
Distributed Systems

CS425/ECE428

April 14 2021

Instructor : Radhika Mittal

Acknowledgements for the materials: Indy Gupta, Nikita Borisov, Spanner authors



Logistics

• Midterm 2 grades and solutions were released on Monday. 

(out of 65)



Logistics

• HW5 deadline has been extended to Friday, April 16th, 
11:59pm. 

• MP3 has been released. 

• HW6 will be released on Friday. 



Distributed Transactions

• Transaction processing can be distributed across multiple servers.

• Different objects can be stored on different servers.

• An object may be replicated across multiple servers. 
• Our focus today. 

• Case study: Google’s Spanner System 



Distributed Transactions

• Sharding: objects can be distributed across multiple (1000’s 
of) servers 
• Primary reason: load balancing and scalability.

• Replication: the same object may be replicated among a 
handful of nodes.
• Primary reason: fault-tolerance, availability, durability. 



Replication: Natural way to handle failures

• Node failures are common. 
In each cluster's first year, it's typical that 1,000 individual machine 
failures will occur; thousands of hard drive failures will occur; one 
power distribution unit will fail, bringing down 500 to 1,000 machines 
for about 6 hours; 20 racks will fail, each time causing 40 to 80 
machines to vanish from the network; 5 racks will "go wonky," with 
half their network packets missing in action; and the cluster will have 
to be rewired once, affecting 5 percent of the machines at any given 
moment over a 2-day span. And there's about a 50 percent chance 
that the cluster will overheat, taking down most of the servers in less 
than 5 minutes and taking 1 to 2 days to recover.

-- Jeff Dean (Google), source: cnet.com



Replication: Natural way to handle failures

• Node failures are common. 

• What could happen if a node fails? 
• Objects unavailable until recovery.
• 2PC “stuck” after coordinator failure 

• Even worse: what happens if the drive failures.
• no recovery!

• Replication provides greater availability and robustness to 
failures. 
• Geo-replication (spanning datacenters across the world) for greater 

robustness. 



Replication

• Replication = An object has identical copies, each maintained by a 
separate server.
• Copies are called “replicas”

• With k replicas of each object, can tolerate failure of any (k-1) servers 
in the system



Replication: Availability

• If each server is down a fraction f of the time 
• Server’s failure probability

• With no replication, availability of object = 
= Probability that single copy is up 
= (1 – f)

• With k replicas, availability of object = 
Probability that at least one replicas is up
= 1 – Probability that all replicas are down
= (1 – f k)



Replication: Availability

• With no replication, availability of object = 
= Probability that single copy is up 
= (1 – f)

• With k replicas, availability of object = 
Probability that at least one replicas is up
= 1 – Probability that all replicas are down
= (1 – f k)

f=failure	
probability

No	replication k=3 replicas k=5	replicas

0.1 90% 99.9% 99.999%

0.05 95% 99.9875% 6	Nines

0.01 99% 99.9999% 10	Nines



Replication: Challenges

1. Replication Transparency
• A client ought not to be aware of multiple copies of objects 

existing on the server side

2. Replication Consistency
• All clients see single consistent copy of data, in spite of replication
• For transactions, guarantee ACID



Replication Transparency

Client Front End

Replica 1

Replica 2

Replica 3

Front ends
provide replication 

transparency

Client
Front End

Client

Requests 
(replies flow opposite)

Replicas of an
object O



Replication Consistency

• Two ways to forward updates from front-ends (FEs) to replica group
• Passive Replication: uses a primary replica (leader)
• Active Replication: treats all replicas identically

• Both approaches use the concept of “Replicated State Machines”
• Each replica’s code runs the same state machine
• Multiple copies of the same State Machine begun in the Start state, 

and receiving the same Inputs in the same order will arrive at the same 
State having generated the same Outputs. [Schneider 1990]



Passive Replication

Client Front End

Replica 1

Replica 2

Replica 3

Client
Front End

Client

Requests 
(replies flow opposite)

Elected leader

• Leader => total reliable ordering 
of all updates

• On leader failure, run election



Active Replication

Client Front End

Replica 1

Replica 2

Replica 3

Front ends
provide replication 

transparency

Client
Front End

Client

Requests 
(replies flow opposite)

Multicast
inside 

Replica group



Transactions and Replication

• One-copy serializability
• A concurrent execution of transactions in a replicated database is one-

copy-serializable if it is equivalent to a serial execution of these 
transactions over a single logical copy of the database.

• (Or) The effect of transactions performed by clients on replicated 
objects should be the same as if they had been performed one at a 
time on a single set of objects (i.e., 1 replica per object). 

• In a non-replicated system, transactions appear to be performed one at 
a time in some order. 
• Correctness means serial equivalence of transactions 

• When objects are replicated, transaction systems for correctness need 
one-copy serializability.



Transactions and Replication

• Objects distributed among 1000’s cluster nodes for load-balancing 
(sharding)

• Objects replicated among a handful of nodes for availability / durability.
• Replication across data centers, too 

• Two-level operation: 
• Use transactions, coordinators, 2PC per object
• Use Paxos / Raft among object replicas 

• Consensus needed across object replicas, e.g. 
• When acquiring locks and executing operations
• When committing transactions



2PC and Paxos
• E.g. workflow: 

• Coordinator leader sends Prepare message to 
leaders of each replica group 

• Each replica leader uses Paxos to commit the 
Prepare to the group logs 

• Once commit prepare succeeds, reply to 
coordinator leader

• Coordinator leader uses Paxos to commit 
decision to its group log. 

• Coordinator leader sends Commit message to 
leaders of each replica group. 

• Each replica leader uses Paxos to process the 
final commit. 

• Replica leader send the “commit ok / have 
committed” message back to coordinator. 



Spanner: Google’s Globally-Distributed Database 

• First three lines from the paper: 

• Spanner is a scalable, globally-distributed database designed, built, 
and deployed at Google. 

• At the highest level of abstraction, it is a database that shards data 
across many sets of Paxos state machines in datacenters spread all 
over the world. 

• Replication is used for global availability and geographic locality; 
clients automatically failover between replicas. 



Spanner:	Google’s
Globally-Distributed	Database

Wilson	Hsieh	
representing	a	host	of	authors

OSDI	2012



What	is	Spanner?

• Distributed	multiversion	database
• General-purpose	transactions	(ACID)
• SQL	query	language
• Schematized	tables
• Semi-relational	data	model

• Running	in	production
• Storage	for	Google’s	ad	data
• Replaced	a	sharded MySQL	database

OSDI	2012 21



Example:	Social	Network

OSDI	2012

User	posts
Friend	lists
User	posts
Friend	lists
User	posts
Friend	lists
User	posts
Friend	lists

US

Brazil

Russia
Spain

San	Francisco
Seattle
Arizona

Sao	Paulo
Santiago
Buenos	Aires

Moscow
Berlin
Krakow

London
Paris
Berlin
Madrid
Lisbon

User	posts
Friend	lists

22

x1000

x1000

x1000

x1000



Overview

• Feature:	Lock-free	distributed	read	transactions
• Property:	External	consistency	of	distributed	
transactions
– First	system	at	global	scale

• Implementation:	Integration	of	concurrency	
control,	replication,	and	2PC
– Correctness	and	performance

• Enabling	technology:	TrueTime
– Interval-based	global	time

OSDI	2012 23



Read	Transactions

• Generate	a	page	of	friends’	recent	posts
– Consistent	view	of	friend	list	and	their	posts

OSDI	2012

Why	consistency	matters
1. Remove	untrustworthy	person	X	as	friend
2. Post	P:	“My	government	is	repressive…”

24



User	posts
Friend	lists
User	posts
Friend	lists

Single	Machine

Friend2	post

Generate	my	page

Friend1	post

Friend1000	post
Friend999	post

Block	writes	

OSDI	2012

…

25



User	posts
Friend	lists	
User	posts
Friend	lists	

Multiple	Machines

User	posts
Friend	lists

Generate	my	page

Friend2	post
Friend1	post

Friend1000	post
Friend999	post

User	posts
Friend	lists

Block	writes	

OSDI	2012

…

26



User	posts
Friend	lists	

User	posts
Friend	lists	

User	posts
Friend	lists

Multiple	Datacenters

User	posts
Friend	lists

Generate	my	page

Friend2	post

Friend1	post

Friend1000	post

Friend999	post

OSDI	2012

…

US

Spain

Russia

Brazil

27

x1000

x1000

x1000

x1000



Version	Management

• Transactions	that	write	use	strict	2PL
– Each	transaction	T is	assigned	a	timestamp	s
– Data	written	by	T is	timestamped	with	s

OSDI	2012 28

Time 8<8

[X]

[me]

15

[P]
My	friends
My	posts
X’s	friends

[]

[]



Synchronizing	Snapshots

==
External	Consistency:

Commit	order	respects	global	wall-time	order

OSDI	2012 29

==
Timestamp	order	respects	global	wall-time	order

given
timestamp	order	==	commit	order

Global	wall-clock	time



Timestamps,	Global	Clock

• Strict	two-phase	locking	for	write	transactions
• Assign	timestamp	while	locks	are	held

T

Pick	s =	now()

Acquired	locks Release	locks

OSDI	2012 30



Timestamp	Invariants

OSDI	2012 31

• Timestamp	order	==	commit	order

• Timestamp	order	respects	global	wall-time	order	

T
2

T
3

T
4

T
1



TrueTime

• “Global	wall-clock	time”	with	bounded	
uncertainty

time

earliest latest

TT.now()

2*ε

OSDI	2012 32



Timestamps	and	TrueTime

T

Pick	s =	TT.now().latest

Acquired	locks Release	locks

Wait	until	TT.now().earliest	>	ss

OSDI	2012

average	ε

Commit	wait

average	ε

33



Commit	Wait	and	Replication

OSDI	2012

T

Acquired	locks Release	locks

Start	consensus Notify	non-leader	nodes

Commit	wait	donePick	s

34

Achieve	consensus



Commit	Wait	and	2-Phase	Commit

OSDI	2012

TC

Acquired	locks Release	locks

TP1

Acquired	locks Release	locks

TP2

Acquired	locks Release	locks

Notify	participants	of	s

Commit	wait	doneCompute	s for	each

35

Start	logging Done	logging

Prepared

Compute	overall	s

Committed

Send	s



Example

OSDI	2012 36

TP

Remove	X	
from	my	friend	
list

Remove	myself	
from	X’s	friend	
list

sC=6

sP=8

s=8 s=15

Risky	post	P

s=8

Time <8

[X]

[me]

15

TC T2

[P]
My	friends
My	posts
X’s	friends

8

[]

[]



What	Have	We	Covered?

• Lock-free	read	transactions	across	datacenters
• External	consistency
• Timestamp	assignment
• TrueTime
– Uncertainty	in	time	can	be	waited	out

OSDI	2012 37



What	Haven’t	We	Covered?

• How	to	read	at	the	present	time
• Atomic	schema	changes
–Mostly	non-blocking
– Commit	in	the	future

• Non-blocking	reads	in	the	past
– At	any	sufficiently	up-to-date	replica

OSDI	2012 38



TrueTime	Architecture

Datacenter	1 Datacenter	n…Datacenter	2

GPS	
timemaster

GPS	
timemaster

GPS	
timemaster

Atomic-clock	
timemaster

GPS	
timemaster

Client

OSDI	2012 39

GPS	
timemaster

Compute	reference	[earliest,	latest]	=	now	± ε



TrueTime	implementation

time

ε

0sec 30sec 60sec 90sec

+6ms

now	=	reference	now	+	local-clock	offset
ε	=	reference	ε	+	worst-case	local-clock	drift

reference
uncertainty

OSDI	2012 40

200	μs/sec



What	If	a	Clock	Goes	Rogue?	

• Timestamp	assignment	would	violate	external	consistency
• Empirically	unlikely	based	on	1	year	of	data
– Bad	CPUs	6	times	more	likely	than	bad	clocks

OSDI	2012 41



Network-Induced	Uncertainty

OSDI	2012

Mar 29 Mar 30 Mar 31 Apr 1
Date

2

4

6

8

10

Ep
sil

on
 (m

s)

99.9
99
90

6AM 8AM 10AM 12PM
Date (April 13)

1

2

3

4

5

6

42



What’s	in	the	Literature

• External	consistency/linearizability
• Distributed	databases
• Concurrency	control
• Replication
• Time	(NTP,	Marzullo)

OSDI	2012 43



Future	Work

• Improving	TrueTime
– Lower	ε	<	1	ms

• Building	out	database	features
– Finish	implementing	basic	features
– Efficiently	support	rich	query	patterns

OSDI	2012 44



Conclusions

• Reify	clock	uncertainty	in	time	APIs
– Known	unknowns	are	better	than	unknown	
unknowns

– Rethink	algorithms	to	make	use	of	uncertainty

• Stronger	semantics	are	achievable
– Greater	scale	!=	weaker	semantics

OSDI	2012 45



Thanks

• To	the	Spanner	team	and	customers
• To	our	shepherd	and	reviewers
• To	lots	of	Googlers	for	feedback
• To	you	for	listening!

• Questions?

OSDI	2012 46



MP3: Distributed Transactions

• https://courses.grainger.illinois.edu/cs425/sp2021/mps/mp3.html
• Lead TA: Dayue Bai

• Task:
• Build a distributed transaction system that satisfies ACI properties 

(you do not need to handle Durability). 

• Objective:
• Think through and implement algorithms for achieving atomicity and 

consistency with distributed transactions (two-phase commit), 
concurrency control (two-phase locking / timestamped ordering), 
deadlock detection. 



MP3: Distributed Transactions

branch_name
config_file

server A

branch_name
config_file

server B

branch_name
config_file

server C

branch_name
config_file

server D

branch_name
config_file

server E

sample config_file

Use this information to 
establish communication 
across servers. 



MP3: Distributed Transactions

branch_name
config_file

server A

branch_name
config_file

server B

branch_name
config_file

server C

branch_name
config_file

server D

branch_name
config_file

server E

client
sample config_file

client_id
config_file



MP3: Distributed Transactions

server A server B server C server D server E

client

Receives user input (command) from stdin.
Prints output of the command to stdout.

<	BEGIN	//start	a	new	transaction



MP3: Distributed Transactions

server A server B server C server D server E

client

Receives user input (command) from stdin.
Prints output of the command to stdout.

< BEGIN //start	a	new	transaction
>	OK
< DEPOSIT	A.foo 10 //deposit	10	units	in	account	foo	at	branch	A

Client	randomly	
chooses	a	server	(say	B)	
to	act	as	coordinator.	
Only	communicates	
with	the	coordinator	



MP3: Distributed Transactions

server A server B server C server D server E

client

Receives user input (command) from stdin.
Prints output of the command to stdout.

< BEGIN //start	a	new	transaction
>	OK
< DEPOSIT	A.foo 10 //deposit	10	units	in	account	foo	at	branch	A
>	OK



MP3: Distributed Transactions

server A server B server C server D server E

client

Receives user input (command) from stdin.
Prints output of the command to stdout.

< BEGIN //start	a	new	transaction
>	OK
< DEPOSIT	A.foo 10 //deposit	10	units	in	account	foo	at	branch	A
>	OK

Other possible commands: WITHDRAW and BALANCE (only applicable if the account exists) 



MP3: Distributed Transactions

server A server B server C server D server E

client

Receives user input (command) from stdin.
Prints output of the command to stdout.

User enters COMMIT or ABORT to end the transaction. 

A server may also choose to ABORT a transaction (e.g. if consistency violated, or if 
needed for concurrency control. 

Changes made by one transaction visible to others only after it successful commits. 



MP3: Distributed Transactions

server A server B server C server D server E

client

Receives user input (command) from stdin.
Prints output of the command to stdout.

Required properties:
• Isolation: 

• multiple clients may concurrently issue commands on the object. 
• Must provide serial equivalence.

• Deadlock avoidance. 

client



MP3: Distributed Transactions

server A server B server C server D server E

client

Receives user input (command) from stdin.
Prints output of the command to stdout.

Required properties:
• Atomicity: 

• all servers commit the entire transaction, or all rollback the entire transaction.
• Consistency: 

• cannot withdraw or read balance of a non-existent account. 
• a transaction cannot result in a negative account balance. 



MP3: Distributed Transactions

• Due on Friday, May 5th.
• Allowed to submit up to 50 hours late, but with 2% penalty for 

every late hour (rounded up). 

• Read the specification fully and carefully. 
• Required semantics discussed more completely there.

• Start early! 


