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Agenda for today

• Distributed Transactions
• Chapter 17



Transaction Processing

• Required properties: Atomicity, Consistency, Isolation, Durability (ACID).
• How to prevent transactions from affecting one another? 
• Goal: increase concurrency and transaction throughput while 

maintaining correctness (ACID).
• Two approaches:

• Pessimistic concurrency control: locking based.
• read-write locks with two-phase locking and deadlock 

detection.
• Optimistic concurrency control: abort if too late.

• timestamped ordering. 
• Focused on single server and multiple clients. 



Distributed Transactions

• Transaction processing can be distributed across multiple servers.

• Different objects can be stored on different servers.
• Our focus today. 

• An object may be replicated across multiple servers. 
• Next class. 



Transactions with Distributed Servers

• Different objects touched by a transaction T may reside on different 
servers.

Transaction T
write(A,1);
write(B,2);

…
write(Y, 25);
write(Z, 26);
commit

Object A

Object B

Server 1

Object Y

Object Z

Server 13

.

.

.



Distributed Transaction Challenges

• Atomic: all-or-nothing
• Must ensure atomicity across servers.

• Consistent: rules maintained
• Generally done locally, but may need to check non-local invariants at 

commit time.
• Isolation: multiple transactions do not interfere with each other

• Locks at each server. How to detect and handle deadlocks? 
• Durability: values preserved even after crashes

• Each server keeps local recovery log.
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Distributed Transaction Atomicity

• When T tries to commit, need to ensure 
• all these servers commit their updates from T => T will commit
• Or none of these servers commit => T will abort

• What problem is this?
• Consensus!
• (It’s also called the “Atomic Commit” problem)



Coordinator Server
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• Special server called “Coordinator” initiates 
atomic commit.

• can be same as one of the servers with 
objects.

• Different transactions may have different 
coordinators.



One-phase commit

• Client relays the “commit” or “abort” command to the coordinator. 
• Coordinator tells other servers to commit / abort. 

• Issues with this? 
• Server with object has no say in whether transaction commits or 

aborts
• If a local consistency check fails, it just cannot commit (while other 

servers have committed).
• A server may crash before receiving commit message, with some 

updates still in memory.
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Two-phase commit

Coordinator 
Server … Server 1 Server 13

Prepare
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Commit
• Wait! Can’t commit or abort 
before receiving next message!
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Two-phase commit

Coordinator 
Server … Server 1 Server 13

Prepare

• Save updates to disk
• Respond with “Yes” or “No”

All (13) 
“Yes” 
votes 
received 
within 
timeout?

Commit • Commit updates from disk 
to store

HaveCommitted • Coordinator now knows that all servers 
have committed and it can delete the 
associated transaction information. 
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Two-phase commit

Coordinator 
Server … Server 1 Server 13

Prepare

• Save updates to disk
• Respond with “Yes” or “No”

• Delete tentative updates in disk and abort.

If any 
“No” vote
or timeout
before all 
(13) votes

Abort



Failures in Two-phase Commit

• If server voted Yes, it cannot commit unilaterally before receiving 
Commit message.

• Does not know if other servers voted Yes.
• If server voted No, can abort right away.

• Knows that the transaction cannot be committed. 
• To deal with server crashes

• Each server saves tentative updates into permanent storage, right before 
replying Yes/No in first phase. Retrievable after crash recovery.

• To deal with coordinator crashes
• Coordinator logs all decisions and received/sent messages on disk.
• After recovery => retrieve the logged state. 



Failures in Two-phase Commit (contd)

• To deal with Prepare message loss
• The server may decide to abort unilaterally after a timeout for first phase 

(server will vote No, and so coordinator will also eventually abort)
• To deal with Yes/No message loss

• coordinator aborts the transaction after a timeout (pessimistic!). 
• It must announce Abort message to all.

• To deal with Commit or Abort message loss
• Server can poll coordinator (repeatedly).



Distributed Transaction Atomicity
• When T tries to commit, need to ensure 

• all these servers commit their updates from T => T will commit
• Or none of these servers commit => T will abort

• What problem is this?
• Consensus!
• (It’s also called the “Atomic Commit” problem)

• Consensus is impossible in asynchronous system. 
• What makes two-phase commit work? 
• Crash failures in processes masked by replacing the crashed process with 

a new process whose state is retrieved from permanent storage.
• Two-phase commit is blocked until a failed coordinator recovers.  



Distributed Transaction Challenges

• Atomic: all-or-nothing
• Must ensure atomicity across servers.

• Consistent: rules maintained
• Generally done locally, but may need to check non-local invariants at 

commit time.
• Isolation: multiple transactions do not interfere with each other
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Isolation with Distributed Transaction

• Each server is responsible for applying concurrency control to objects it 
stores.

• Servers are collectively responsible for serial equivalence of operations.



Timestamped Ordering with Distributed Transaction

• Each server is responsible for applying concurrency control to objects it 
stores.

• Servers are collectively responsible for serial equivalence of operations.

• Timestamped ordering can be applied locally at each server. 
• When a server aborts a transaction, inform the coordinator which will relay the 

“abort” to other servers. 



Locks with Distributed Transaction
• Each server is responsible for applying concurrency control to objects it 

stores.

• Servers are collectively responsible for serial equivalence of operations.

• Locks are held locally, and cannot be released until all servers involved 
in a transaction have committed or aborted.

• Locks are retained during 2PC (two-phase commit) protocol.

• How to handle deadlocks? 



Deadlock Detection in Distributed Transactions

• The wait-for graph in a distributed set of transactions is 
distributed.

• Centralized detection
• Each server reports waits-for relationships to central server.
• Coordinator constructs global graph, checks for cycles.

• Issues:
• Single point of failure (can get blocked with the central server fails).
• Scalability. 



Decentralized Deadlock Detection
• Edge chasing: Forward “probe” messages to servers in the edges of 

wait-for graph, pushing the graph forward, until cycle is found.
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• Server X realizes W is waiting 
on U (a potential edge in the 
wait-for graph).

• Ask U’s coordinator whether U 
is waiting on anything, and at 
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• Send a probe to the next server.W®U



Decentralized Deadlock Detection
• Edge chasing: Forward “probe” messages to servers in the edges of 

wait-for graph, pushing the graph forward, until cycle is found.
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• Y adds another edge, and 
forwards the probe to the next 
server. 
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Decentralized Deadlock Detection
• Edge chasing: Forward “probe” messages to servers in the edges of 

wait-for graph, pushing the graph forward, until cycle is found.
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• C can now detect a deadlock.

• A transaction in the cycle can 
now be aborted (by informing 
its coordinator), and deadlock 
breaks.  



Edge Chasing: Phases

• Initiation: When a server S1 notices that a transaction T starts waiting for 
another transaction U, where U is waiting to access an object at another 
server S2, it initiates detection by sending <TàU> to S2.

• Detection: Servers receive probes and decide whether deadlock has 
occurred and whether to forward the probes.

• Resolution: When a cycle is detected, one or more transactions in the 
cycle is/are aborted to break the deadlock.



Phantom Deadlocks

• Phantom deadlocks = false detection of deadlocks that don’t actually 
exist

• Edge chasing messages contain stale data (Edges may have 
disappeared in the meantime). 

• So, all edges in a “detected” cycle may not have been present in the 
system all at the same time. 

• Leads to spurious aborts.



Transaction Priority

• Which transaction to abort? 

• Transactions may be given priority. 
• e.g. inverse of timestamp. 

• When deadlock cycle is found, abort lowest priority transaction
• Only one aborted even if several simultaneous probes find cycle.



Summary

• Distributed Transaction: Different objects that a transaction touches are 
stored on different servers.

• One server process marked out as coordinator 
• Atomic Commit: 2PC
• Deadlock detection: Centralized, Edge chasing

• Next class: when objects are replicated across multiple servers. 


