
Distributed Systems

CS425/ECE428

April 2 2021

Instructor : Radhika Mittal

Midterm 2 on Monday, April 5, 7-8:50pm

• Same format at Midterm 1.

• Revise the instructions shared on CampusWire.

• Syllabus: Everything covered beyond the syllabus of
Midterm1 upto and including Raft.

Disclaimer for our agenda today

•Quick reminder of the relevant concepts we
covered in class, that are included in second
midterm.

•Not meant to be an exhaustive review!

•Go over the slides for each class.
• Refer to lecture videos, textbook, and readings to fill in

gaps in understanding.

Topics for second midterm

•Mutual Exclusion
• Leader Election
• Consensus
• Synchronous Consensus
• Asynchronous Consensus: Paxos, Raft

Topics for second midterm

•Mutual Exclusion
• Leader Election
• Consensus
• Synchronous Consensus
• Asynchronous Consensus: Paxos, Raft

Problem Statement for mutual exclusion

• Critical Section Problem:
• Piece of code (at all processes) for which we

need to ensure there is at most one process
executing it at any point of time.

• Each process can call three functions
• enter() to enter the critical section (CS)
• AccessResource() to run the critical section code
• exit() to exit the critical section

Mutual Exclusion Requirements

•Need to guarantee 3 properties:
• Safety (essential):
• At most one process executes in CS (Critical

Section) at any time.
• Liveness (essential):
• Every request for a CS is granted eventually.

•Ordering (desirable):
• Requests are granted in the order they were

made.

Analyzing Performance

• Bandwidth: the total number of messages sent in each enter and
exit operation.

• Client delay: the delay incurred by a process at each enter and
exit operation (when no other process is in CS, or waiting)
• We will focus on the client delay for the enter operation.

• Synchronization delay: the time interval between one process
exiting the critical section and the next process entering it (when
there is only one process waiting).

Mutual exclusion in distributed systems

• Classical algorithms for mutual exclusion in distributed
systems.
• Central server algorithm
• Ring-based algorithm
• Ricart-Agrawala Algorithm
•Maekawa Algorithm

Central server based

• A client process:
• sends request to the central server when it wants to enter CS.
• enters CS only after receiving a token from the server.
• releases the token back to the server upon exiting CS.

• Server grants token to only one process at a time.

• Does it guarantee safety, liveness, and ordering?

• What is its bandwidth usage, client delay, and synchronization delay?

Ring based

• A single token moves around a logical ring of processes.
• A process holds the token while executing CS, and releases it when

done.
• It simply forwards the token if it does not want to enter CS.

• Does it guarantee safety, liveness, and ordering?

• What is its bandwidth usage, client delay, and synchronization delay?

Ricart-Agrawala Algorithm

• Send request to all processes and wait for reply from all.
• A process always replies back to a request, except when:
• It is currently executing CS (in HELD state)
• It wants to enter CS (in WANTED state) and deserves to enter it

sooner.
• The Lamport timestamp of its own request is smaller than the

Lamport timestamp of the received request.
• Use process ID to break ties.

• Does it guarantee safety, liveness, and ordering?
• What is its bandwidth usage, client delay, and synchronization delay?

Maekawa Algorithm

• Each process has a voting set consisting of a subset of processes.
• Intersection of voting set of any two processes must be non-zero.
• Send request to all processes in the voting set and wait for reply from

all of them.
• A process replies back to a request only if it has not replied to (or

voted for) a request from another process.

• Does it guarantee safety, liveness, and ordering?
• What is its bandwidth usage, client delay, and synchronization delay?

Topics for second midterm

•Mutual Exclusion
• Leader Election
• Consensus
• Synchronous Consensus
• Asynchronous Consensus: Paxos, Raft

Election Problem
• Goal:
• Elect one leader only among the non-faulty processes
• All non-faulty processes agree on who is the leader

• A run of the election algorithm must always guarantee:
• Safety: For all non-faulty processes p, p has elected:

• (q: a particular non-faulty process with the best attribute value) or Null
• Liveness: For all election runs:

• election run terminates
• & for all non-faulty processes p: p’s elected is not Null

• At the end of the election protocol, the non-faulty process with the
best (highest) election attribute value is elected.
• Common attribute : leader has highest id

Calling for an Election

• Any process can call for an election.

• A process can call for at most one election at a time.

• Multiple processes are allowed to call an election simultaneously.
• All of them together must yield only a single leader

• The result of an election should not depend on which process
calls for it.

Two Classical Election Algorithms

• Ring election algorithm

• Bully algorithm

Key Metrics

• Bandwidth usage: Total number of messages sent.

• Turnaround time: The number of serialized message
transmission times between the initiation and
termination of a single run of the algorithm.

Ring-based algorithm

• Attribute circulated around a ring in an “election” message.
• If a process’ own attribute is better than received attribute, overwrite

the value before forwarding.
• If a process receives back its own attribute, it can declare itself as leader,

and circulate the “elected” message.
• When multiple processes simultaneously call for an election?
• What optimization proposed in Chang and Roberts algorithm

reduces the number of messages exchanged?

• What is bandwidth and turnaround time under different scenarios?
• What happens when a process fails?
• Can we achieve both safety and liveness in an asynchronous system?

Bully algorithm
• Each process aware of process ids (attributes) of other processes.
• Send election message only to higher id process.
• if response received, back off and wait for “coordinator” message.
• If no “coordinator” message received after a timeout, restart the

election.
• If no response received after a timeout, assume all higher id

processes are dead, and send “coordinator” message to all processes.
• If “election” message received from lower id process, send “disagree”

and start another election run.

• What are suitable timeout values?
• What is bandwidth and turnaround time under different scenarios?
• What happens when a process fails during an election run?
• Can we achieve both safety and liveness in an asynchronous system?

Topics for second midterm

•Mutual Exclusion
• Leader Election
• Consensus
• Synchronous Consensus
• Asynchronous Consensus: Paxos, Raft

Basic Consensus Problem
• System of N processes (P1, P2, ….., Pn)

• Each process Pi:
• begins in an undecided state.
• proposes value vi.
• at some point during the run of a consensus algorithm, sets a

decision variable di and enters the decided state.

Required Properties

• Termination (liveness): Eventually each process sets its decision
variable.

• Agreement (safety): The decision value of all correct processes is the
same.
• If Pi and Pj are correct and have entered the decided state, then di = dj.

• Integrity: If the correct processes all proposed the same value, then
any correct process in the decided state has chosen that value.
• Safeguard against algorithms that decide on a fixed constant value.

Synchronous Consensus

• Round-based algorithm
• Proposed values exchanged over ‘synchronized rounds”.
• In round i+1, each process Pk multicasts all new values it received

in the previous round i.

• How many rounds needed to tolerate up to ‘f ’ failures?

Asynchronous Consensus

• Can we achieve both safety and liveness for
consensus in an asynchronous system?

• Algorithms for asynchronous consensus.
• Paxos, Raft

•What guarantees do they provide?

Paxos
• Three roles: proposer, acceptor, learner.

• Two phases:
• Phase 1: prepare request and response.

• When will an acceptor respond?
• Phase 2: accept request (if applicable)

• When will an accept request be sent?
• What will be the proposed value?

• When is a value implicitly decided?

• How is the value shared with the learners?

• What is required to guarantee safety?

• Replicated log => replicated state machine
• All servers execute same commands in same order

• Consensus module ensures proper log replication

Replicated Log Consensus

add jmp mov shl
Log

Consensus
Module

State
Machine

add jmp mov shl
Log

Consensus
Module

State
Machine

add jmp mov shl
Log

Consensus
Module

State
Machine

Servers

Clients

shl

• Algorithm for log consensus. Designed for simplicity.

• What are the guarantees provided by Raft and how?
• How is leader elected?
• Under what conditions will a process refuse to grant vote?

• What happens when a leader fails or gets disconnected?
• How are log entries appended?
• What leads to missing / extra entries in a server’s log?
• When can log entries be overwritten?
• When can log entries be committed?

Raft

Notes on Model and Assumptions

• In a ring-based algorithm, ids of other processes and number of
processes are not known.

• In Bully algorithm, all process ids (and attributes) are known, but a
process may not know which processes have failed.

• In Paxos and Raft, total number of processes are known.
• failed processes taken into account when counting for majority

acceptor responses in Paxos.
• failed processes taken into account when counting votes in Raft.
• failed processed may come back up in Paxos and Raft: will

remember the required state.

Topics for second midterm

•Mutual Exclusion
• Leader Election
• Consensus
• Synchronous Consensus
• Asynchronous Consensus: Paxos, Raft

Good luck!

