
Distributed Systems

CS425/ECE428

Feb 3 2021

Instructor : Radhika Mittal

While we wait…

What is the time?

It is 1:55pm

Bluey does not own a clock, and wants to know the time.
He sends a message to Greeny asking the time, and Greeny sends a response

as soon as he receives the request.
Bluey records that it took 6 minutes for him to receive Greeny’s response

after sending his request.

Given this information, what time should Bluey assume it actually is when he
receives Greeny’s message? Can he be totally accurate?

Logistics Related

• VM clusters will be assigned by the end of the day today.

• HW1 will be released this Friday.

Today’s agenda

• Failure Detection
• Chapter 15.1

• Time and Clocks
• Chapter 14.1-14.3

Recap

• Synchronous vs asynchronous systems.

• Failure detection via ping-ack and heartbeats.
• Complete and accurate in synchronous system.
• Impossible to achieve completeness and accuracy in

asynchronous systems.
• Setting a conservative timeout gives completeness but not accuracy.

Metrics for failure detection

• Worst case failure detection time
• Ping-ack: T + ∆1 - ∆	(where ∆	is time taken for previous ping from p to reach q)

• Heartbeat: T + ∆2 +	∆	(where ∆ is time taken for last heartbeat from q to reach p)

• Bandwidth usage:
• Ping-ack: 2 messages every T units
• Heartbeat: 1 message every T units.

Metrics for failure detection

• Worst case failure detection time
• Ping-ack: T + ∆1 - ∆	(where ∆	is time taken for previous ping from p to reach q)

• Heartbeat: T + ∆2 +	∆	(where ∆ is time taken for last heartbeat from q to reach p)

• Bandwidth usage:
• Ping-ack: 2 messages every T units
• Heartbeat: 1 message every T units.

Effect of decreasing T?

Metrics for failure detection

• Worst case failure detection time
• Ping-ack: T + ∆1 - ∆	(where ∆ is time taken for previous ping from p to reach q)

• Heartbeat: T + ∆2 +	∆	(where ∆	is time taken for last heartbeat from q to reach p)

• Bandwidth usage:
• Ping-ack: 2 messages every T units
• Heartbeat: 1 message every T units.

Decreasing T decreases failure detection time,
but increases bandwidth usage.

Metrics for failure detection

• Worst case failure detection time
• Ping-ack: T + ∆1 - ∆	(where ∆ is time taken for previous ping from p to reach q)

• Heartbeat: T + ∆2 +	∆	(where ∆ is time taken for last heartbeat from q to reach p)

• Bandwidth usage:
• Ping-ack: 2 messages every T units
• Heartbeat: 1 message every T units.

Effect of increasing ∆1 or ∆2?

Metrics for failure detection

• Worst case failure detection time
• Ping-ack: T + ∆1 - ∆	(where ∆ is time taken for previous ping from p to reach q)

• Heartbeat: T + ∆2 +	∆	(where ∆ is time taken for last heartbeat from q to reach p)

• Bandwidth usage:
• Ping-ack: 2 messages every T units
• Heartbeat: 1 message every T units.

Increasing ∆1 or ∆2 increases accuracy but also
increases failure detection time.

Types of failure

• Omission: when a process or a channel fails to perform
actions that it is supposed to do.

• Process may crash.
• Fail-stop: if other processes can certainly detect the crash.
• Communication omission: a message sent by process was

not received by another.

Communication Omission

• Channel Omission: omitted by channel
• Send omission: process completes ‘send’ operation, but

message does not reach its outgoing message buffer.
• Receive omission: message reaches the incoming

message buffer, but not received by the process.

process p process q

Communi cation channel

send

Outgoing message buffer Incoming message buffer

receivem

Outgoing message buffer Incoming message buffer
Communication Channel

Two Generals Problem

When to
attack?

X

Two Generals Problem

At dawn.

Has my
message
reached?

Two Generals Problem

confirm

Has my
confirmation

reached?

Two Generals Problem

ack “confirm”.

Has my ack
reached?

Two Generals Problem

At dawn.

Has my
message
reached?

Keep sending the message until confirmation arrives.

Two Generals Problem

confirm

Has my
confirmation

reached?

Assume confirmation has reached in the absence of a
repeated message.

Still no guarantees! But may be good enough in practice.

Types of failure

• Omission: when a process or a channel fails to perform
actions that it is supposed to do.

• Process may crash.
• Fail-stop: if other processes can detect that the process

has crashed.
• Communication omission: a message sent by process was

not received by another.

Message drops (or omissions) can be
mitigated by network protocols.

Types of failure

• Omission: when a process or a channel fails to perform
actions that it is supposed to do, e.g. process crash and
message drops.

• Arbitrary (Byzantine) Failures: any type of error, e.g. a
process executing incorrectly, sending a wrong message, etc.

• Timing Failures: Timing guarantees are not met.
• Applicable only in synchronous systems.

How to detect a crashed process?

p q
Periodic ping

ack

p q
Periodic

heartbeats

Extending heartbeats

• Looked at detecting failure between two processes.

• How do we extend to a system with multiple
processes?

Centralized heartbeating

pj, Heartbeat Seq++

pi

Downside:

What if pi fails?

Ring heartbeating

pi, Heartbeat Seq++

pi

pj

Downside:
What if multiple
processes fail?

pk

Ring repair overhead

All-to-all heartbeats

…

pj

pi

Everyone can keep track of everyone.
Downside: Bandwidth.

pj, Heartbeat Seq++

Extending heartbeats

• Looked at detecting failure between two processes.

• How do we extend to a system with multiple
processes?

• Centralized heartbeating: not complete.
• Ring heartbeating: not entirely complete.
• All-to-all: complete, but more bandwidth usage.

Failures

• Three types
• omission, arbitrary, timing.

• Failure detection (detecting a crashed process):
• Send periodic ping-acks or heartbeats.
• Report crash if no response until a timeout.
• Timeout can be precisely computed for synchronous systems

and estimated for asynchronous.
• Metrics: completeness, accuracy, failure detection time, bandwidth.
• Failure detection for a system with multiple processes:

• Centralized, ring, all-to-all
• Trade-off between completeness and bandwidth usage.

Today’s agenda

• Failure Detection
• Chapter 15.1

• Time and Clocks
• Chapter 14.1-14.3

Why are clocks useful?

• How long did it take my search request to reach Google?
• Requires my computer’s clock to be synchronized with

Google’s server.

• Use timestamps to order events in a distributed system.
• Requires the system clocks to be synchronized with one

another.

• At what day and time did Alice transfer money to Bob?
• Require accurate clocks (synchronized with a global

authority).

Clock Skew and Drift Rates

• Each process has an internal clock.
• Clocks between processes on different computers differ :

• Clock skew: relative difference between two clock values.
• Clock drift rate: change in skew from a perfect reference clock per

unit time (measured by the reference clock).
• Depends on change in the frequency of oscillation of a crystal in the

hardware clock.

• Synchronous systems have bound on maximum drift rate.

Ordinary and Authoritative Clocks

• Ordinary quartz crystal clocks:
• Drift rate is about 10-6 seconds/second.
• Drift by 1 second every 11.6 days.
• Skew of about 30minutes after 60 years.

• High precision atomic clocks:
• Drift rate is about 10-13 seconds/second.
• Skew of about 0.18ms after 60 years.
• Used as standard for real time.
• Universal Coordinated Time (UTC) obtained from such clocks.

Two forms of synchronization

• External synchronization
• Synchronize time with an authoritative clock.
• When accurate timestamps are required.

• Internal synchronization
• Synchronize time internally between all processes in a distributed

system.
• When internally comparable timestamps are required.

• If all clocks in a system are externally synchronized, they are
also internally synchronized.

Synchronization Bound

• Synchronization bound (D) between two clocks A and B over
a real time interval I.

• |A(t) – B(t)| < D, for all t in the real time interval I.
• Skew(A, B) < D during the time interval I.

• A and B agree within a bound D.
• If A is authoritative, B is accurate within a bound of D.

Q: If all clocks in a system are externally synchronized within a bound of D,
what is the bound on their skew relative to one another?

A: 2D. So the clocks are internally synchronized within a bound of 2D.

Synchronization in synchronous systems

What time Tc should client adjust its local clock to after receiving ms ?

client server

mr: What is the time?

ms : It is Ts

Synchronization in synchronous systems

Let max and min be maximum and minimum network delay.
If Tc = Ts, skew(client, server) ≤	max.
If Tc = (Ts + max), skew(client, server) ≤	(max – min)
If Tc = (Ts + min), skew(client, server) ≤	(max – min)
If Tc = (Ts + (min + max)/2), skew(client,server) ≤	(max – min)/2

Provably the
best you can

do!

What time Tc should client adjust its local clock to after receiving ms ?

client server

mr: What is the time?

ms : It is Ts

Synchronization in asynchronous systems

• Cristian Algorithm

• Berkeley Algorithm

• Network Time Protocol

Cristian Algorithm

client server

mr: What is the time?

What time Tc should client adjust its local clock to after receiving ms ?

ms : It is Ts

Client measures the round
trip time (Tround).
Tc = Ts + (Tround / 2)

skew ≤	(Tround / 2) – min
										≤	(Tround / 2)
(min is minimum one way network
delay which is atleast zero).

Try deriving the worst case skew!

Hint: client is assuming its one-way
delay from server is ∆ = (Tround/2). How
off can it be?

Cristian Algorithm

client server

mr: What is the time?

What time Tc should client adjust its local clock to after receiving ms ?

ms : It is Ts

t

Ts = t + min

Ts + Tround - min
t

Ts = t + Tround - min

Ts + min

(∆	= Tround – min)

(∆ = min)

Client measures the round
trip time (Tround).
Tc = Ts + (Tround / 2)

skew ≤	(Tround / 2) – min
										≤	(Tround / 2)
(min is minimum one way network
delay which is atleast zero).

Cristian Algorithm

client server

mr: What is the time?

What time Tc should client adjust its local clock to after receiving ms ?

ms : It is Ts

Improve accuracy by sending multiple
spaced requests and using response
with smallest Tround.

Server failure: Use multiple
synchronized time servers.

Client measures the round
trip time (Tround).
Tc = Ts + (Tround / 2)

skew ≤	(Tround / 2) – min
										≤	(Tround / 2)
(min is minimum one way network
delay which is atleast zero).

Cristian Algorithm

client server

mr: What is the time?

What time Tc should client adjust its local clock to after receiving ms ?

ms : It is Ts

Cannot handle
faulty time
servers.

Client measures the round
trip time (Tround).
Tc = Ts + (Tround / 2)

skew ≤	(Tround / 2) – min
										≤	(Tround / 2)
(min is minimum one way network
delay which is atleast zero).

Berkeley Algorithm

1. Server periodically polls clients:
“what time do you think it is?”

Only supports internal synchronization.

Server
Client

Client Client

Client
Client

? ?

?

?

?

Berkeley Algorithm

1. Server periodically polls clients:
“what time do you think it is?”

2. Each client responds with its local
time.

3. Server uses Cristian algorithm to
estimate local time at each client.

4. Average all local times (including
its own) – use as updated time.

Only supports internal synchronization.

Server
Client

Client Client

Client
Client

t1 t2

t3

t4

t5

Berkeley Algorithm

1. Server periodically polls clients:
“what time do you think it is?”

2. Each client responds with its local
time.

3. Server uses Cristian algorithm to
estimate local time at each client.

4. Average all local times (including
its own) – use as updated time.

5. Send the offset (amount by
which each clock needs
adjustment).

Only supports internal synchronization.

Server
Client

Client Client

Client
Client

𝑜1 𝑜2

𝑜3

𝑜4

𝑜5

Berkeley Algorithm

Handling faulty processes:
Only use timestamps within
some threshold of each other.

Handling server failure:
Detect the failure and elect a
new leader.

Only supports internal synchronization.

Server
Client

Client Client

Client
Client

t1 t2

t3

t4

t5

Strata 3,
synched by the
secondary

Network Time Protocol

Time service over the Internet for synchronizing to UTC.

1

2 2 2

3 3 3 3 3 3

Hierarchical structure for scalability.
Multiple lower strata servers for robustness.
Authentication mechanisms for security.
Statistical techniques for better accuracy.

Primary, UTC synch

Secondary,
synched primary

A
ccuracy

Network Time Protocol

How clocks get synchronized:
• Servers may multicast timestamps within a LAN. Clients

adjust time assuming a small delay. Low accuracy.
• Procedure-call (Cristian algorithm). Higher accuracy.
• Symmetric mode used to synchronize lower strata

servers. Highest accuracy.

Strata 3,
synched by the
secondary

1

2 2 2

3 3 3 3 3 3

Primary, UTC synch

Secondary,
synched primary

NTP Symmetric Mode

A and B exchange messages and record the send and receive
timestamps.
Use these timestamps to compute offset with respect to one
another (oi).

TAr

TBsTBr

TAs

Server B

Server A

Time

m m'

Time

NTP Symmetric Mode

• t and t’: actual transmission times
for m and m’(unknown)

• o: true offset of clock at B
relative to clock at A (unknown)

• oi: estimate of actual offset
between the two clocks

• di: estimate of accuracy of oi ;
total transmission times for m
and m’. di=t+t’

TBr = TAs + t + o
TAr = TBs + t’ – o
o = ((TBr - TAs) - (TAr -TBs)+ (t’ – t))/2
oi = ((TBr - TAs) - (TAr -TBs))/2
o = oi + (t’ – t)/2
di = t + t’ = (TBr - TAs) + (TAr - TBs)

TAr

TBsTBr

TAs

Server B

Server A

Time

m m'

Time

NTP Symmetric Mode

• t and t’: actual transmission times
for m and m’(unknown)

• o: true offset of clock at B
relative to clock at A (unknown)

• oi: estimate of actual offset
between the two clocks

• di: estimate of accuracy of oi ;
total transmission times for m
and m’. di=t+t’

TBr = TAs + t + o
TAr = TBs + t’ – o
o = ((TBr - TAs) - (TAr -TBs)+ (t’ – t))/2
oi = ((TBr - TAs) - (TAr -TBs))/2
o = oi + (t’ – t)/2
di = t + t’ = (TBr - TAs) + (TAr - TBs)

TAr

TBsTBr

TAs

Server B

Server A

Time

m m'

Time

(oi – di / 2) ≤ o ≤ (oi + di / 2) given t, t’ ≥ 0

NTP Symmetric Mode

A and B exchange messages and record the send and receive
timestamps.
Use these timestamps to compute offset with respect to one
another (oi).
A server computes its offset from multiple different sources and
adjust its local time accordingly.

TAr

TBsTBr

TAs

Server B

Server A

Time

m m'

Time

Synchronization in asynchronous systems

• Cristian Algorithm
• Synchronization between a client and a server.
• Synchronization bound = (Tround / 2) – min ≤Tround / 2

• Berkeley Algorithm
• Internal synchronization between clocks.
• A central server picks the average time and disseminates

offsets.

• Network Time Protocol
• Hierarchical time synchronization over the Internet.
• Symmetric mode synchronization for higher accuracy.

