
Distributed Systems

CS425/ECE428

April 28 2021

Instructor : Radhika Mittal

Acknowledgements for the materials: Indy Gupta

Logistics

• HW6 is due tomorrow (Thursday, Apr 28).

• MP3 is due next week, May 5th.

• Final exam on May 11th

• Please register on CBTF.
• Same format as midterms, but longer (3 hours).
• Comprehensive: includes everything covered in the course.
• ~50% weightage assigned to materials that were not covered by

midterm 1 and midterm 2 syllabus (i.e. blockchains and beyond).

Grade distribution

3-credit 4-credit

Homework 33%
16%

(drop 2 worst HWs)

Midterms 33% 25%

Final 33% 25%

MPs N/A 33%

Participation 1% 1%

Grading
• Midterm curving formula (tentative)
• absolute: 100 * your score/ total score
• relative: 80 + 10*(your score – avg_UG_score) / standard_dev
• We will use max(absolute, relative) to get final score out of 100.
• Midterm 1:

• avg_UG_score = 55.43 (out of 70)
• standard_dev = 8.24

• Midterm 2:
• avg_UG_score = 43.13 (out of 65)
• standard_dev = 9.72

• Multiply the final score (out of 100) for each midterm by:
• 0.165 for 3-credit students
• 0.125 for 4-credit students.

• Finals will be similarly curved, but has higher weightage.

Grading

• Homeworks will not be curved.
• For 3-credit students:

• (sum of all 6 homework scores) * 100 * 0.33 / 240
• For 4-credit students:

• (sum of best 4 homework scores) * 100 * 0.16 / 160

• MPs will not be curved.
• (sum of all four MP scores) * 100 * 0.33 / 330

• Participation score: directly taken from Campuswire
• if reported score > 100, you get full 1%
• Else you get (reported score /100)%

Final Grades

• Tentative mapping from score to grade (rough estimate):
• Cutoff for B: 80%
• Bump up a grade for each 4% leap above 80%.

• B+ 84%, A- 88%, A 92%, A+ 96%
• Bump down a grade for each 4% leap below 80%

• B- 76%, C+ 72%, …..

• This is subject to change!

Our agenda

• Brief overview of key-value stores

• Distributed Hash Tables
• Peer-to-peer protocol for efficient insertion and retrieval of key-value

pairs.

• Key-value stores in the cloud
• How to run large-scale distributed computations over key-value

stores?
• Map-Reduce Programming Abstraction

• How to design a large-scale distributed key-value store?
• Case-study: Facebook’s Cassandra

Today’s focus

• Brief overview of key-value stores

• Distributed Hash Tables
• Peer-to-peer protocol for efficient insertion and retrieval of key-value

pairs.

• Key-value stores in the cloud
• How to run large-scale distributed computations over key-value

stores?
• Map-Reduce Programming Abstraction

• How to design a large-scale distributed key-value store?
• Case-study: Facebook’s Cassandra

Distributed datastores

• Distributed datastores
• Service for managing distributed storage.

• Distributed NoSQL key-value stores
• BigTable by Google
• HBase open-sourced by Yahoo and used by Hadoop.
• DynamoDB by Amazon
• Cassandra by Facebook
• Voldemort by LinkedIn
• MongoDB,
• …

• Spanner is not a NoSQL datastore. It’s more like a distributed relational
database.

Key-value/NoSQL Data Model

• NoSQL = “Not Only SQL”
• Necessary API operations: get(key) and put(key, value)

• And some extended operations, e.g., “CQL” in Cassandra key-
value store

• Tables
• Like RDBMS tables, but …
• May be unstructured: May not have schemas

• Some columns may be missing from some rows
• Don’t always support joins or have foreign keys
• Can have index tables, just like RDBMSs

How to design a distributed
key-value datastore?

Design Requirements

• High performance, low cost, and scalability.
• Speed (high throughput and low latency for read/write)
• Low TCO (total cost of operation)
• Fewer system administrators
• Incremental scalability
• Scale out: add more machines.
• Scale up: upgrade to powerful machines.
• Cheaper to scale out than to scale up.

Design Requirements
• High performance, low cost, and scalability.
• Avoid single-point of failure
• Replication across multiple nodes.

• Consistency: reads return latest written value by any client
(all nodes see same data at any time).
• Different from the C of ACID properties for transaction

semantics!

• Availability: every request received by a non-failing node in
the system must result in a response (quickly).
• Follows from requirement for high performance.

• Partition-tolerance: the system continues to work in spite
of network partitions.

CAP Theorem

• Consistency: reads return latest written value by any
client (all nodes see same data at any time).
• Availability: every request received by a non-failing node

in the system must result in a response (quickly).
• Partition-tolerance: the system continues to work in spite

of network partitions.
• In a distributed system you can only guarantee at most

2 out of the above 3 properties.
• Proposed by Eric Brewer (UC Berkeley)
• Subsequently proved by Gilbert and Lynch (NUS and MIT)

CAP Theorem

N1 N2

• Data replicated across both N1 and N2.
• If network is partitioned, N1 can no longer talk to N2.
• Consistency + availability require N1 and N2 must talk.

• no partition-tolerance.
• Partition-tolerance + consistency:

• only respond to requests received at N1 (no availability).
• Partition-tolerance + availability:

• write at N1 will not be captured by a read at N2 (no consistency).

CAP Tradeoff

• Starting point for NoSQL
Revolution
• A distributed storage

system can achieve at
most two of C, A, and P.
• When partition-tolerance

is important, you have to
choose between
consistency and availability

Consistency

Partition-tolerance Availability

Conventional
RDBMSs
(non-replicated)

Cassandra, RIAK,
Dynamo, Voldemort

HBase, HyperTable,
BigTable, Spanner

Modern key-value stores vs. RDBMS

• While RDBMS provide ACID
• Atomicity
• Consistency
• Isolation
• Durability

• Many modern key-value stores provide BASE
• Basically Available Soft-state Eventual Consistency
• Prefers Availability over Consistency

Case Study: Cassandra

Cassandra
• A distributed key-value store.
• Intended to run in a datacenter (and also across DCs).
• Originally designed at Facebook.
• Open-sourced later, today an Apache project.
• Some of the companies that use Cassandra in their

production clusters.
• IBM, Adobe, HP, eBay, Ericsson, Symantec
• Twitter, Spotify
• PBS Kids
• Netflix: uses Cassandra to keep track of your current position in

the video you’re watching

Data Partitioning: Key to Server Mapping

• How do you decide which server(s) a key-value resides on?
Cassandra uses a ring-based DHT but without finger or routing tables.

N80

0
Say m=7

N32

N45

Backup replicas for
key K13

N112

N96

N16

Read/write K13

Primary replica for
key K13

CoordinatorClient

One ring per DC

Partitioner
• Component responsible for key to server mapping (hash function).

• Two types:
• Chord-like hash partitioning

• Murmer3Partitioner (default): uses murmer3 hash function.
• RandomPartitioner: uses MD5 hash function.

• ByteOrderedPartitioner: Assigns ranges of keys to servers.
• Easier for range queries (e.g., get me all twitter users starting with [a-b])

• Determines the primary replica for a key.

Replication Policies
Two options for replication strategy:
1. SimpleStrategy:
• First replica placed based on the partitioner.
• Remaining replicas clockwise in relation to the primary replica.

2.NetworkTopologyStrategy: for multi-DC deployments
• Two or three replicas per DC.
• Per DC

• First replica placed according to Partitioner.
• Then go clockwise around ring until you hit a different rack.

Writes
• Need to be lock-free and fast (no reads or disk seeks).

• Client sends write to one coordinator node in Cassandra cluster.
• Coordinator may be per-key, or per-client, or per-query.

• Coordinator uses Partitioner to send query to all replica nodes
responsible for key.

• When X replicas respond, coordinator returns an
acknowledgement to the client
• X = any one, majority, all….(consistency spectrum)
• More details later!

Writes: Hinted Handoff

• Always writable: Hinted Handoff mechanism
• If any replica is down, the coordinator writes to all other

replicas, and keeps the write locally until down replica
comes back up.
• When all replicas are down, the Coordinator (front end)

buffers writes (for up to a few hours).

Writes at a replica node
On receiving a write
1. Log it in disk commit log (for failure recovery)
2. Make changes to appropriate memtables

• Memtable = In-memory representation of multiple key-value pairs
• Cache that can be searched by key
• Write-back cache as opposed to write-through

3. Later, when memtable is full or old, flush to disk
• Data File: An SSTable (Sorted String Table) – list of key-value

pairs, sorted by key
• Index file: An SSTable of (key, position in data sstable) pairs
• And a Bloom filter (for efficient search) – next slide.

To be continued in next class

• Wrap up writes.
• Reads.
• Cluster membership.
• Eventual consistency model.

