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Our agenda for the next 3-4 classes

• Brief overview of key-value stores

• Distributed Hash Tables
• Peer-to-peer protocol for efficient insertion and retrieval of key-value 

pairs.  

• Key-value stores in the cloud
• How to run large-scale distributed computations over key-value 

stores?
• Map-Reduce Programming Abstraction

• How to design a large-scale distributed key-value store?
• Case-study: Facebook’s Cassandra 



Quick Recap

• Distributed Hash Tables
• Peer-to-peer protocol for efficient insertion and retrieval of key-value 

pairs. 
• Other required properties: load balancing, fault tolerance. 

• Case-study: Chord



Quick Recap: Chord

• Uses consistent hashing to map nodes on a ring with m-bits 
identifiers. 

• Uses consistent hashing to map a key to a node.
• stored at successor(key)

• Each node maintains a finger table with m fingers. 
• With high probability, results in O(logN) hops for a look-up.
• O(log(N)) hops true only if finger and successor entries correct.
• What happens when nodes fails or when new nodes join in? 
• Our focus today. 
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If a node fails
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If a node fails
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If a node fails
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One solution: maintain r multiple ring successor entries
In case of failure, use another successor entries

Knows N32 and N45 (if r=2)
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Search under node failures

• If every node fails with probability 0.5, choosing r=2log(N) 
suffices to maintain lookup correctness (i.e. keep the ring 
connected) with high probability.
• Intuition:

• Pr(at given node, at least one successor alive)=

• Pr(above is true at all alive nodes)=
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If a node fails
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If a node fails
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One solution: replicate key-value at r successors and predecessors

K42 stored here
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Need to deal with dynamic changes

ü Nodes fail
• New nodes join
• Nodes leave

So, all the time, need to:
à Need to update successors and fingers, and copy keys



New node joins 
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New node contacts an existing Chord node (introducer). 
Introducer directs N40 to N45 (and N32).
N32 updates its ring successor to N40.
N40 initializes its ring successor to N45, and initializes its finger table.
Other nodes also update their finger table. 



New node joins 
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N40 may need to copy some files/keys from N45
(files with fileid between 32 and 40)
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New node joins

• A new peer affects O(log(N)) other finger entries in 
the system, on average.

• Number of messages per node join (to initialize the 
new node’s finger table) = O(log(N)*log(N)) 

• Proof in Chord’s extended TechReport.



Concurrent Joins

• Aggressively maintaining and updating finger tables each time a node 
join can be difficult under high churn. 
• E.g. when new nodes are concurrently added. 

• Correctness of lookup does not require all nodes to have fully  
“correct”  finger table entries. 

• Need two invariants:
• Each node, n, correctly maintains its ring successor (next(n))

• First entry in the finger table. 
• The node, successor(k), is responsible for key k.   



Stabilization Protocol

• When a node n joins (via an introducer)
• initialize next(n), i.e. the ring successor
• notify next(n). 

• When node n gets notified by node n’:
• // update prev(n), i.e. the ring predecessor of n 
• if (prev(n) == nil or n’ is in (prev(n), n))

• prev(n) = n’. 



Stabilization Protocol (contd)
• Each node n will periodically run stabilization: 

• x = prev(next(n))
• if x in (n, next(n)), then next(n) = x.
• notify next(n). 

• Each node n periodically updates a random finger entry.
• Pick a random i in [0, m-1]
• Lookup successor(n + 2i)



New node joins 
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New node contacts an existing 
Chord node (introducer). 
Introducer informs N40 of N45.
N40 initializes its ring successor to 
N45.
N40 notifies N45, and N45 initializes 
its ring predecessor to N40.
N32 realizes its new successor is 
N40 when it runs stabilization. 
N32 notifies N40, and N40 initializes 
its ring predecessor to N32.
Periodically and eventually, each node 
update their finger table entries. 



Stabilization Protocol (contd)

• Failures can be handled in a similar way.
• Also need failure detectors (you’ve seen them!)

• Maintain knowledge of r ring successors. 
• Update ring successor when it fails, and notify. 



Stabilization Protocol (contd)

• Look-ups may fail while the Chord system is getting stabilized. 
• Such failures are transient. 

• Eventually ring successors and finger-table entries will get 
updated.

• Application can then try again after a timeout. 
• Such failures are also unlikely in practice

• Multiple key-value replicas and ring successors.   



Chord Summary
• Consistent hashing for load balancing. 

• O(logn) lookups via correct finger tables.

• Correctness of lookups requires correctly maintaining ring 
successors. 

• As nodes join and leave a Chord network, runs a stabilization 
protocol to periodically update ring successors and finger table 
entries.  

• Fault tolerance: Maintain r ring successors and r key replicas. 



Our agenda for the next 3-4 classes

• Brief overview of key-value stores

• Distributed Hash Tables
• Peer-to-peer protocol for efficient insertion and retrieval of key-value 

pairs.  

• Key-value stores in the cloud
• How to run large-scale distributed computations over key-value 

stores?
• Map-Reduce Programming Abstraction

• How to design a large-scale distributed key-value store?
• Case-study: Facebook’s Cassandra 



Cloud Computing



Many Cloud Providers

• AWS: Amazon Web Services
– EC2: Elastic Compute Cloud
– S3: Simple Storage Service

• Microsoft Azure
• Google Cloud/Compute Engine/AppEngine
• Rightscale, Salesforce, EMC, Gigaspaces, 10gen, 

Datastax, Oracle, VMWare, Yahoo, Cloudera
• And many many more!



• Cloud = Lots of storage + compute cycles nearby

• Cloud services provide:
• managed clusters for distributed computing.
• managed distributed datastores. 

What is a cloud?



• A single cloud-site (aka “Datacenter”) consists of
• Compute nodes (grouped into racks) (2)
• Switches, connecting the racks in a hierarchical network topology.
• Storage (backend) nodes connected to the network (3)
• Front-end for submitting jobs and receiving client requests (1)
• (1-3: Often called “three-tier architecture”)

• A geographically distributed cloud consists of
• Multiple such sites
• Each site perhaps with a different structure and services

What is a cloud?



Features of cloud

I. Massive scale.
• Tens of thousands of servers and cloud tenants, and 

hundreds of thousands of  VMs.
II. On-demand access: 

• Pay-as-you-go, no upfront commitment, access to anyone. 
III. Data-intensive nature: 

• What was MBs has now become TBs, PBs and XBs.
• Daily logs, forensics, Web data, etc.



Must deal with immense complexity!

• Fault-tolerance and failure-handling 
• Replication and consensus 
• Cluster scheduling

• How would a cloud user deal with such complexity? 
• Powerful abstractions and frameworks
• Provide easy-to-use API to users.
• Deal with the complexity of distributed computing 

under the hood. 



MapReduce 
is one such powerful 

abstraction. 



MapReduce

• To be continued in next class. 
• Overview
• Examples
• Execution and scheduling


