Logistics

- Final exam on May 11th
 - Please register on CBTF.
 - Same format and policies as midterms, but longer (3 hours).
 - The exam is closed-book.
 - Only a single double-sided physical cheat-sheet is allowed.
 - **Comprehensive**: includes everything covered in the course.
 - ~50% weightage assigned to materials that were not covered by midterm 1 and midterm 2 syllabus (i.e. blockchains and beyond).
Exam Syllabus

• All topics covered so far
 • Midterm 1 content
 • Midterm 2 content
 • Post-midterm2 content
 • Starting from blockchains, up until distributed datastores.
Exam Syllabus

• Midterm 1 content (included in finals)
 • System model and Failures
 • Failure Detection
 • Clock Synchronization
 • Event ordering and Logical Timestamps
 • Global Snapshot
 • Multicast
Exam Syllabus

- Midterm 2 content (included in finals)
 - Mutual Exclusion
 - Leader Election
 - Consensus
 - Synchronous Consensus
 - Asynchronous Consensus: Paxos, Raft
Exam Syllabus

- Remaining topics (included in finals, ~50% weightage)
 - Blockchains
 - Transaction Processing and Concurrency Control
 - Distributed Transactions
 - External consistency and Spanner
 - Distributed Hash Tables
 - MapReduce
 - Distributed Datastores
Disclaimer

• Quick reminder of the relevant concepts we covered in class post midterm 2.

• Not meant to be an exhaustive review!

• Go over the slides for each class.
 • Refer to lecture videos and textbook to fill in gaps in understanding.
Bitcoin / Blockchains

• How is a new transaction added to the log?
 • How is a block mined, and added to a chain?

• What factors determine the rate at which a block is mined?

• What happens if two nodes mine different versions of a block?

• How is information propagated in a Bitcoin network?

• What guarantees can a Bitcoin network provide?
 • Does it guarantee safety?
 • Does it guarantee liveness?
Transaction Processing

• What are the ACID properties?
 • How is atomicity achieved?
 • What does consistency mean in this context?
 • What does isolation mean, and how is it achieved?
 • What is durability?
Concurrency Control

• What could go wrong if we don’t have isolation?
 • Lost update problem
 • Inconsistent retrieval problem

• What are conflicting operations?

• What is serial equivalence?

• How can we check if an interleaving is serially equivalent?
Concurrency Control

• Pessimistic Concurrency Control
 • Global lock vs per-object locks vs per-object read/write locks
 • Two-phase locking
 • Deadlocks

• Optimistic Concurrency Control
 • Timestamped ordering
Distributed Transactions

• Meeting ACID requirements for distributed transaction:
 • Two-phase commit for atomicity
 • Distributed deadlock detection with two-phase locking.
External Consistency and Spanner

• High-level design only
 • Maintains synchronized clocks and uses physical timestamps.
 • Reads = snapshot at a physical point in time.
 • What is the concurrency control mechanism used by Spanner?
 • Distributed transactions on replicated objects
 • What are the different algorithms / protocols used?
Distributed Hash Tables

• What determines the placement of nodes in a Chord ring with m-bit key space?
• Which node is responsible for storing a given key?
• What are the routing table entries maintained by each node:
 • Finger tables
 • r successor entries
• What is the key lookup protocol in Chord?
• How does Chord handle churns?
 • Stabilization protocol.
MapReduce

- Map: creates intermediate key-value pairs
- Reduce: aggregate by key, and run some computation across all values for the key.
- A MapReduce chain comprises of multiple map-reduce pairs.
- Allows easier parallelization.
 - Multiple map/reduce tasks scheduled in parallel across the servers in a cluster.
- Barrier between a map stage and a reduce stage.
 - No reduce task starts before all map tasks are finished.
Distributed Datastores (Cassandra)

- What is CAP theorem?
 - Can only achieve two out of consistency, availability, and partition-tolerance.
- Cassandra: chooses availability, with *eventual* consistency
 - Key partitioning and replication strategies.
 - How is cluster membership updated?
 - How is a write query executed?
 - How is a read query executed?
 - What are the different consistency levels?
 - What is hinted-handoff and read repair?
Exam Syllabus

• Remaining topics (included in finals, ~50% weightage)
 • Blockchains
 • Transaction Processing and Concurrency Control
 • Distributed Transactions
 • External consistency and Spanner
 • Distributed Hash Tables
 • MapReduce
 • Distributed Datastores
Exam Syllabus

• All topics covered so far
 • Midterm 1 content
 • Midterm 2 content
 • Post-midterm2 content
 • Starting from blockchains, up until distributed datastores.
Good luck!