0])
[0,9,0] . [2,2,0]

’ ° .. Physical

c[2,1,0] d m, ([2,2,0]) time

D,0] [0,0,1]

8 >
e f [2}2;2]

What can we say about e & f based on their vector timestamps!?

Vector Timestamps: Example

[0,0,0] [1,0,0] [2,0,0]

P1 e o
a b\M[Z,0,0])
[poz,o,ol <, 122,01 pysial
c[2,1,0] d . (2200 g
[0,p,0]1 10,0,1]
P3 s

8 >
© f [2}2;2]

V(e) <V(f),e = f

Vector Timestamps: Example

[0,0,0] [1,0,0] [2,0,0]
p1 @ P

a b\H[Z,0,0])
0,0,0
[p2 : <, o 1220 _ Physical
2,1,0 time
c[2L0l 4 m, (12,2,0])
[0,0,0] [0,0,1]
P3 »

8 >
e f [2}2;2]

What can we say about e & d based on their vector timestamps!?

Vector Timestamps: Example

[0,0,0] [1,0,0] [2,0,0]
p1 @ P

a b\M[Z,0,0])
0,0,0
[pz‘ : <, o 1220 .~ Physical
c[2,1,0] d m, ([2,2,0]) time
[0,p,0] [0,0,1]
p 8 B >
’ e f [2}2;2]

V(e) < V(d) andV(d) < V(e), e || d

Vector Timestamps: Example

[0,0,0] [1,0,0] [2,0,0]
p1 @ P

a b\”[Z,0,0])
0’),0 [212;2]
[pz‘I] 2o LI [2,3,2] . Physical
[2,1,0] . q m, ((2,3,2]) time
[0,p,0] [0,0,1] ([0,0,2])
P3 8 . >
e g [0,0,2] f [213;3]

How about now!?

Vector Timestamps: Example

[0,0,0] [1,0,0] [2,0,0]

P1 ® e
a b\”[Z,0,0])
0’),0 [212;2]
[pz‘I] 2o LI [2,3,2] . Physical
[2,1,0] . q m, ((2,3,2]) time

[0,p,0] [0,0,1] ([0,0,2])
P3 8 2 >

e g [0,0,2] f [213;3]

V(e) <V(f)e - f
V(e) <V(d), e > d

Timestamps Summary

* Comparing timestamps across events is useful.
* Reconciling updates made to an object in a distributed datastore.

* Rollback recovery during failures:

|. Checkpoint state of the system; 2. Log events (with timestamps);
3. Rollback to checkpoint and replay events in order if system crashes.

* How to compare timestamps across different processes!?
* Physical timestamp: requires clock synchronization.
* Google's Spanner Distributed Database uses “TrueTime”.

* Lamport’s timestamps: cannot fully differentiate between causal
and concurrent ordering of events.

* Oracle uses “System Change Numbers” based on Lamport’s clock.

* Vector timestamps: larger message sizes.
* Amazon's DynamoDB uses vector clocks.

