
Distributed Systems

CS425/ECE428

April 9 2021

Instructor : Radhika Mittal

Acknowledgements for the materials: Indy Gupta and Nikita Borisov

Agenda for today

• Distributed Transactions
• Chapter 17

Transaction Processing

• Required properties: Atomicity, Consistency, Isolation, Durability (ACID).
• How to prevent transactions from affecting one another?
• Goal: increase concurrency and transaction throughput while

maintaining correctness (ACID).
• Two approaches:

• Pessimistic concurrency control: locking based.
• read-write locks with two-phase locking and deadlock

detection.
• Optimistic concurrency control: abort if too late.

• timestamped ordering.
• Focused on single server and multiple clients.

Distributed Transactions

• Transaction processing can be distributed across multiple servers.

• Different objects can be stored on different servers.
• Our focus today.

• An object may be replicated across multiple servers.
• Next class.

Transactions with Distributed Servers

• Different objects touched by a transaction T may reside on different
servers.

Transaction T
write(A,1);
write(B,2);

…
write(Y, 25);
write(Z, 26);
commit

Object A

Object B

Server 1

Object Y

Object Z

Server 13

.

.

.

Distributed Transaction Challenges

• Atomic: all-or-nothing
• Must ensure atomicity across servers.

• Consistent: rules maintained
• Generally done locally, but may need to check non-local invariants at

commit time.
• Isolation: multiple transactions do not interfere with each other

• Locks at each server. How to detect and handle deadlocks?
• Durability: values preserved even after crashes

• Each server keeps local recovery log.

Distributed Transaction Challenges

• Atomic: all-or-nothing
• Must ensure atomicity across servers.

• Consistent: rules maintained
• Generally done locally, but may need to check non-local invariants at

commit time.
• Isolation: multiple transactions do not interfere with each other

• Locks at each server. How to detect and handle deadlocks?
• Durability: values preserved even after crashes

• Each server keeps local recovery log.

Distributed Transaction Atomicity

• When T tries to commit, need to ensure
• all these servers commit their updates from T => T will commit
• Or none of these servers commit => T will abort

• What problem is this?
• Consensus!
• (It’s also called the “Atomic Commit” problem)

Coordinator Server

Transaction T
write(A,1);
write(B,2);

…
write(Y, 25);
write(Z, 26);
commit

Object A

Object B

Server 1

Object Y

Object Z

Server 13

.

.

.

Coordinator
Server

.

.

.

• Special server called “Coordinator” initiates
atomic commit.

• can be same as one of the servers with
objects.

• Different transactions may have different
coordinators.

One-phase commit

• Client relays the “commit” or “abort” command to the coordinator.
• Coordinator tells other servers to commit / abort.

• Issues with this?
• Server with object has no say in whether transaction commits or

aborts
• If a local consistency check fails, it just cannot commit (while other

servers have committed).
• A server may crash before receiving commit message, with some

updates still in memory.

Two-phase commit

Coordinator
Server … Server 1 Server 13

Prepare

Two-phase commit

Coordinator
Server … Server 1 Server 13

Prepare

• Save updates to disk
• Respond with “Yes” or “No”

Two-phase commit

Coordinator
Server … Server 1 Server 13

Prepare

• Save updates to disk
• Respond with “Yes” or “No”

All (13)
“Yes”
votes
received
within
timeout?

Commit

Two-phase commit

Coordinator
Server … Server 1 Server 13

Prepare

• Save updates to disk
• Respond with “Yes” or “No”

All (13)
“Yes”
votes
received
within
timeout?

Commit
• Wait! Can’t commit or abort
before receiving next message!

Two-phase commit

Coordinator
Server … Server 1 Server 13

Prepare

• Save updates to disk
• Respond with “Yes” or “No”

All (13)
“Yes”
votes
received
within
timeout?

Commit
• Commit updates from disk to store

Two-phase commit

Coordinator
Server … Server 1 Server 13

Prepare

• Save updates to disk
• Respond with “Yes” or “No”

All (13)
“Yes”
votes
received
within
timeout?

Commit • Commit updates from disk
to store

HaveCommitted • Coordinator now knows that all servers
have committed and it can delete the
associated transaction information.

Two-phase commit

Coordinator
Server … Server 1 Server 13

Prepare

• Save updates to disk
• Respond with “Yes” or “No”

If any
“No” vote
or timeout
before all
(13) votes

Abort

Two-phase commit

Coordinator
Server … Server 1 Server 13

Prepare

• Save updates to disk
• Respond with “Yes” or “No”

• Delete tentative updates in disk and abort.

If any
“No” vote
or timeout
before all
(13) votes

Abort

Failures in Two-phase Commit

• If server voted Yes, it cannot commit unilaterally before receiving
Commit message.

• Does not know if other servers voted Yes.
• If server voted No, can abort right away.

• Knows that the transaction cannot be committed.
• To deal with server crashes

• Each server saves tentative updates into permanent storage, right before
replying Yes/No in first phase. Retrievable after crash recovery.

• To deal with coordinator crashes
• Coordinator logs all decisions and received/sent messages on disk.
• After recovery => retrieve the logged state.

Failures in Two-phase Commit (contd)

• To deal with Prepare message loss
• The server may decide to abort unilaterally after a timeout for first phase

(server will vote No, and so coordinator will also eventually abort)
• To deal with Yes/No message loss

• coordinator aborts the transaction after a timeout (pessimistic!).
• It must announce Abort message to all.

• To deal with Commit or Abort message loss
• Server can poll coordinator (repeatedly).

Distributed Transaction Atomicity
• When T tries to commit, need to ensure

• all these servers commit their updates from T => T will commit
• Or none of these servers commit => T will abort

• What problem is this?
• Consensus!
• (It’s also called the “Atomic Commit” problem)

• Consensus is impossible in asynchronous system.
• What makes two-phase commit work?
• Crash failures in processes masked by replacing the crashed process with

a new process whose state is retrieved from permanent storage.
• Two-phase commit is blocked until a failed coordinator recovers.

Distributed Transaction Challenges

• Atomic: all-or-nothing
• Must ensure atomicity across servers.

• Consistent: rules maintained
• Generally done locally, but may need to check non-local invariants at

commit time.
• Isolation: multiple transactions do not interfere with each other

• Locks at each server. How to detect and handle deadlocks?
• Durability: values preserved even after crashes

• Each server keeps local recovery log.

Isolation with Distributed Transaction

• Each server is responsible for applying concurrency control to objects it
stores.

• Servers are collectively responsible for serial equivalence of operations.

Timestamped Ordering with Distributed Transaction

• Each server is responsible for applying concurrency control to objects it
stores.

• Servers are collectively responsible for serial equivalence of operations.

• Timestamped ordering can be applied locally at each server.
• When a server aborts a transaction, inform the coordinator which will relay the

“abort” to other servers.

Locks with Distributed Transaction
• Each server is responsible for applying concurrency control to objects it

stores.

• Servers are collectively responsible for serial equivalence of operations.

• Locks are held locally, and cannot be released until all servers involved
in a transaction have committed or aborted.

• Locks are retained during 2PC (two-phase commit) protocol.

• How to handle deadlocks?

Deadlock Detection in Distributed Transactions

• The wait-for graph in a distributed set of transactions is
distributed.

• Centralized detection
• Each server reports waits-for relationships to central server.
• Coordinator constructs global graph, checks for cycles.

• Issues:
• Single point of failure (can get blocked with the central server fails).
• Scalability.

Decentralized Deadlock Detection
• Edge chasing: Forward “probe” messages to servers in the edges of

wait-for graph, pushing the graph forward, until cycle is found.

V

Held by
W

Waits forHeld by

Waits
for

Waits for

U

C

A

B

Z

Y

X

W,	U,	V:	transactions
A,	B,	C:	objects
X,	Y,	Z:	servers

Decentralized Deadlock Detection
• Edge chasing: Forward “probe” messages to servers in the edges of

wait-for graph, pushing the graph forward, until cycle is found.

V

Held by
W

Waits forHeld by

Waits
for

Waits for

U

C

A

B

Z

Y

X

W,	U,	V:	transactions
A,	B,	C:	objects
X,	Y,	Z:	servers

All servers know local wait-
for relationships.

Coordinator for each
transaction knows whether
the transaction is waiting
on an object lock, and at
which server.

W®U

U®V

V ®W

Decentralized Deadlock Detection
• Edge chasing: Forward “probe” messages to servers in the edges of

wait-for graph, pushing the graph forward, until cycle is found.

V

Held by
W

Waits forHeld by

Waits
for

Waits for

U

C

A

B

Z

Y

X

W,	U,	V:	transactions
A,	B,	C:	objects
X,	Y,	Z:	servers

Initiation

• Server X realizes W is waiting
on U (a potential edge in the
wait-for graph).

• Ask U’s coordinator whether U
is waiting on anything, and at
which server.

Decentralized Deadlock Detection
• Edge chasing: Forward “probe” messages to servers in the edges of

wait-for graph, pushing the graph forward, until cycle is found.

V

Held by
W

Waits forHeld by

Waits
for

Waits for

U

C

A

B

Z

Y

X

W,	U,	V:	transactions
A,	B,	C:	objects
X,	Y,	Z:	servers

Initiation

• Server X realizes W is waiting
on U (a potential edge in the
wait-for graph).

• Ask U’s coordinator whether U
is waiting on anything, and at
which server.

• Send a probe to the next server.W®U

Decentralized Deadlock Detection
• Edge chasing: Forward “probe” messages to servers in the edges of

wait-for graph, pushing the graph forward, until cycle is found.

V

Held by
W

Waits forHeld by

Waits
for

Waits for

U

C

A

B

Z

Y

X

W,	U,	V:	transactions
A,	B,	C:	objects
X,	Y,	Z:	servers

Initiation

W®U

• Y adds another edge, and
forwards the probe to the next
server.

W®U ® V

Decentralized Deadlock Detection
• Edge chasing: Forward “probe” messages to servers in the edges of

wait-for graph, pushing the graph forward, until cycle is found.

V

Held by
W

Waits forHeld by

Waits
for

Waits for
Deadlock
detected

U

C

A

B

Initiation

W®U ® V ®W

W®U

W®U ® V

Z

Y

X

W,	U,	V:	transactions
A,	B,	C:	objects
X,	Y,	Z:	servers

• C can now detect a deadlock.

• A transaction in the cycle can
now be aborted (by informing
its coordinator), and deadlock
breaks.

Edge Chasing: Phases

• Initiation: When a server S1 notices that a transaction T starts waiting for
another transaction U, where U is waiting to access an object at another
server S2, it initiates detection by sending <TàU> to S2.

• Detection: Servers receive probes and decide whether deadlock has
occurred and whether to forward the probes.

• Resolution: When a cycle is detected, one or more transactions in the
cycle is/are aborted to break the deadlock.

Phantom Deadlocks

• Phantom deadlocks = false detection of deadlocks that don’t actually
exist

• Edge chasing messages contain stale data (Edges may have
disappeared in the meantime).

• So, all edges in a “detected” cycle may not have been present in the
system all at the same time.

• Leads to spurious aborts.

Transaction Priority

• Which transaction to abort?

• Transactions may be given priority.
• e.g. inverse of timestamp.

• When deadlock cycle is found, abort lowest priority transaction
• Only one aborted even if several simultaneous probes find cycle.

Summary

• Distributed Transaction: Different objects that a transaction touches are
stored on different servers.

• One server process marked out as coordinator
• Atomic Commit: 2PC
• Deadlock detection: Centralized, Edge chasing

• Next class: when objects are replicated across multiple servers.

