Distributed Systems

CS425/ECE428

April 16 202 |

Instructor: Radhika Mittal

Acknowledgements for some of the materials: Indy Gupta

Logistics

* HW6 will be released by tonight.
* You should be able to solve the first question right-away.
* You should be able to solve the first two parts of the second
question after today’s class.
* You should be able to solve the remaining questions by the end of
next week.

Our agenda for the next 3-4 classes

* Brief overview of key-value stores

e Distributed Hash Tables

* Peer-to-peer protocol for efficient insertion and retrieval of key-value
pairs.

* Key-value stores in the cloud
* How to run large-scale distributed computations over key-value

stores!
* Map-Reduce Programming Abstraction

* How to design a large-scale distributed key-value store!
» Case-study: Facebook’s Cassandra

Our focus today

* Brief overview of key-value stores

e Distributed Hash Tables

* Peer-to-peer protocol for efficient insertion and retrieval of key-value
pairs.

The Key-value Abstraction

* (Business) Key =2 Value
* (twitter.com) tweet id = information about tweet
* (amazon.com) item number = information about it
* (kayak.com) Flight number = information about flight,
e.g., availlability
* (yourbank.com) Account number = information
about It

The Key-value Abstraction (2)

* |t's a dictionary data-structure.
* Insert, lookup, and delete by key
* E.g, hash table, binary tree

e But distributed.

Isn’t that just a database!

* Yes, sort of.

* Relational Database Management Systems (RDBMSs)
have been around for ages

* e.g. MySQL is the most popular among them

e Data stored in structured tables based on a Schema

* Each row (data item) in a table has a primary key that is
unique within that table.

* Queried using SQL (Structured Query Language).
* Supports joins.

Relational Database Example

users table
user_id name zipcode blog_url blog_id
101 Alice 12345 alice.net 1
422 Charlie 45783 charlie.com 3
555 Bob 99910 bob.blogspot.com 2

1

Primary keys

T

Foreign keys

blog table
id url last_updated num_posts
1 alice.net 5/2114 332
2 bob.blogspot.com 4/2113 10003
3 charlie.com 6/15/14 7

Example SQL queries
1. SELECT zipcode
FROM users
WHERE name = “Bob”

2. SELECT url
FROM blog
WHERE id =3

3. SELECT users.zipcode,
blog.num_posts
FROM users JOIN blog
ON users.blog_url = blog.url

Mismatch with today’s workloads

* Data: Large and unstructured

* Lots of random reads and writes
* Sometimes write-heavy

* Foreign keys rarely needed

* Joins infrequent

Key-value/NoSQL Data Model

* NoSQL ="Not Only SQL"
* Necessary APl operations: get(key) and put(key, value)

e [ables
e |ike RDBMS tables, but ...

* May be unstructured: May not have schemas
* Some columns may be missing from some rows

* Don't always support joins or have foreign keys
* Can have index tables, just like RDBMSs

Key-value/NoSQL Data Model

Unstructured

No schema imposed

Columns missing
from some Rows

No foreign keys,
joins may not be

supported

Vellue
Key {
1 users table
user_id name zipcode blog_url
101 Alice 12345 alice.net
422 Charlie Q charlie.com
555 99910 bob.blogspot.com
Value
Key { A
1 blog table
id url last_updated num_posts
1 alice.net 5/2 332
2 bob.blogspot.com 10003
3 charlie.com 6/15/14

Key-value/NoSQL Data Model

* NoSQL ="Not Only SQL”
* Necessary APl operations: get(key) and put(key, value)

e [ables
e |ike RDBMS tables, but ...

* May be unstructured: May not have schemas
* Some columns may be missing from some rows

* Don't always support joins or have foreign keys
* Can have index tables, just like RDBMSs

Our focus today

e Distributed Hash Tables

* Peer-to-peer protocol for efficient insertion and retrieval of key-value
pairs.

Distributed Hash Tables (DHTs)

* Multiple protocols were proposed in early 1990s.
* Chord, CAN, Pastry, Tapestry
* Initial usecase: Peer-to-peer file sharing
* key = hash of the file, value = file

* Cloud-based distributed key-value stores reuse many techniques
from these DHTs.

* Key gaoals:
* Balance load uniformly across all nodes (peers).
* Fault-tolerance
* Efficient inserts and lookups.

Distributed Hash Tables (DHTs)

* Multiple protocols were proposed in early 1990s.
* Chord, CAN, Pastry, Tapestry
* Initial usecase: Peer-to-peer file sharing
* key = hash of the file, value = file

* Cloud-based distributed key-value stores reuse many techniques
from these DHTs.

* Key gaoals:
* Balance load uniformly across all nodes (peers).
* Fault-tolerance
* Efficient inserts and lookups.

Chord

* Developed at MIT by |. Stoica, D. Karger, F. Kaashoek, H. Balakrishnan, R.
Morris, Berkeley and MIT

* Key properties:
* Load balance:
* spreads keys evenly over nodes.
* Decentralized:
* no node Is more iImportant than others.
* Scalable:
* cost of key lookup I1s O(logN), N = no. of nodes.
High availability:
* automatically adjusts to new nodes joining and nodes leaving.
* Flexible naming:
* no constraints on the structure of keys that it looks up.

Chord: Consistent Hashing

* Uses Consistent Hashing on node’s (peer’s)

address
* SHA-I(ip_address,port) = 160 bit string

Truncated to m bits (modulo 2™M)

_|)6

Called peer id (number between O and 2™

Not unique but id conflicts very unlikely

Can then map peers to one of 2™ logical

points on a circle

Circle form=3

Chord: Consistent Hashing

* Uses Consistent Hashing on node’s (peer’s)

address
* SHA-I(ip_address,port) = 160 bit string

Truncated to m bits (modulo 2™M)

_|)6

Called peer id (number between O and 2™

Not unique but id conflicts very unlikely

Can then map peers to one of 2™ logical

points on a circle

Circle form=3

Where will N16 be placed on this circle!?

Chord: Consistent Hashing

* Uses Consistent Hashing on node’s (peer’s)

address
* SHA-I(ip_address,port) = 160 bit string

Truncated to m bits (modulo 2™M)

_|)6

Called peer id (number between O and 2™

Not unique but id conflicts very unlikely

Can then map peers to one of 2™ logical 5

points on a circle

4

Circleform=3

Where will N45 be placed on this circle!?

Ring of Peers: Running Example

* Say m=/ (128 possible points on the circle — not shown)

* 6 nodes in the system. 0

TN

Mapping Keys to Nodes

* Use the same consistent hash function
* SHA- I (key) = 160 bit string (key identifier)
* Henceforth, we refer to SHA-1 (key) as key.
* The key-value pair stored at the key's successor node.

* successor(key) = first peer with id greater than or equal to (key mod 2™)

* Cross-over the ring when you reach the end.

e 0< | <2<3......<127<0 (form=7)

* Consistent Hashing => with K keys and N peers, each peer stores
O(K/N) keys. (i.e., < c.K/N, for some constant c)

Ring of Peers: Running Example

Where will the value with key 42 be stored!?

Ring of Peers: Running Example

/ Value with key
\/ [K42 stored here

Where will the value with key 42 be stored!?

Ring of Peers: Running Example

Value with key
KI'15 stored here

T~ N16)

Where will the value with key | |15 be stored!?

Performing Lookups

Suppose N8O receives a request to lookup K42.

TN

m=/
What is the value
for K42!?
Qoo \/,

Need to ask the successor of K42!

Performing Lookups

* Option |: Each node is aware of (can route to) any other node in the

system.
* Need a very large routing table.
* Poor scalability with 1000s of nodes.

* Any node failure and join will require a necessary update at all nodes.

* Option 2: Each node is aware of only its ring successor.

* O(N) lookup. Not very efficient.

* Chord chooses a sweet middle-ground.

Performing Lookups

* Chord chooses a sweet middle-ground.
* Each node is aware of m other nodes.
* Maintains a finger table with m entries.
 The ith entry of node n’s finger table = successor(n + 2')

* | ranges from O to m-|

Finger Tables

Compute the finger table for N80

Finger Tables

Finger Table at N80

N DN B W= O

i i
96

96
96
96
96
112
16

N112

80 +2

N96

80 + 24

80 + 23
80 +2

80 + 21
80 +2

N80

N16

80 + 26

N32

N45

Say m=7

Performing Lookups

Suppose N8O receives a request to lookup K42.

TN

m=/
What is the value
for K42?
Os \/,

Need to locate successor of K42!

Which nodes is N80 aware of?

Finger Table at N80

N DN B W= O

i i
96

96
96
96
96
112
16

N112

80 +2

N96

80 + 24

80 + 23
80 +2
80 + 21

80 + 2

N80

N16

80 + 26

N32

N45

Say m=7

Performing Lookups

Suppose N8O receives a request to lookup K42.

AT N

What is the valu m=/
for K42?
o \/
Need to locate successor of K42!
Forward the query to the most promising node you know of.

Search for key k at node n

At node n, if k lies in range (n, next(n)], where next(n) is n's ring successor
then next(n) = successor(key). Send query to next(n)
Else, send query for k to largest finger entry <= k

0 o |
! 3L LY
NP

Lgt«gé,
ullu%oao

Here

AnaIYSiS /Halfway point
Search takes O(log(N)) time } Next hop

Proof Inturtion:
Key

* (inturtion): at each step, distance between query and peer-with-file

reduces by a factor of at least 2 (why?)
* (inturtion): after log(N) forwardings, distance to key is at most
2m/210(N) = 2m /' N
* Expected number of node identifiers in a range of 2™/ N:
* ideally one

* O(log(N)) with high probabillity (by properties of consistent
hashing)

So using ring successors In that range will use another O(log(N))

hops. Overall lookup time stays O(log(N)).

Analysis

* O(log(N)) search time holds for file insertions too (in general for
routing to any key)

* "Routing’ can thus be used as a building block for
* all operations: insert, lookup, delete

* O(log(N)) time true only If finger and successor entries correct

* When might these entries be wrong!
* When you have failures
* Next class!

MP3: Distributed Transactions

* https://courses.grainger.illinois.edu/cs425/sp202 | /mps/mp3.html

* Lead TA: Dayue Bal

e Task:

* Build a distributed transaction system that satisfies ACI properties
(you do not need to handle Durability).

* Objective:

* Think through and implement algorithms for achieving atomicity and
consistency with distributed transactions (two-phase commit),
concurrency control (two-phase locking / timestamped ordering),
deadlock detection.

MP3: Distributed Transactions

branch_name

branch_name

branch_name

branch_name

branch_name

config_file config_file config_file config_file config_file
server A server B server C server D server E
sample config_file

A sp21-cs425-g01-01.cs.illinois.edu 1234

B sp21-cs425-9g01-02.cs.illinois.edu 1234 Use this information to

C sp21-cs425-g01-03.cs.illinois.edu 1234 establish communication

D sp21—cs425—901—@4.cs.}ll}no%s.edu 1234 ACrOSS Servers.

E sp21-cs425-901-05.cs.illinois.edu 1234

MP3: Distributed Transactions

branch_name

branch_name

branch_name

branch_name

branch_name

config_file config_file config_file config_file config_file
server A server B server C server D server E
sample config_file

A sp21-cs425-g01-01.cs.illinois.edu 1234 client

B sp21-cs425-901-02.cs.illinois.edu 1234

C sp21-cs425-g01-03.cs.illinois.edu 1234 f

D sp21-cs425-901-04.cs.illinois.edu 1234 cent id

E sp21-cs425-901-05.cs.illinois.edu 1234 —

config_file

MP3: Distributed Transactions

server A server B server C server D server E

client

Receives user input (command) from stdin.
Prints output of the command to stdout.

< BEGIN //start a new transaction

MP3: Distributed Transactions

server A

server B

server C

server D server k

client

Receives user input (command) from stdin.
Prints output of the command to stdout.

< BEGIN //start a new transaction

> 0K

For each transaction,
client randomly chooses
a server to act as
coordinator. Only
communicates with the
coordinator

< DEPOSIT A.foo 10 //deposit 10 units in account foo at branch A

MP3: Distributed Transactions

server A

N server B

server C

client

Receives user input (command) from stdin.
Prints output of the command to stdout.

< BEGIN //start a new transaction

> 0K

server D

server k

< DEPOSIT A.foo 10 //deposit 10 units in account foo at branch A

> 0K

MP3: Distributed Transactions

server A |« server B server C server D server E

client

Receives user input (command) from stdin.
Prints output of the command to stdout.

< BEGIN //start a new transaction

> 0K

< DEPOSIT A.foo 10 //deposit 10 units in account foo at branch A
> 0K

Other possible commands: WITHDRAW and BALANCE (only applicable if the account exists)

MP3: Distributed Transactions

A

server A server B server C server D server k

\ 4

client

Receives user input (command) from stdin.
Prints output of the command to stdout.

User enters COMMIT or ABORT to end the transaction.

A server may also choose to ABORT a transaction (e.g. if consistency violated, or if
needed for concurrency control).

Changes made by one transaction visible to others only after it successful commits.

MP3: Distributed Transactions

server B server C server D server k

A

server A

\ 4

client

Receives user input (command) from stdin.
Prints output of the command to stdout.

Required properties:
e Atomicity:

* all servers commit the entire transaction, or all rollback the entire transaction.
* Consistency:

* cannot withdraw from or read balance of a non-existent account.

* atransaction cannot result in a negative account balance.

MP3: Distributed Transactions
/_\

A

server A » server B server C server D server E

client client

Receives user input (command) from stdin.
Prints output of the command to stdout.

Required properties:

* Isolation:
* multiple clients may concurrently issue commands on the object.
* Must provide serial equivalence.

* Deadlock avoidance.

MP3: Distributed Transactions

* Due on Friday, May Sth.

* Allowed to submit up to 50 hours late, but with 2% penalty for
every late hour (rounded up).

* Read the specification fully and carefully.
* Required semantics discussed more completely there.

* Start early!

